

# CyberSHIELD: Securing Renewable Energy Infrastructure Against Cyber Attacks 2024 Spring O&M Users Group Meeting

April 2024

Daniel Alan Ricci, Jake P Gentle





#### DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

#### CyberSHIELD: Securing Renewable Energy Infrastructure Against Cyber Attacks 2024 Spring O&M Users Group Meeting

Daniel Alan Ricci, Jake P Gentle

April 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 April 16, 2024

Jake Gentle
Portfolio Manager

Dan Ricci
Power Systems Security Engineer/Researcher

# CyberSHIELD: Securing Renewable Energy Infrastructure Against Cyber Attacks

2024 Spring O&M Users Group Meeting



## Jake P. Gentle

Portfolio Manager; Staff Supervisor; Secure Renewables and Grid Integration



#### **About Me**

- M.S., Measurement and Controls Engineering Idaho State University
- B.S., Electrical Engineering Idaho State University
- Professional Affiliations:
  - The International Council on Large Electric Systems (CIGRE)
  - Institute of Electrical and Electronics Engineers (IEEE)
    - IEEE Power & Engineering Society
    - IEEE Standards Association
    - IEEE Overhead Lines Subcommittee
  - Smart Electric Power Alliance
    - Cybersecurity Working Group Co-Chair

#### What I work on:

- Lead multiple programs focused on the secure integration of clean energy technologies including:
  - Cybersecurity roadmap for wind technologies
  - Wind and solar cybersecurity threat assessments
  - Resiliency and security of distributed energy technologies in microgrid applications
  - Deployable wind and solar energy technologies for defense applications
  - Enhanced methodologies of bare overhead line ratings, and facilitating the global advancement of transmission innovation
  - Verification and validation of Grid Enhancing Technologies like dynamic line rating

## **Dan Ricci**

#### **Technical leadership and Cybersecurity**

#### **About Me**

- 21-year Navy Veteran
- M.S. Computer Science from Lewis University
  - Focus in Cybersecurity Operations
- ISA99 Member for ISA/IEC 62443
- Remote to Idaho Falls facilities
- Local to Washington, D.C. DOE Facilities



#### What I work on:

- Cyber Defense Operation & Incident Response for Navy Afloat & Shore Networks
- Network Intelligence and Analysis in Support of DoD Cyber-enabled Operations
- Project Management of DoD Acquisition Category (ACAT) I & II Programs
- Commercial & DoD ICS/SCADA Cyber Risk Assessments for Building Automation, Energy Management, Medium-Power, Process Control, and Water Treatment Systems
- Design & implementation of Vulnerability Management programs for Manufacturing Execution Systems (MES)
- Building Cybersecurity & Physical Security Programs
- Founder of ICS Advisory Project to provide open-source data visualization of ICS vulnerabilities for small & medium size asset owners

#### **EERE projects:**

- WindSHIELD
- WaterSHIELD
- SolarSHIELD (S2G)
- Long Duration Energy Storage (LDES) Tiger Team



# Recent Renewable Energy Cyber Attacks





- Increased renewable sector influence
- Primary U.S. adversaries
  - China
  - Russia
  - Iran
  - North Korea
- Development of more sophisticated attacks

# **Examples of Internal Threat Actors & Known Incidents**

#### AOO

- Disgruntled employee
- Phishing victim

#### OEM

- (March 2022)
   Nordex SE hit by ransomware
- (Nov. 2023)
   Vestas hit by ransomware

#### Utility

(May 2023)
 Danish utilities compromised by coordinated attack, forcing islanded operations

#### Maintainers

 (2018) U.S. technician accidentally downloaded malware from hotel, later plugged into wind plant network and turbines stopped working.

# Integrators & other third-parties

- Software as a Service (SaaS) providers
- Data collectors
- Installers
- Developers

# **Examples of External Threat Actors & Known Incidents**

# Benign external actors

- Landowners
- Land tenants
- Land staff
- General public

#### Activist groups

- (2019) Anti-wind protestors in Hawaii disrupt construction
- Rise in ecoterrorist attacks in Europe

# Criminal organizations

- Ransomware groups affected 3 wind companies within 6 months
- Exploiting known vulnerabilities
- Ex: (2019) IPP sPower affected by denial-of-service on comms equipment

#### Nation-state actors

- Reconnaissance activity and advanced persistent threats (APTs)
- Russian attack on SATCOM infrastructure affected 5800 turbines
- Chinese espionage targeting offshore wind in Strait of Taiwan and India

## **Attack Vectors**

## **Physical Access**

- Physical device access
  - Takes time to respond to intrusions



#### **Transient Access**

- Authorized external devices
- Infected technician equipment



# **Cyber Access**

- VPN exploitation
- Wireless
- Temporary access points
- Pivoting from enterprise network



# **Impacts**

Asset health and damage

Loss of remote monitoring

Power system stability









Critical failures can lead to severe physical damage.

Ancillary services













# **Cyber SHIELD Overview: Program Initiatives**

Cyber <u>Security through <u>Hardware Integration</u>, <u>Education</u>, and <u>Layered <u>Defense</u>:</u></u>

**Industry Impact** 

Cyber SHIELD is an impactful program (people/tools) for industry and support the "raise the floor" objectives, the initial focus has been deployment across renewable sectors (Wind/Water/Solar) with three initiative options for participating engagement partners.

- Cyber Program Assessment
- Architecture Basics
- Asset Interaction Analysis

Each initiative is supported leveraging DOE-INL tools + INL team members to integrate with asset owners/operators existing operations.

**Program Evolution** 

This, like most INL tools and resource program is a constantly improving iterative process that builds upon successes and setbacks, but dependent on industry engagements

**Measuring Success** 

Measuring the success of this effort is truly dictated by the ability to have an impact within industry and drive investment by renewable sector in cybersecurity as a priority.

# **INL Cyber SHIELD-INL CERT**

# INL Cybersecurity Evaluation and Risk Tool





#### **Key Challenges Targeted**

Provide insight and guidance for better informed, broader, riskbased investment decisions for renewable asset owners/operators IT and OT cybersecurity programs through Cybersecurity Evaluation and Risk Tool (CERT)

CERT Program Assessment


#### **Key features:**

- ✓ Renewable Sector Focused Capability
- ✓ Open-Source and tuned for renewable industry
- ✓ Identifies gaps in Cybersecurity process and procedures

#### **Top 3 Benefits:**

- Guided cybersecurity assessment and risk-based report
- 2 Map network architecture within the assessment to control areas to help identify or validate asset owner/operator cyber posture
- Support cyber program and resource planning to more quickly meet asset owner/operator maturity objectives by providing document templates and process flows to integrate with existing organization configuration management, maintenance, incident response/recovery procedures

CERT Architecture Basics





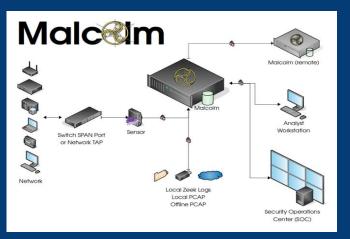
Network Diagram

# SHIELD-Malcolm

## **Asset Interaction Analysis**

#### **Key Challenges Targeted**

Provide asset owners/operations with initial baseline of assets linked to operational technology (OT) and business processes. Detect and visualize threats and vulnerability identification/analysis for renewable OT environments.


#### **Key features:**

- ✓ Malcolm: OT Asset to business processes mapping
- ✓ Log collection & analysis tool suite
- ✓ Increases cyber maturity adding visibility of assets and threats

#### **Top 3 Benefits:**

- Know assets, view of asset risk levels based on devices, protocols, misconfigurations.
- 2 Identify potential attacks, vulnerabilities, and active exploits impacting assets/devices.
- Increases network visibility to make informed decisions and improve operational reliability.





#### Threat Monitoring and Analytics



### **SHIELD Tools Links**

- CSET Renewable as its own branch: <u>cset-renewables-download.inl.gov</u>
- Malcolm site for industry to interact with dashboards and view functionality: <a href="https://training.malcolm.fyi/dashboards">https://training.malcolm.fyi/dashboards</a>
- Malcolm GitHub Site for industry to download and install on local hardware or virtual machine: <a href="https://github.com/cisagov/Malcolm">https://github.com/cisagov/Malcolm</a>
- CyberSHIELD Industry Engagement Website: <a href="https://resilience.inl.gov/inlcybershield/">https://resilience.inl.gov/inlcybershield/</a>
- Email for specific program contacts: <a href="mailto:CYBERSHIELD@INL.GOV">CYBERSHIELD@INL.GOV</a>



