

Advanced SAPHIRE 8
Modeling Methods for Probabilistic Risk Assessment via the Systems Analysis
Program for Hands-On Integrated Reliability Evaluations (SAPHIRE) Software

Curtis Smith
James Knudsen

Kurt Vedros
Ted Wood

Idaho National Laboratory

February 2016

SAPHIRE 8 Advanced Idaho National Laboratory

SAPHIRE – The “Big Picture”

Develop Project Models

(logic and data)
Produce Current

Case Data

Perform Analysis

Final Product

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for any third
party's use, or the results of such use, of any information, apparatus, product or process disclosed in this
report, or represents that its use by such third party would not infringe privately owned rights. The views
expressed in this report are not necessarily those of the U.S. Nuclear Regulatory Commission.

Build Fault Trees

Build Event Trees

Modify Basic
Events

(Section 3)

 - Human Error
 - Compound
 - CCF

Fault Tree Analysis
(Sections 7 and 8)

Link Event Trees
(Section 4)

Sequence Analysis
(Sections 9 and 14)

Results

 - Viewing/Edit cut

sets
(Section 10)

Fault Tree
Development

Event Tree
Development

Generate Probabilities
 - Analysis Type
 - Flag Sets

(Section 2 and 9)

Cut Set Recovery
(Section 5)

End State Analysis
(Section 6)

 ii

SAPHIRE 8 Advanced Idaho National Laboratory

CONTENTS
| 1 | INTRODUCTION .. 1

1.1. OVERVIEW OF THE ADVANCED SAPHIRE MATERIAL ... 2
1.2. SAPHIRE - WHAT IS IT AND WHAT CAN IT DO? ... 4
1.3. THE CLASS WORKBOOK... 5
1.4. INSTALLATION OF SAPHIRE .. 5

| 2 | DATABASE CONCEPTS ... 7

2.1 SAPHIRE PROJECTS .. 7
2.1. NOMINAL CASE VERSUS ANALYSIS CASE DATA .. 12
2.2. MODEL TYPES ... 13
2.3. CHANGE SETS ... 15
2.4. FLAG SETS .. 17
2.5. DYNAMIC FLAG SETS ... 22
2.6. HIERARCHICAL FLAG SETS ... 23

| 3 | BASIC EVENT INFORMATION ... 25

3.1. MODIFY BASIC EVENTS .. 25
3.2. COMPOUND EVENTS ... 26
3.3. COMMON-CAUSE FAILURE COMPOUND EVENTS .. 28
3.4. HUMAN ERROR EVENT ... 47
3.5. CONVOLUTION BASIC EVENTS .. 51
3.6. BASE UNITS USED IN DATA ... 53
3.7. REFERENCE ... 55

| 4 | EVENT TREE LINKAGE RULES EDITOR .. 56

4.1. LINKING EVENT TREES ... 57
4.2. INTRODUCTION TO THE "EDIT LINKAGE RULES" RULE EDITOR ... 58
4.3. CHANGING TRANSFERS TREES USING LINK RULES .. 66
4.4. RULES FOR BINARY AND MULTIPLE-SPLIT BRANCHES ... 68
4.5. EVENT TREE LINKING RULE KEYWORDS AND NOMENCLATURE .. 70
4.6. “EDIT LINKAGE RULES” EVENT TREE EDITOR ... 73
4.7. “PROJECT LINKAGE RULES” EDITOR .. 76
4.8. “TOP EVENT SUBSTITUTION” EVENT TREE GRAPHIC ... 77

| 5 | POST PROCESSING RULES .. 79

5.1. POST PROCESSING RULES EDITOR INTRODUCTION .. 79
5.2. POST PROCESSING RULES NOMENCLATURE AND STRUCTURE ... 80
5.3. END SECTION POST PROCESSING RULE KEYWORD ... 84
5.4. CONVOLUTION POST PROCESSING RULE KEYWORD .. 87
5.5. POST PROCESSING RULE KEYWORDS AND NOMENCLATURE .. 88
5.6. FAULT TREE POST PROCESSING RULES ... 91
5.7. EVENT TREE SEQUENCE POST PROCESSING RULES .. 93
5.8. A “COMPLICATED” POST PROCESSING RULE EXAMPLE .. 98

 iii

SAPHIRE 8 Advanced Idaho National Laboratory

| 6 | END STATE ANALYSIS .. 99

6.1. END STATE ANALYSIS APPROACHES .. 100
6.2. END STATES BY SPECIFYING SEQUENCE END STATES ... 101
6.3. END STATES VIA PARTITION RULES .. 107
6.4. PARTITION RULE KEYWORDS AND NOMENCLATURE .. 115
6.5. PARTITION RULE EXAMPLE ... 118
6.6. REPORTING END STATE RESULTS .. 122
6.7. RESETTING OR DELETING PARTITION RULE END STATES ... 124
6.8. EXPLORE ORIGIN FROM END STATES .. 125

| 7 | SOLVING FAULT TREE CUT SETS ... 130

7.1. FAULT TREE CUT SETS WITH NO TRUNCATION ... 132
7.2. FAULT TREE CUT SETS WITH PROBABILITY TRUNCATIONS .. 133
7.3. FAULT TREE SPECIFIC PROBABILITY TRUNCATION .. 134
7.4. FAULT TREE CUT SETS WITH SIZE TRUNCATION .. 135
7.5. ANALYZING FAULT TREE "GATE LEVEL" ... 136
7.6. ANALYZING FAULT TREE "SUB-TREES" .. 137
7.7. TREATING A FAULT TREE GATE AS A BASIC EVENT ... 138
7.8. TREATING A FAULT TREE GATE AS A BASIC EVENT WITH AN APPROPRIATE PROBABILITY 139
7.9. TREATING A FAULT TREE GATE AS FAILED ... 140
7.10. TREATING A FAULT TREE GATE AS WORKING ... 141
7.11. IGNORING A FAULT TREE GATE .. 141
7.12. USING FLAG SETS DURING FAULT TREE CUT SET SOLVING ... 142
7.13. STEPS PERFORMED DURING FAULT TREE SOLVING ... 146

| 8 | QUANTIFYING FAULT TREE CUT SETS ... 147

8.1. CUT SET QUANTIFICATION APPROACHES .. 148
8.2. THE MIN/MAX APPROACH TO QUANTIFYING CUT SETS .. 149

| 9 | SOLVING EVENT TREE CUT SETS ... 153

9.1. SOLVING SEQUENCE CUT SETS .. 154
9.2. PROCESS FLAGS AND SEQUENCE CUT SET GENERATION .. 157
9.3. PROCESS FLAG EXAMPLE .. 159
9.4. FLAG SETS AND SEQUENCE CUT SET GENERATION... 162
9.5. “DYNAMIC” FLAG SETS AND SEQUENCE CUT SET GENERATION .. 165
9.6. DYNAMIC FLAG SET KEYWORDS AND NOMENCLATURE .. 167
9.7. HIERARCHICAL FLAG SET APPLICATIONS .. 171
9.8. OTHER RULE BASED FLAG SET APPLICATIONS ... 172
9.9. STEPS USED BY SAPHIRE TO SOLVE SEQUENCES ... 173
9.10. EXAMPLE OF SEQUENCE AND FAULT TREE FLAG SETS FOR CUT SET SOLVING 176

| 10 | EDITING CUT SETS .. 181

10.1. THE EDIT CUT SETS OPTION... 182

| 11 | GENERAL ANALYSIS FOR SENSITIVITY STUDIES 197

11.1. GENERAL ANALYSIS EXAMPLE ... 197

 iv

SAPHIRE 8 Advanced Idaho National Laboratory

| 12 | MUTUALLY EXCLUSIVE EVENTS ... 203

12.1. MUTUALLY EXCLUSIVE EVENTS INTRODUCTION ... 204
12.2. MUTUALLY EXCLUSIVE EVENT REMOVAL VIA POST-PROCESSING RULES .. 206

| 13 | USING MODEL TYPES ... 209

13.1. USER DEFINED MODEL TYPE .. 209
13.2. SOLVE LOGIC MODELS USING NEW MODEL TYPE ... 214
13.3. FIRE AND FLOOD MODEL TYPES .. 217
13.4. SEISMIC MODEL TYPE .. 218

| 14 | THE LARGE EVENT TREE METHODOLOGY ... 223

14.1. LARGE EVENT TREE METHODOLOGY INTRODUCTION ... 224
14.2. LARGE EVENT TREES (I.E., INITIATING EVENT TREES, SUPPORT SYSTEM EVENT TREES, AND PLANT
RESPONSE EVENT TREES) ... 226
14.3. TOP EVENT SPLIT-FRACTION PROBABILITY ASSIGNMENT .. 232
14.4. USING "LINK EVENT TREE" RULES TO ASSIGN SPLIT-FRACTIONS .. 237
14.5. TRUNCATING SEQUENCES DURING EVENT TREE LINKING ... 239

Appendix A – Link, Recovery, and Partition Rule Keyword List 235

 v

SAPHIRE 8 Advanced Idaho National Laboratory

This page intentionally left blank

 vi

SAPHIRE 8 Advanced Idaho National Laboratory

 1

| 1 | INTRODUCTION

Section 1 contains an introduction to the SAPHIRE 8 Advanced course material and an
overview of the SAPHIRE software.

SAPHIRE 8 Advanced Idaho National Laboratory

1.1. Overview of the Advanced SAPHIRE Material

The Advanced SAPHIRE course material is intended to both (1) provide guidance for
learning advanced SAPHIRE features during the class and (2) become a stand-alone
reference document after finishing the class. Thus, the format for the class material is a
combination of the traditional “overhead-type” of presentation information with a
structured, reference-type document.

Major topics that are covered in the Advanced SAPHIRE class include:

♦ Advanced data base concepts such as Model Type (e.g., random, seismic, fire,

flood).

♦ Definition of house events and how they are used on a sequence-by-sequence
basis to manipulate individual fault tree logic using sequence flag sets or fault
tree flag sets.

♦ Basic event templates, compound basic event equation editors, and human error
worksheets.

♦ A rule-based event tree top event substitution feature (called the Link Event Tree
Rule Editor) which allows for top event substitutions.

♦ A rule-based cut set post-processing feature (called the Recovery Rules) which
allows cut set manipulation.

♦ Cut set analysis based upon rule-based end state categories (called End State
Analysis).

♦ Cut set generation options for both fault trees and event tree sequences.

♦ The large event tree methodology and how SAPHIRE can be used to generate
sequence cut sets for this method.

♦ The transfer of data between SAPHIRE data bases and between other PRA
codes (MAR-D).

 2

SAPHIRE 8 Advanced Idaho National Laboratory

SAPHIRE screen displays will be shown as they appear on your video display (as
shown below).

The left side of the screen displays a resizable, customizable series of lists containing
important PRA elements found in the current project. This series of lists is referred to
as the List Panel and can be added to or subtracted from by using View on the main
menu.

When discussing a particular sequence of menu options, the nomenclature

MAIN Menu → Submenu Option

will be used to indicate the main SAPHIRE menu option and any successive
submenu options (only the tool buttons will be discussed as the means for
maneuvering through SAPHIRE). 3

SAPHIRE 8 Advanced Idaho National Laboratory

1.2. SAPHIRE - What Is It and What Can It Do?

♦ SAPHIRE is an integrated PRA software tool that gives a user the ability to

create and analyze fault trees and event trees using a personal computer.

♦ Integrated Reliability and Risk Analysis System (IRRAS) was originally released
in 1987 (version 1.0). Other versions of IRRAS include 2.0, 2.5, and 4.0.
Additions and improvements have been added to each version.

♦ Creation of 32-bit IRRAS, version 5.0, in 1992 resulted in an order of magnitude
decrease in analysis time. New features included: individual codes modules
combined into a single module; end state analysis; fire, flood, and seismic
modules; rule-based cut set processing; and rule-based fault tree to event tree
linking.

♦ SAPHIRE for Windows, version 6.0, is released in 1997. Use of a Windows user
interface makes SAPHIRE easier to learn and use.

♦ SAPHIRE for Windows, version 7.0, is released in 1999.

♦ SAPHIRE for Windows, version 8.0, is released in 2010. The user interface has
been completely rewritten. This manual is written for version 8.x of the software.

♦ SAPHIRE contains several features:

◊ PC-based fault tree and event tree graphical and text editors

◊ Cut set generation and quantification

◊ Importance measures and uncertainty modules

◊ Relational database with cross-referencing features

◊ External events analysis (e.g., seismic, location transformation)

◊ Rule-based recovery and end-state analysis

◊ Common Cause Failure (CCF) basic event capabilities

♦ SAPHIRE minimal hardware requirements:

◊ Windows 2000 or greater

◊ Pentium class IBM-PC compatible with 2-button mouse

◊ 50 MB free disk space (minimum for installation)

 4

SAPHIRE 8 Advanced Idaho National Laboratory

1.3. The Class Workbook

♦ The workshop problems for the SAPHIRE class are contained in a separate

handout, referred to as the “workbook” or "workshop manual."

♦ The workbook allows the Advanced SAPHIRE class to be tailored to specific
audiences. This “tailored-problem” format gives the freedom to present specific
topics or problems centered around the expected needs of the students.

♦ The workbook follows the same format as the course material, and together
provides an integrated reference package for the SAPHIRE code.

1.4. Installation of SAPHIRE
♦ Perform the following steps to install SAPHIRE:

♦ Download the current version of Saphire8XXXX.exe from the SAPHIRE website
to your pc. Alternatively, use an installation CD and place it into the CD drive.

♦ Follow the installation program instructions.

♦ The installation program will make a subdirectory on your hard drive to store
SAPHIRE.

◊ Databases (such as the DEMO database) can be contained in any
subdirectory that is chosen (e.g., C:\DEMO or C:\Saphire8\DEMO).

◊ The database subdirectory will contain the relational database files.

• *.IDX files contain data indices
• *.BLK files contain variable length data (e.g., cut sets)
• *.DAT files contain actual data and data pointers.

 5

SAPHIRE 8 Advanced Idaho National Laboratory

NOTES

 6

SAPHIRE 8 Advanced Idaho National Laboratory

 7

| 2 | DATABASE CONCEPTS

Section 2 presents an overview of the SAPHIRE database structure. Included in this
section are discussions of SAPHIRE projects, nominal case versus current case,
nominal case updates, flag sets, and change sets. Advanced data base features that
are discussed include: (1) Model Types and (2) Flag Sets and Change Sets.

SAPHIRE 8 Advanced Idaho National Laboratory

 8

2.1 SAPHIRE Projects

In SAPHIRE, the term “project” represents a single, specific database.

 = SAPHIRE Project

Opening a Project

(When SAPHIRE is executed, it loads up the last project that was being utilized.)

To select an existing project:

If there is not a current project available or you are opening a second session of
SAPHIRE on your computer, it will start with an option screen to open an existing
project or create a new one.

Project (Definition) -
A group of fault tree logic and graphics; event trees and sequences; basic events and
related data; cut sets; analysis results; and descriptions.

SAPHIRE 8 Advanced Idaho National Laboratory

Existing projects can be found through the browsing function or by clicking the Open
Existing Project icon.

Clicking on Open Existing Project will open up a window to select the project. The user
can also use the File → Open existing project option on the main menu bar at the top
left of the screen.

An “Open Project” window will appear. Use the various Window Explorer options to find
the folder containing the existing project.

To open the latest version of the project, select and open the *.SRA or FAM.DAT file; or,
to open an archived version of the project, select a *.zip file.

SAPHIRE starts with the last project that was opened. With the “Welcome to SAPHIRE”
option shown, SAPHIRE will provide a list of the objects that were recently modified or
tasks performed along with Tasks that is designed to help analyst get started. These
Tasks are quick links to 1) Create a New Project, 2) Open Existing Project, and 3) Save
currently opened project As a new project.

 9

SAPHIRE 8 Advanced Idaho National Laboratory

To hide this screen, click the Hide Welcome button in the upper right corner.

To create a new project:

♦ Select the New icon on the startup screen or the New Project option on the

Welcome screen or use the main menu File → New → Project option.

 10

SAPHIRE 8 Advanced Idaho National Laboratory

♦ A “New Project” window will appear. Type the new project name and (optional)
description.

♦ Verify that the Parent Directory is acceptable. If a different parent directory is

desired, type in the new parent directory.

♦ Verify that the Folder Name is acceptable. By default, the Folder Name matches
the project Name. (If the Folder Name appears blank, move the cursor out of the
project Name field so that the Folder Name can update.)

♦ Click OK. The main SAPHIRE menu will be displayed and the project name and
the project location will be shown in the title bar above the menu.

♦ Modifications to a database (e.g., a new fault tree is developed) are always made

to the currently selected project.

♦ For a given project, only one list is kept for all types of information. Thus, within
a project, only a single copy of a particular fault tree, event tree, or basic event is
ever stored in the database.

 11

SAPHIRE 8 Advanced Idaho National Laboratory

2.1. Nominal Case versus Analysis Case Data
♦ Nominal case and analysis cases (prior and current case) are two separate parts

of a project database.

◊ Nominal case data is stored in the data base files as a “permanent” record.

◊ Current Case data is used to perform an analysis (e.g., cut set generation and
quantification).

The Current Case is:
♦ Created through a Workspace (General Analysis, Significance Determination

Process, Event Assessment) or a Change Set

♦ Used for sensitivity or event analysis

♦ All SAPHIRE calculations use the data stored in the current case.

♦ When creating or modifying the base model, the current case is the nominal
case.

 12

SAPHIRE 8 Advanced Idaho National Laboratory

2.2. Model Types

♦ Versions previous to IRRAS 5.0 only had the capability to handle random

analysis (i.e., Level 1, internal events PRA).

♦ SAPHIRE 8 can set up any number of model type analyses with the default being
Random (Level 1, internal events PRA).

♦ Examples of such analyses include:

◊ SEISMIC (external events related to earthquakes or other ground
disturbances).

◊ FIRE (external events related to fires).

◊ FLOOD (external events related to flooding).

◊ USER (User Defined).

To add or modify an existing model type select Project  Model Types to open the
form below.

The default Model Type is set to RANDOM and it will be the only model type present
when starting a new project. The project must always have at least one model type. To
add a model type, select Add Model Type and click Go.

 13

SAPHIRE 8 Advanced Idaho National Laboratory

Enter a name, ID and description for the model type then select a unique
primary/stacked color combination by using the slider arrow over the color bar and click
OK.

The newly created model type will now be available when editing basic events and in
analysis options discussed later in this manual. Events can be assigned to multiple
model types or just one. If an event uses a model type, the event is prevented from
deletion.

Model Types are discussed further in Section 14.

 14

SAPHIRE 8 Advanced Idaho National Laboratory

2.3. Change Sets
♦ Change Sets are a user-defined set of changes (think data filter) that will be

applied (on the nominal case data) when data is transferred to the current case.
Multiple change sets can be defined and applied singly or in combination.

♦ Change Sets are created, modified, stored, activated or de-activated by using the
Change Set list pane (main menu View  Change Sets) or created, modified,
and stored through Project  Change Sets option.

2.3.1. Rules for Creating and Using Change Sets

♦ No limit to the number of change sets that can be added to the data base.

♦ Change set name is limited to 24 characters; the description is limited to 120
characters.

♦ A change set can contain one class change and unlimited individual probability
changes.

♦ Multiple change sets can be used in combination to create different sensitivity
studies.

 15

SAPHIRE 8 Advanced Idaho National Laboratory

2.3.2. Class Changes

♦ Class changes use a basic event’s attribute to search for a class of basic events
to which the defined change applies

♦ The search criteria are defined first

♦ The change to be applied is then defined

2.3.3. Singles Changes

 16

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Singles changes only modify individual, user-identified basic events

♦ The desired basic event is selected

♦ The changes to the basic event are then defined

♦ The order of “marking” a change set is important. (Change sets are marked by
checking the check box in front of the change set of interest.)

♦ The first selected change set will be the first one that is applied.

♦ Later changes will overwrite earlier ones if there is any overlap.

♦ A particular change set may include both a Class change and Single changes.
The Class change is applied first and then the Single changes are applied
second. Thus, the individual probability changes will overwrite a class change if
both types are in a particular change set.

2.4. Flag Sets
Flag Sets are a special type of Change Set. Flag Sets are created, modified, and
stored in SAPHIRE under the Project  Flag Sets option.
♦ Flag Sets can only contain individually specified types of changes. No "Class

Changes" are allowed in a Flag Set.

♦ Flag Sets are used to indicate modifications to particular events on a sequence-
by-sequence basis (or fault tree logic).

This example shows that the LOP house event is turned on (TRUE) for sequences 3
and 4. For sequences 1 and 2, the LOP house event is turned off (FALSE). The setting
of the house event is dependent upon the success or failure of recovering offsite ac
power.

 17

SAPHIRE 8 Advanced Idaho National Laboratory

Flag Sets can only contain either house flag changes to the calculation type or process
type changes. Consequently, the allowable changes that can be made in a Flag Set
are:

Type of change Allowable values

Calculation type T (TRUE)
F (FALSE)
I (IGNORE)

Process Flag X
Y
W
I

You cannot make changes to the probability of failure (e.g., change the probability from
2E-3 to 1E-1) for events in a Flag Set.

2.4.1. Making a Flag Set
Enter the Project  Flag Sets option to open the Flag Set List window.

 18

SAPHIRE 8 Advanced Idaho National Laboratory

To create a Flag Set, highlight Add Flag Set in the pull down menu, click Go and enter
the Flag Set name and description. Once Flag Sets are created, they can be modified
or deleted through the Flag Set List window in the same manner.

With the Flag Set Editor now active, drag and drop the desired Basic Events into the
Flag Set and change the desired Set Values.

The figure below shows a Flag Set being created. In this example C-CKV-CC-A has its
Set Value changed to House = 1 (T). Values are changed simply by clicking on the

 19

SAPHIRE 8 Advanced Idaho National Laboratory

New Value and choosing from a drop down menu. In this illustration, C-CKV-CC-A is
currently being dragged to the Flag Set Editor. Note the cursor shape changes from an
arrow to a page with arrow when a drag and drop operation is being performed. To
remove an event from the Flag Set, highlight the event and click on the button Remove
Event.

2.4.2. Using the Flag Set
Once the Flag Set has been created, it needs to be assigned to a sequence or fault
tree.

◊ To add the Flag set to the sequences, highlight the sequence, right mouse
click and select Edit Properties. (Not recommended, since every time the
event tree is saved the sequences are regenerated and the prior sequence
information is over-written with the new sequence information.)

 20

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click the drop down box “Default Flag Set:” and select the Flag Set

An alternative way to assign a Flag Set to sequences would be to specify the Flag Set
name when generating sequence cut sets. This approach is only a temporary change,
and such, is not recommended.

♦ Check the Solve using Flag Set check box

♦ The drop down box will now allow the selection of specifying a Flag Set

◊ If the “Flag Set” field is left
blank, SAPIHRE will use
the assigned sequence
Flag Sets.

◊ The “Item Defined” option
is the same as above (use
assigned Flag Set)

◊ The “NONE” option will
ignore all assigned Flag
Sets.

◊ The “Flag Set Name
(FLAG-SET-SBO1)” option
will use this manually
assigned Flag Set with
SAPHIRE generates
sequence cut sets.

 21

SAPHIRE 8 Advanced Idaho National Laboratory

Alternatively, Flag Sets can be assigned to sequences via event tree linking rules (a.k.a.
Dynamic Flag Set). The latter is more common and an overview is discussed below.

♦ To add Flag set to Fault Tree:

◊ Highlight the fault tree, right mouse click and select Edit Properties.

◊ Click the drop down box “Default Flag Set:” and select the Flag Set

2.5. Dynamic Flag Sets
 “Dynamic” Flag Sets are a special type of Flag Set that is assigned to sequences by
the use of event tree rules. In other words, they are rule-based flag sets.

A Dynamic Flag Set is assigned to a sequence if the sequence meets the search criteria
contained in the rule.

Advantages of “Dynamic” Flag Sets are:

♦ Given a change in the event tree logic, the Dynamic Flag Set will automatically

assign itself to the sequence that meets the search criteria contained in the rule.

♦ For example, if the rule assigns a Flag Set to sequence LOOP 05 and the event
tree logic changes to make this sequence LOOP 08, then the Flag Set will
automatically be assigned to LOOP 08 once the event tree sequences are
regenerated.

♦ Dynamic Flag Sets are created and assigned to the sequences every time the
event tree sequence logic is generated.

 22

SAPHIRE 8 Advanced Idaho National Laboratory

Dynamic Flag Sets are the same as Flag Sets, since only basic event calculation types
can be changed and the change can only be specified to individual basic events (i.e., no
class changes).

The Dynamic Flag Set name will appear in the Flag Set field under Project  Flag
Sets after the flag set is created during the event tree linking process. The Dynamic
Flag Set name is assigned by SAPHIRE and is based upon the event tree, sequence
name, and number of Flag Sets used. The user does not have control over the naming
process.

Dynamic Flag Sets will be discussed in greater detail in Section 9. This section will
demonstrate the how to use the Dynamic Flag Sets and the different features of the
Dynamic Flag Set rules.

2.6. Hierarchical Flag Sets
 “Hierarchical” Flag Sets are created when SAPHIRE links multiple event trees together
to create accident sequences and these event trees contain event tree specific flag
sets.

A Hierarchical Flag Set is assigned to a sequence based on the event tree logic and
event tree linking rules (Section 4). The hierarchical flag set is created by layering one
flag set upon another to create a super flag set (i.e., single flag set that contains all of
the information). The hierarchical flag set orders the inputs of each flag set as they
appear; therefore, the inputs in the first flag set is loaded first and then the subsequent
inputs from the next flag set is loaded, etc.

Advantages of “Hierarchical” Flag Sets are:

♦ Flag sets get appended together instead of having to create a single flag

manually by looking through all potential sequences and transfers.

♦ They are automatically created based on the event tree linking rules (Section 4).

Hierarchical Flag Sets are the same as regular Flag Sets, since only basic event
calculation types can be changed (T, F, or I) and the change can only be specified to
individual basic events (i.e., no class changes).

 23

SAPHIRE 8 Advanced Idaho National Laboratory

The Hierarchical Flag Set name will appear in the Flag Set field under Project  Flag
Sets after the flag set is created during the event tree linking process. The Hierarchical
Flag Set name is assigned by SAPHIRE and is based upon the naming of the flag sets
that get grouped together. The user does not have control over the naming process.

Hierarchical Flag Sets will be discussed in greater detail in Section 9. This section will
demonstrate the how to use the Hierarchical Flag Sets and the different features of the
Hierarchical Flag Set rules.

 24

SAPHIRE 8 Advanced Idaho National Laboratory

 25

| 3 | BASIC EVENT INFORMATION

Section 3 introduces the compound event features, common cause event calculation
calculators, and human error worksheets found in SAPHIRE. The compound event
allows SAPHIRE to use built-in numerical library to determine a basic event’s
probability. The common cause event calculations are used to automatically calculate
the common cause failure probabilities. The human error worksheets are used to
calculate human error probabilities.

3.1. Modify Basic Events

♦ To modify data for an existing event, double-click on the basic event in the Basic

Events window you want to edit or right-click to invoke the pop-up menu and
select Edit Basic Event.

SAPHIRE 8 Advanced Idaho National Laboratory

3.2. Compound Events
Compound events are basic events that use an external calculation to determine the
event probability. Simple examples of compound events include the arithmetic addition
of multiple basic events or the product of multiple basic events. More complex
compound events include calculations for offsite power recovery, common-cause
failure, flow accelerated corrosion, etc.

A compound event is generally expressed as a function of other basic events (within the
same project). For example, in a “supercomponent” case, one would identify the
components (up to 20) that make up the supercomponent (i.e., components that are in
series or parallel).

To create a compound event, in the Basic Events list panel, double-click on “New basic
event”. This opens the Add Basic Event form:

♦ Click on the text (Value column) to the right of Failure Model to activate the drop-
down list.

♦ Choose “Compound event (C)”.

 26

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The “Library” drop down option lists the different modules available to the
analyst. To create a supercomponent type event, the PLUGUTIL.DLL
library is selected.

◊ Click the “Procedure” option text field, select the MIN_CUT equation.

◊ The MIN_CUT joins several basic events together (as if they were in an
OR gate) using the minimal cut set upper bound approximation to
determine the probability.

◊ Click on the “Add Event” button to the right of “Input Parameters” to add
the number of Sub Events desired.

◊ Click on the event field to the right of each Sub Event to activate the drop-
down menu of all events in the project. Select an event by clicking on it.

As events are added, SAPHIRE 8 calculates the probability that will be used for the
compound event and displays it to the right of the Name of the event.

 27

SAPHIRE 8 Advanced Idaho National Laboratory

3.3. Common-Cause Failure Compound Events
Common cause failure basic events are used to represent simultaneous failures of
multiple components due to a single cause or mechanism. The common-cause basic
event represents a model that calculates the probability of a shared cause failing
multiple trains of similar components.

Within SAPHIRE, there are three basic types of common-cause models. The first is
known as the Beta factor model. The second is known as the Multiple Greek Letter
(MGL) model. The third is the Alpha Factor model. The alpha factor model is
calculated based on testing schemes. The testing scheme calculation types are 1)
staggered testing and 2) non-staggered testing. Both methods can also be calculated
using the Risk Assessment Standardization Project (RASP) type calculation [R-calc].
The [R-calc] uses the first two approaches and uses a conditional probability calculation
approach to automatically adjust for changes such as sequence flag sets and event
assessments.

3.3.1. Beta Factor Model
The beta factor model can be implemented into SAPHIRE using the compound CCF
event calculation. The following will discuss the development of the CCF event using
the beta model as a Compound Event (C).

To use the Compound event (C) beta factor model in SAPHIRE, under the Basic Events
list panel, double-click on New basic event …. Using the drop down menus:

◊ In the dropdown list to the right of Failure Model, select Compound
event (C).

 28

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click the text in the Value column next to “Library” and select
PLUGCCFBETA operation.

◊ Enter the proper number event group for the common cause failure (i.e.
ThreeEventGroup for a group of three components failing due to
common cause).

◊ Enter a failure count equal to the number of component failures that
would cause a group failure.

◊ Select the basic event from the drop down list to the right of each
CCFEvent.

◊ Select the Beta Factor basic event for the Beta Factor Model Calculation.
This will have to be created as a basic event (value event) to be available
for selection.

Use the New basic event… as needed to create the Beta Factor basic event needed.

3.3.2. Multiple Greek Letter (MGL) Model
The MGL model can be implemented into SAPHIRE using either the compound CCF
event calculation or the full Boolean expression using the R-calculation. The following
will discuss the development of the CCF event using the MGL model as a Compound
Event (C) and R-calculation (Rolled-Up).

To use the Compound event (C) MGL method in SAPHIRE, under the Basic Events list
panel, double-click on New basic event …. Using the drop down menus:

◊ In the dropdown list to the right of Failure Model, select Compound

event (C).

◊ Click the text in the Value column next to “Library” and select
PLUGCCFMGL operation.

◊ Enter the proper number event group for the common cause failure (i.e.
ThreeEventGroup for a group of three components failing due to
common cause).

◊ Enter a failure count equal to the number of component failures that
would cause a group failure.

 29

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select the basic event from the drop down list to the right of each
CCFEvent.

◊ Select the Beta Factor for the MGL Calculation (and others depending
upon number of components in group). This may have to be created as
a basic event (value event) to be available for selection.

Use the New basic event… as needed to create basic events needed such as the Beta
Factor event without having to close the CCF event.

To use the R-calculation (R) MGL method in SAPHIRE, under the Basic Events list
panel, double-click on New basic event …. Using the drop down menus:

◊ In the dropdown list to the right of Failure Model, select Common

Cause Failure (R).

◊ Click the edit bar and SAPHIRE will open up a new window for the
analyst to input the components and the MGL parameters (use a drag
and drop of the components into the Independent Failure Events
column and MGL parameters into the MGL Factors column.

 30

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select the CCF model type (MGL Multiple Greek Letter) from the drop
down option. Based on the number of components, SAPHIRE will
automatically default to all components must fail in the Failure Criteria
drop down option.

◊ Click on the CCF Results tab and SAPHIRE will display the full
calculation used to determine the CCF probability.

 31

SAPHIRE 8 Advanced Idaho National Laboratory

The advantages of using the MGL equation built into SAPHIRE are:

◊ Automatic calculation of the nominal common-cause failure probability

◊ Utilization of the uncertainty defined for the independent events.

◊ SAPHIRE automatically adjusts the common-cause probability if an
independent event is set to a failed state.

 32

SAPHIRE 8 Advanced Idaho National Laboratory

3.3.3. Alpha Factor Model
The Alpha Factor model as discussed in this section will use the Compound Event (C)
Failure Model option. The Alpha Factor model is incorporated within the R-calculation
type (i.e., full Boolean expansion) and will be discussed in next section.

In SAPHIRE, this model uses one of two different equations, depending on the type of
testing for the components in question (how data is gathered and quantified).

◊ The first module (PLUGCCFSTAG.DLL) is based upon a staggered
testing scheme.

◊ The second module (PLUGCCFALPHA.DLL) is based upon a non-
staggered testing scheme.

Information pertaining to the Alpha Factor model can be found in NUREG/CR-5485.

♦ To use the Alpha Factor model in SAPHIRE, under the Basic Events list panel,
double-click on New basic event …. Using the drop down menus:

◊ In the Value column of Failure Model, select Compound event (C).

◊ Select PLUGCCFALPHA (or PLUGCCFSTAG if staggered testing) from
the drop down list in the Value column of Library.

◊ Enter the proper number event group for the common cause failure for
Procedure (i.e. ThreeEventGroup for a group of three components failing
due to common cause).

◊ Enter a Failure Count equal to the number of failed components that
would cause the system to fail (i.e. 2 if 2 of 3 components must fail due
to common cause to cause the system to fail).

◊ Select the basic event from the drop down list in the Value column of
each CCFEvent#.

 33

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select the Alpha Factors for the calculation. These are usually pre-
loaded as basic events and correspond to the component number within
the group size selected (i.e. Alpha factor 2 in group size 2 for a particular
component type).

3.3.4. R- calc Common-Cause Failure Module
This CCF module uses Boolean expansion (Basic Parameter Model) to calculate the
CCF event probability. The primary difference between this calculation and using the
compound event calculation is the ability to have the full detail set of cut sets
incorporated into the final result and how the conditional probability is calculated when
performing event assessments as a result of setting components’ failure modes to 1, T,
0, or F.

 34

SAPHIRE 8 Advanced Idaho National Laboratory

This common cause method is a new calculation type to SAPHIRE 8. The common
cause failure type “R” can be found in the basic events under the “Failure Model” option.

To demonstrate this CCF module, a simple fault tree will be created with three
redundant motor operated valves (MOVs) and a new basic event representing the CCF
of all three components. The three MOVs are represented by basic events MOV-CC-A,
MOV-CC-B, and MOV-CC-C, and the CCF basic event is represented by CCF-ALPHA-
R. The success criterion for this system is that two components have to work for the
system to work. Consequently, if two (of three) components fail, the system is failed.
The fault tree representing the system is shown.

 35

SAPHIRE 8 Advanced Idaho National Laboratory

3.3.4.1. Entering CCF Data into R-calc

The basic event CCF-ALPHA-R is a part of the fault tree graphic as shown. This basic
event needs to be edited.

The following discusses the process to set up the R-calc CCF event:

◊ Select the Common Cause Failure (R) option in the Failure Model text
field.

◊ Click the Edit bar to open the R-calc CCF form for editing.

◊ Choose Alpha factors or MGL as the Model type from the pull-down
menu.

◊ Click and drag the desired Basic Events into the Independent Failure
Events window

◊ Click and drag the MGL or Alpha factors, which are located in the Basic
Events list into the Factors window. The MGL or Alpha factors need to
be entered based on the number of components in the group (3-train, 4-
train, and so on) and placed into the correct parameter field (i.e., Alpha 1
must be alpha factor 1).

◊ Choose the number of failures that would cause a system failure. In this
case it would be 2.

 36

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The testing scheme can be chosen as Staggered or Non-Staggered

◊ The Separator character is used by SAPHIRE to determine the “auto
generated” event names, as we will see when describing the results of
the CCF calculation.

◊ Choose the Results Detail Level

• Rolled Up will create one cut set (basic event) with the probability
posted.

• Full Detail will create all possible cut sets for the components based
on the inputs and success criteria (e.g., 2 of 3 failures). These cut sets
will be included in the overall fault tree cut sets.

The probability displayed is the overall probability that will be used for this
CCF basic event. In this example, the overall CCF probability is 8.500E-5.

 37

SAPHIRE 8 Advanced Idaho National Laboratory

3.3.4.2. Viewing RASP Result Details

To view the results for this example, click on the “CCF Results” tab. The detailed
results appear as:

 38

SAPHIRE 8 Advanced Idaho National Laboratory

Evaluating the results in more detail:

The Summary block lists the overall calculated CCF failure probability; number of
permutations obtained based on the input information, and lastly lists the success
criteria. The statement about “ALL independent …” is presented to let the analyst know
that the overall probability does not include the independent failure cut sets.

The nominal Q value block provides the calculated terms based on the Basic Parameter
Model (Q1, Q2, and Q3 terms) along with the input values.

The CCF Terms block lists the different permutations obtained. For this example, there
are three combinations of Q2 terms, and only one Q3 term. Consequently, the full
expression to determine the CCF probability is given by:

P(CCF) = 3 * Q2 + Q3 = 3 * 2.50E-05 + 1.00E-05 = 8.50E-05.

 39

SAPHIRE 8 Advanced Idaho National Laboratory

The CCF Sub-elements box represents the “cut sets” included in the CCF calculation.
The first three cut sets represent a CCF of two components, specifically AB or AC or
BC. The last line represents CCF of all three components. Their respective
probabilities are also listed, for example the probability of seeing A and B fail due to
CCF is 2.50E-5. Also note the name of the CCF “events” listed here. For components
A and B failing due to CCF, SAPHIRE automatically creates the name “CCF-ALPHA-R-
AB” by appending the CCF basic event name with the separator character (“-“) and then
the identifier for the A and B components (A and B, respectively).

Note that if CCF-ALPHA-R is set to have results “Rolled up” then only a basic event
with probability of 8.500E-5 will appear in the fault tree cut sets:

 40

SAPHIRE 8 Advanced Idaho National Laboratory

However, if “Full Detail” results are selected, the results will show all of the
combinations of the CCF terms:

 41

SAPHIRE 8 Advanced Idaho National Laboratory

3.3.4.3. RASP CCF Calculator Tool

The “CCF Calculator” tab allows one to change the make-up of the CCF calculation
without saving. The analyst can change the components probability and see the
results.

 42

SAPHIRE 8 Advanced Idaho National Laboratory

3.3.4.4. RASP CCF Equivalent Fault Tree Logic

By having all of the detail from the CCF, the fault tree calculation is equivalent to having
the fault tree logic as shown in the fault trees below:

3.3.5. IE Common Cause Failure (Q)

This failure model is used to model common cause failure of multiple trains that are
used to calculate an initiating event frequency. This failure model is created the same
as the R-calc failure model with the exception that there is no cross-products that get

 43

SAPHIRE 8 Advanced Idaho National Laboratory

calculated; the independent failure “ANDed” with a CCF event (i.e., Q1 * Q2, since this
becomes /yr2).

3.3.5.1. Entering CCF Data into the Q-failure model

A basic event, IE-SWS-MDPS-CF, which would be part of the fault tree logic model
used to calculate an initiating event frequency will be developed. This basic event
needs to be edited.

The following discusses the process to set up the Q-type CCF event:

◊ Select the IE Common Cause Failure (Q) option in the Failure Model
text field.

◊ Click the Edit bar to open the Q-calc CCF form for editing.

◊ Choose Alpha factors as the Model type from the pull-down menu.

◊ Click and drag the desired Basic Events into the Independent Failure
Events window

◊ Click and drag the Alpha factors, which are located in the Basic Events
list into the Factors window. The Alpha factors need to be entered

 44

SAPHIRE 8 Advanced Idaho National Laboratory

based on the number of components in the group (3-train, 4-train, and so
on) and placed into the correct parameter field (i.e., Alpha 1 must be
alpha factor 1).

◊ Choose the number of failures that would cause a system failure.

◊ The testing scheme can be chosen as Staggered or Non-Staggered

◊ The Separator character is used by SAPHIRE to determine the “auto
generated” event names, as we will see when describing the results of
the CCF calculation.

◊ When using the Q-calc option, only choose the Full Detail Level

• Full Detail will create a basic event representing each of the CCF
terms (Q-terms) depending upon the number of trains. These system
generated basic events (i.e., IE-SWS-MDP-CF-FR-ABC) will have to
be used in the fault tree logic. The reason that the system generated
basic event is required to be used in the fault tree logic is due to the
conditional calculation that may be required given an event
assessment.

 45

SAPHIRE 8 Advanced Idaho National Laboratory

The probability displayed is the overall probability (for a three train system
it will be the summation of the Q2 terms and the Q3 term). This is the
frequency that will be used for this initiating event CCF basic event.

3.3.5.2. Viewing IE CCF Result Details

To view the results for this example, click on the “CCF Results” tab. The detailed
results appear as:

(Notice the CCF sub-elements only lists the Q2 and Q3 terms and no cross-products
since the frequency cannot be squared.)

 46

SAPHIRE 8 Advanced Idaho National Laboratory

3.4. Human Error Event
Human error events are basic events that use an external calculation (via worksheets)
to determine their probability. The human error probability (HEP) calculation is based
on the Standardized Plant Analysis Risk (SPAR) Human Reliability (HRA) methodology
(reference 3-1). A simple walkthrough of the worksheets will be presented to show the
process that SAPHIRE uses to calculate the HEP using this module.

The HEP is calculated based on whether the operator action requires diagnosis or just
an action. Reference 3-1 provides definitions and information about both operator
diagnosis and operator action. This section is not designed to discuss the HRA
methodology nor differences between an operator diagnosis or operator action but to
present the worksheet that SAPHIRE uses to calculate the HEP. For more information
about this HRA, refer to reference 3-1.

♦ To access the SPAR-H worksheet, highlight the basic event in the Basic Event

list panel, double click the basic event (or right click and select Edit)

♦ Select the SPAR-H human reliability model (X) in the Value column for the
Failure Model in the Basic Event editing window

 47

SAPHIRE 8 Advanced Idaho National Laboratory

After selection of the SPAR-H failure model, the entries for Diagnosis, Action,
and Dependency will become available

Note:
The X Calculation Type (Human Factor Event) is only required if using
the SPAR HRA methodology. Human error events can also be entered
into SAPHIRE using Calculation Type 1 and providing the mean failure
probability for the HEP.

 48

SAPHIRE 8 Advanced Idaho National Laboratory

 49

♦ Diagnosis

◊ If the operator is required to perform some type of diagnosis prior to
performing an action, select Yes in the drop down menu next to
Diagnosis.

◊ Each of the shaping factors can be modified individually. These shaping
factors are used to modify the nominal probability for diagnosis, which is
1.0E-2. Within each of the different shaping factors, a percentage can be
specified in order to determine the shaping factor value that will be
multiplied to the nominal probability. A default of 100% is specified for
the Nominal time field. If 100% is specified in the nominal field for all of
the shaping factors then the nominal probability will be calculated since
all shaping factors will be 1.0.

◊ If a percentage greater than zero is entered into a time field other than
the Nominal time field, the form updates Nominal time field to sum the
totals to 100%. A Notes field is available for support of entries, if so
desired.

◊ The probability is continually updated and shown on the top of the
screen in order to show the analyst how the shaping factors are affecting
the HEP.

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Action

◊ If the operator is required to perform some type of action, select Yes in
the drop down menu next to Action.

◊ As with Diagnosis above, each of the shaping factors can be modified
individually. These shaping factors are used to modify the nominal
probability for diagnosis (1.0E-3 for action).

♦ Dependency

◊ Model Dependency

• Select Yes in Model Dependency to model the situation when a
dependent operator action follows a previous operator action (i.e.,
more than one operator action failing to perform the function within a
sequence).

◊ Different Crew

• Is the crew performing the action different from the one performing the
prior action?

◊ Not Close in Time

• Is the current action not close in time compared to the prior action?

◊ Different Location

• Is the current action being performed in a different location from the
prior action?

◊ Additional Cues

• Are additional cues related to the current task available?

 50

SAPHIRE 8 Advanced Idaho National Laboratory

3.5. Convolution Basic Events
Convolution basic events are special type of basic events that are used to more
accurately represent “time related” events within a cut set. These basic events are
more of an adjustment factor for accident sequence cut sets when time related basic
events fail. All PRAs assume that failure of an operating component occurs at time
equal to zero. This special basic event is designed to convolve multiple time related
basic events into an adjustment factor to account for when these time related basic
events can fail and recovery should be applied (see Convolution Event User Manual for
more information).

♦ To create a convolution basic event, in the Basic Events list panel, double-click

on “New basic event”. This opens the Add Basic Event form.

♦ Click on the text (Value column) to the right of Failure Model to activate the drop-

down list.

♦ Choose “Convolution (O)”.

 51

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select the mission time that the cut set will require to define failure (i.e.,
recovery time based on core uncover or battery depletion time)

◊ Click the AddEvent tab to specify the time related basic events that need
to be convolved together (fill in the number of Standby Events that will be
found in a single cut set) (i.e., EPS-DGN-FR-A, EPS-DGN-FR-B).

◊ Select how the inputs should be found in the cut sets (N of M) (e.g., if only
one of the basic events are to be convolved per cut set use 1; EPS-DGN-
FR-A only in a cut set or EPS-DGN-FR-B).

◊ Select the recovery event that will be part of the convolution (i.e., the
recovery basic event based on the sequence cut set). This is the basic
event related to the sequence time to core uncovery (i.e., 1 hour, 2 hours)

◊ SAPHIRE will calculate what the cut set frequency should be and it what
the cut set frequency is based on t=0 and the mission time of the diesel
generators to run of 24 hours and divides the two together to calculate the
convolution factor. This is how much the sequence should be reduced.

 52

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Post-Processing rules are then used to apply this basic event

3.6. Base Units used in Data
SAPHIRE 8 is designed to handle different frequency units and make proper
conversions when necessary. The default frequency units for Initiating Events is set up
in the New Project form and can be changed for an existing project by accessing the
Project  Modify option.

In the Basic Event Failure Model tab, when an Initiating Event is selected, a Frequency
Units textbox becomes available. If nothing is entered in the textbox, the default value
is used.

 53

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The different frequency units that can be defined in SAPHIRE are:

◊ Unknown

◊ per year

◊ per month

◊ per week

◊ per day

◊ per hour

◊ per minute

◊ per demand

♦ In fact, the units specified in Project  Modify will be used no matter what the

specified frequency units are for all initiating event. This conversion is performed
automatically from the entered values in order to ensure the final sequence
results are in the same units.

 54

SAPHIRE 8 Advanced Idaho National Laboratory

◊ SAPHIRE will look at the units, if specified for the initiating event, prior to
converting the frequency to the units specified in the Project  Modify.
This check is performed to guarantee correct conversion.

♦ If the “Unknown” frequency units are specified in the Project  Modify, then the
units specified for the initiating events will be used. (One must be careful, since
different units can be specified and the overall summation of the sequences
won’t be correct).

3.7. Reference

3-1. The SPAR Human Reliability Analysis Method, INEEL/EXT-02-01307.

 55

SAPHIRE 8 Advanced Idaho National Laboratory

 56

| 4 | EVENT TREE LINKAGE
RULES EDITOR

Section 4 introduces the rule editor for the Edit Linkage Rules editor used to link event
tree sequences. This rule editor allows you to create rules that affect sequence
generation. Typically, these rules are used to replace the default fault trees with either
a substituted fault tree or a "split-fraction" event based on logical conditions that are
specified in the rules.

SAPHIRE 8 Advanced Idaho National Laboratory

4.1. Linking Event Trees
This section introduces the edit linkage rules editor used to link event tree sequences.
This rule editor allows you to create rules that affect sequence generation. Typically,
these rules are used to replace the default fault trees with either a substituted fault tree
or a "split-fraction" event based on logical conditions that are specified in the rules.

4.1.1. Linking

"Linking" event trees is the process of generating sequence logic using the event tree
graphical files.

4.1.2. Menus and Options for Linking Event Tree
Sequences

♦ Linking is performed automatically when the event tree is saved

♦ Or, it can be initiated by highlighting the event tree, right clicking the mouse and
selecting “Link”.

If there are no “link rules” defined for the event tree, SAPHIRE simply constructs the
sequence logic based upon the top events identified on the event tree graphic (as
shown above). But, event tree linking rules allow us to control the logic for each
sequence based upon predefined rules.

 57

SAPHIRE 8 Advanced Idaho National Laboratory

4.2. Introduction to the "Edit Linkage Rules" Rule
Editor

The link event tree rule editor provided in SAPHIRE allows rules to be written that are
used when sequence logic is generated. To access the rule editor, highlight the event
tree in the Event Tree list panel, right click the mouse and select Edit Linkage Rules to
open the linkage rules editor.

♦ These rules allow the user to replace one or more top events with a substituted

top event based on the logical conditions dictated by the rule.

♦ These rules also allow the user to assign flag sets to sequences based on the
logical conditions dictated by the rule.

Note that other rule editors in SAPHIRE have different functions.

♦ Section 5 describes the cut set rules editor which sets up post-processing rules
that are used to modify existing cut sets.

♦ Section 6 describes the partitioning rules that are used to bin cut sets into end
states on a "cut set by cut set" basis.

Although there are common features to all of these rule editors, they each have distinct
functions and characteristics. As a convenient reference, we have listed all rule
keywords (and usage) for linking rules, recovery rules, and partition rules in Appendix A.

 58

SAPHIRE 8 Advanced Idaho National Laboratory

4.2.1. “Link Event Trees" Rules Nomenclature and
Structure

This rule editor is used when the “Link Trees” operation is performed when the event
tree is saved from the event tree editor and the sequence logic is being created. If
linking rules exist, the rule searches the event tree logic for the search criteria specified
in the rule and replaces the default top event (just in the sequence logic, not on the
graphic) by a new top event.

Symbols

| Denotes a comment line ~ Operator for "not present"

* Logical AND operator + Logical OR operator

/ Complement () For grouping terms

; End of replacement line ?? Wildcard of length in string of “?”,
 (in this case 2)

Search Criteria

Examples are for an event tree with initiating event IE and top events A, B, and C.

init(IE) Initiating event with the name IE
A Failure of top event or fault tree A
/A Success of top event or fault tree A (/ indicates complement)
~A Failure of A not present (~ indicates something is not present)
~(/A + A) Success of A and failure of A not present (can be used to test for a

"pass" condition)
A * B Failure of A and of B occurs
(A + B) * C Failure of A or B occurs and failure of C occurs
always. This pre-defined macro name means the criteria is always met.

 59

SAPHIRE 8 Advanced Idaho National Laboratory

4.2.2. Link Event Trees Rules Examples
Linking Rule Structure (Example 1 – If -Then)

| The “if-then” Rule Structure:
| This rule replaces C with C-SYS
| when A and B are both failed.
| (Only sequences 6 and 7 are affected
| by this rule)

If A * B then
 /C = C-SYS;
 C = C-SYS;
endif

Linking Rule Structure (Example 2 – if-then-elsif)

| The "if-then-elsif" Structure:
| This rule replaces C with C-AB if
| A and B are failed, and replaces C
| with C-B if only B is failed.

if A * B then
 /C = C-AB;
 C = C-AB;
elsif B then
 /C = C-B;
 C = C-B;
endif

 60

SAPHIRE 8 Advanced Idaho National Laboratory

Linking Rule Structure (Example 3 – if-then-elsif-else)

| The "if-then-elsif-else" Structure:
| This rule:
| Replaces C with C-NA when A is
| successful
| Replaces C with C-NB if B is
| successful
| Replaces C with C-XX in any other
| case
|
if /A then
 /C = C-NA;
 C = C-NA;
elsif /B then
 /C = C-NB;
 C = C-NB;
else
 /C = C-XX;
 C = C-XX;
endif

Linking Rule Structure (Example 4 – always)

| The "if-always" Rule Structure:
| This rule replaces every occurrence
| of C with C-SYS.
|
| (Sequences 2 through 7 are
| affected)

if always then
 /C = C-SYS;
 C = C-SYS;
endif

 61

SAPHIRE 8 Advanced Idaho National Laboratory

Linking Rule Structure (Example 5 – If –Then with wildcards)

| The "if-then" Rule Structure using
| wildcards:
| This rule replaces C with C-SYS
| when the initiating event occurs.
| (Sequences 3, 5 and 7 are affected)

if “??” then
 C = C-SYS;
endif

| The “??” finds the initiating event,
| but will key on any top of exactly
| two characters in length.

IMPORTANT NOTES AND REMINDERS:

♦ Each replacement line must end with a semicolon.

♦ There is no limit to the number of replacement lines that can be used in a rule.

♦ In the ELSIF rule structure, only the first substitution that applies for every
applicable branch is made. Subsequent possible substitutions are ignored.

♦ In fact, the "Event Tree Linking" rules as a whole works this way because only
the first substitution for a branch is made. In other words, after a substitution has
been assigned, no other rule will overwrite the substitution (this is by design).
Consequently, the rules are set up such that the most restrictive (or, perhaps,
most descriptive) rules will be evaluated first.

 62

SAPHIRE 8 Advanced Idaho National Laboratory

"Macro" Structures

Macros can streamline the development of complex rules. A macro is simply a
statement to define a search criterion and assign a name to that search criterion.
Examples are provided below.

Linking Rule Structure (Example 6 – macros)

| Define a macro named AB-FAIL
 AB-FAIL = A * B;
|
| Use the macro in a rule
 if AB-FAIL then
 /C = C-SYS;
 C = C-SYS;
 endif

If you are creating a rule where the events
in the macro do not occur, use the ~ (i.e.,
not present) symbol.

If looking for success events, do not
"complement" the macro. Instead, complement the events of interest. For example, if
looking for success of A, use A-MACRO = /A;. Do not try A-MACRO = A; if /A-MACRO
then…

Linking Rule Structure (Example 7 – not found ~)

| Using ~macro as the search criteria:
| The rule applies when both A and B
| have not failed.
| Define a macro named AB-FAIL
 AB-FAIL = A * B;
| Use the macro in a rule
 if ~AB-FAIL then
 /C = C-SYS;
 C = C-SYS;
 endif

 63

SAPHIRE 8 Advanced Idaho National Laboratory

Linking Rule Structure (Example 8 – ignoring sequences via the “Skip” keyword)

| The "Skip" Structure:
| This rule provides the ability to
| “skip” sequences in the event
| tree logic.
|
| This rule “skips” C given the
| failure of B. (The sequences that
| meet the rule logic are
| not generated when the rule is
| applied, however, the sequence
| names (numbers) are left
| unchanged. Therefore, no sequence
| cut sets can be generated for skipped
|sequences.)
|
 if B then
 /C = Skip(C);
 C = Skip(C);
 endif

For this rule only sequences 1, 4, and 5 will be generated, since all sequences where B
fails have been skipped.

A new key word was added to the same thing but more straightforward. This key word
is SkipSequence and performs the same function as above using the rule shown below:

 if B then
 SkipSequence;
 endif

After applying the rule only sequences 1, 4, and 5 get generated.

 64

SAPHIRE 8 Advanced Idaho National Laboratory

Linking Rule Structure (Example 9 – changing end states)

| The "End state" keyword:
| This keyword provides the ability to change the end state names
| created on the event tree logic to a different end state (or add an already
| created end state for the sequence cut sets that meet the specified search criteria).
| The new end state must exist in the project.

 if /CCS then
 eventree(LOSP) = Endstate(S-R);
 endif

This rule will change the end state for sequence 2 from SMALL-RELEASE to S-R when
the sequence logic is created.

 65

SAPHIRE 8 Advanced Idaho National Laboratory

4.3. Changing Transfers Trees using Link Rules
4.3.1. Using Eventree() option

The Link Rules may also be used to control the transfer process from one event tree to
a sub tree. This ability brings in the use of a new keyword, eventree(). See the
example below.

Linking Rule Structure (Example 10 – changing the transfer tree via EVENTREE)
|
| This rule is for a transfer tree named SHARED.
| The SHARED event tree is transferred to by two different event trees,
| each having a unique initiating event. The first event tree has initiating
| event IE-A, and after it transfers to SHARED, it should transfer to an event
| tree named A-PRT.
| The second event tree has initiating event IE-B, and after it transfers
| to SHARED, it should transfer to an event tree named B-PRT.
|
| The transfer name on the SHARED event tree graphic is A-PRT. This rule
| changes the specified transfer event tree to B-PRT when the initiator is IE-B.
|
if init(IE-B) then
 eventree(A-PRT) = eventree(B-PRT);
endif

 66

SAPHIRE 8 Advanced Idaho National Laboratory

4.3.2. Using SeqTransfer() option
The following discusses another option to control the transfer process from one event
tree to a sub tree. This ability brings in the use of a new keyword, SeqTransfer(). See
the example below.

Linking Rule Structure (Example 11 – changing the transfer tree via SeqTransfer)
|
| This rule is for a transfer tree named SHARED.
| The SHARED event tree contains specific logic that may not be required under certain
| conditions; therefore, the event tree IE-B can change the transfer from SHARED to
| IE-A under that condition. This option will change the transfer sub-event tree from
| SHARED to IE-A and that is the sequence logic that will be generated.
|
|
if C * D then
 SeqTransfer(SHARED) = eventree(IE-A);
endif

The resultant sequence logic would be: [IE-B * C * D * A * B]

 67

SAPHIRE 8 Advanced Idaho National Laboratory

4.4. Rules for Binary and Multiple-Split Branches
♦ Event tree branches are normally binary (one up, indicating success, and one

down, indicating failure). But, in general, there may be more than two “splits”
underneath a single top event.

♦ SAPHIRE addresses multiple branches by way of the event tree link rules.
Several important modeling conventions are provided in the following example.
The nomenclature for specifying a specific event tree branch under a top event is
demonstrated.

♦ For binary branching, the success branch for a top is denoted with the
complement symbol "/". SAPHIRE computes the probability for /A as P(/A) = 1 -
P(A).

♦ For multiple-split branching, the failed branches are designated with the top
event name and the branch number in brackets.

The success branch (the uppermost one) is assigned index [0], but is indicated by using
the “/” nomenclature (see above). Then, the next branch (below the success branch) is
assigned index [1], the next branch index [2], etc.

| RULES FOR EVENT TREE IE-1
|
| A rule for a 2-split branch
| Note: DO NOT specify “/ATOP”
if always then
 /A = ATOP;
 A = ATOP;
endif
| A rule for multiple-split branch
|
if always then
 /B = B-FT;
 B[1] = BTOP1;
 B[2] = BTOP2;
 B[3] = BTOP3;
endif

 68

SAPHIRE 8 Advanced Idaho National Laboratory

If you print a logic report to the screen during the link process (Right Click on Event
Tree IE-1 in list window select Link, and then check the “Create Report” box before
clicking on OK) it will look like:

For multiple-split branches, you may want to construct a fault tree with the name that
corresponds to the substituted success branch name (in our case, B-FT).

♦ The “success branch” fault tree would consist of the failed systems, BTOP1,
BTOP2, and BTOP3 "ORed" together.

♦ Remember that SAPHIRE will automatically complement the fault tree when it
solves the success branch (i.e., the uppermost branch).

To include a complemented event in event tree cut sets, you must specify the Y
Process Flag (in the Modify  Basic Events option) for the applicable top event. In
this example, you would set the Y Process Flag for ATOP and B-FT.

Then, to use the correct probability for this “success branch” fault tree, you will need to

♦ Set the B-FT event to a calculation type of “S” in order to tell SAPHIRE to use the
fault tree cut sets for the event probability.

♦ Solve the fault tree (B-FT) prior to the sequence analysis.

 69

SAPHIRE 8 Advanced Idaho National Laboratory

4.5. Event Tree Linking Rule Keywords and
Nomenclature

Each of the “rules” in SAPHIRE (linking, recovery, and partition) has their own
nomenclature. The table below lists the keywords available for linking rules.

Keyword or
symbol

Definition

Example Usage

if then

Keyword that indicates a
search criterion is being
specified.

if "search criteria" then
 perform some action on the sequence;
endif

endif

Keyword that indicates the end
of a particular rule.

if "search criteria" then
 perform some action on the sequence;
endif

else

Keyword that specifies some
action to be taken if all the
search criteria are not met.
The else should be the last
condition in the event tree
linking rule.

if "search criteria" then
 PERFORM SOME ACTION ON THE SEQUENCE;

else
 perform some other action on the sequence if
search criteria not met;
endif

elsif

Keyword that specifies an
alternative search criteria. Any
number of elsifs can be used
within an event tree linking
rule.

if "search criteria" then
 perform some action on the sequence;
elsif "2nd search criteria" then
 perform some other action on the sequence;
elsif "3rd search criteria" then
 perform some other action on the sequence;
endif

always

Keyword that indicates every
fault tree top event satisfies the
search criteria.

if always then
 perform some action on the sequence;
endif

init()

Keyword used in the search
criteria to indicate that the
sequence logic has a particular
initiating event.

if init(INITIATOR-NAME) * "other search criteria
if needed" then
 perform some action on the sequence;
endif

|

Symbol used to represent a
comment contained in the
rules. Everything on a line to
the right of this symbol will be
ignored by the rule compiler.

| Place your comments here!

| Note that blank lines are also permissible!

 70

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Example Usage

~

Symbol used in the search
criteria to indicate that a
particular top event will not be
in the sequence logic that is
being tested.

if (~SEARCH-CRITERIA) * "other search criteria
if needed" then
...
The search criteria will be satisfied for all
sequences that do not contain SEARCH-
CRITERIA (and also contains the optional "other
search criteria"). SEARCH-CRITERIA may be
an initiating event, top event, or macro.

/

Symbol used to represent a
complemented event (i.e., the
success of a fault tree).

if (/TOP EVENT) * "other search criteria" then

The search criteria will be satisfied for all
sequences that contain the complement of TOP
EVENT (and also contains the optional "other
search criteria").

;

Symbol to indicate the end of a
macro line or a line that
modifies the sequence logic
being evaluated.

| usage for a macro command
MACRO-NAME = "search criteria" ;
| usage for a sequence modification line
 FT = FT-1;

*

Symbol to indicate the logical
AND command.

if SEARCH-CRITERIA1 * SEARCH-CRITERIA2
then

The search criteria will be satisfied for all top
events that match SEARCH-CRITERIA1 and
SEARCH-CRITERIA2. The SEARCH-
CRITERIA# may be an initiating event, macro,
or top event.

+

Symbol to indicate the logical
OR command.

if SEARCH-CRITERIA1 + SEARCH-CRITERIA2
then

The search criteria will be satisfied for all top
events that match either SEARCH-CRITERIA1
or SEARCH-CRITERIA2. The SEARCH-
CRITERIA# may be an initiating event, macro,
or top event.

()

Symbols to indicate a specific
grouping of items.

if (A + B) * (C + D) then

The search criteria above would return all top
events that contain:
[A * C], [A * D], [B * C], or [B * D].

=

Keyword to indicate the
substitution of one event tree
top (i.e., fault tree) for another
event.

if "search criteria" then
 ET-FT = ET-FT1;
endif

 71

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Example Usage

endstate Keyword to assign an end
state to a sequence (based
upon sequence logic). [This
can also change the existing
end state to a new one.]

If “search criteria” then
 eventree(ET-NAME) = endstate(ES-NAME);
endif

eventree()

Keyword to indicate a change
in the sequence transfer name.

if "search criteria" then
 eventree(ORIG-TRAN) = eventree(NEW-
TRAN);
endif

SeqTransfer()

Keyword to indicate a change
in the sequence transfer name.

if "search criteria" then
 SeqTransfer(ORIG-TRAN) = eventree(NEW-
TRAN);
endif

Skip()

Keyword to indicate that a
sequence meeting the search
criteria will be “skipped” (i.e.,
not generated and will not
show up in the database).

if "search criteria" then
 ET-FT = Skip(ET-FT);
endif

SkipSequence
SkipSystem

Keywords with the same
function as Skip(), however it
provides further delineation
between sequence and system
with the use of categories.

if “search criteria” then
 SkipSequence;
endif

End_Rule_Section Provides a break from one rule
group to the next rule group in
layered rules.

First set of rules
 End_Rule_Section
Second set of rules.

LerfFactor Keyword to assign LERF
factors to sequences that meet
the search criteria. These
factors are used for SPAR
models when performing SDP
analyses.

if init(event tree) then
 lerffactor = 1.0; |numerical value between 0 < 1
elsif RPS then
endif

[]

Keyword to indicate the
number of the event tree
branch for multiple-split branch
points. The first branch under
the top branch is designated as
1. The second is designated
as 2, etc.

if "search criteria" then
 /ET-FT = NEW-TREE-NAME1;
 ET-FT[1] = NEW-TREE-NAME2;
 ET-FT[2] = NEW-TREE-NAME3;
endif

 72

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Example Usage

MACRO

A macro is a user-definable
keyword that specifies search
criteria. The macro name must
be all upper-case, must be 24
characters or less, and must
not include any of the restricted
characters (e.g., a space, *, ?,
\, /). The macro line can wrap
around to more than one line,
but must end with a semicolon.

MACRO-NAME = SEARCH-CRITERIA;
if MACRO-NAME then
 perform some action on each sequence;
endif

|Macros are only applicable in the particular
|rule set where they appear. In other words,
|you cannot define a macro in event tree
|”A” and expect to use it in event tree “B.”

4.6. “Edit Linkage Rules” Event Tree Editor
♦ To use the event tree linkage rule editor, highlight the event tree, right click the

mouse and select the “Edit Linkage Rules” editor.

Rules Editor Toolbar:

 Save

 Compile

 73

SAPHIRE 8 Advanced Idaho National Laboratory

 Undo or Redo action

 Find, Find Next, and Find Previous

 Replace

 Comment highlighted block, Un-Comment highlighted block

Rules Editor Menu Bar:

File – The file drop down menu allows the user to compile, import or export text,
and save or both save and exit the rule editor. A check of the script status is
performed on an exit of the rule editor. If there is a problem found (i.e. script is
not compiled or has errors in the compile) the user is prompted to optionally fix
the problem without exiting the editor.

Edit – The edit drop down menu allows the user to undo, redo, cut, copy, paste
insert indents or spaces, comment or uncomment any portions of the existing
rules,

Search – The search drop down menu allows the user the ability to search the
rules, find the next or previous, or replaces character strings.

View – The view drop down menu is used in concurrence with Options  Show
Item Lists and will show or hide items in the list pane opened to the left of the
editing pane.

Options – The options drop down menu controls what panes are visible (Show
Function List and Show Item List), what is displayed in the list pane (Header and
Description), and can save the current configuration as the default configuration
for the rules editors in the project.

The following image shows the rules editor including the list pane.

 74

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Editing Pane

◊ Items can be dragged and dropped to the editing pane from the main list
panes outside of the editor, the list pane within the editor, and the
function pane within the editor.

◊ Items can be inserted where the cursor is in the editing pane by double-
clicking on a list item or function within the editor.

• Double-clicking on a main list item outside the editor opens that list
item for editing.

Note:
Functions are not case sensitive, (i.e. AddEvent is the same as
addevent) but variables are case sensitive (DG-A is different
than DG-a).

 75

SAPHIRE 8 Advanced Idaho National Laboratory

4.7. “Project Linkage Rules” Editor
A new rule editor was added to give the analyst the ability to create linkage rules that
will be applied to all event trees. These rules get applied when the event tree accident
sequences are generated via “link” or saving the event tree(s).

♦ To use the “Project” linkage rule editor, under the Project  Edit Rules option,
select “Linkage Rules” editor.

♦ The rules are created the same as the Link Event Tree rule.

◊ Items can be dragged and dropped to the editing pane from the main list
panes outside of the editor, the list pane within the editor, and the
function pane within the editor.

◊ Items can be inserted where the cursor is in the editing pane by double-
clicking on a list item or function within the editor.

• Double-clicking on a main list item outside the editor opens that list
item for editing.

 76

SAPHIRE 8 Advanced Idaho National Laboratory

4.8. “Top Event Substitution” Event Tree Graphic
Default top events can be replaced directly from the event tree graphics. This new
option creates the linking rules discussed above behind the scenes based on the
substitution specified.

♦ To use this option, open up the event tree of interest via double-clicking or
highlight event tree, right-mouse click and select Edit Logic.

♦ Select the node beneath the default top event that needs to be changed to
a new top event based on success criteria, etc.

◊ Right-click the mouse and select Edit

 77

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click the drop down option under “Substitute Model Name:” and then
 select the new top event from the list of top events (fault trees) that is
 going to be used for this specific sequence.

◊ If the same fault tree is going to be used for both the success and failure,
 which in most cases will be true, then both success and failure branch
 nodes need to specify the same top event (fault tree).

◊ Now save the event tree and the new sequence logic based on the top
 event substitution will be used when solving the sequences for minimal cut
 sets.

 78

SAPHIRE 8 Advanced Idaho National Laboratory

 79

| 5 | POST PROCESSING RULES

Section 5 presents the “Post Processing Rules” editors. These editors allow you to
create rules that affect existing cut sets in a “post-processing” fashion. The rule-based
editors are available for both fault tree and sequence cut sets.

5.1. Post Processing Rules Editor Introduction
The SAPHIRE Post Processing Rules are "free-form" logic rules that allow for the
alteration or deletion of fault tree or sequence cut sets. These post-processing rules
can be applied to all event trees and fault trees via (Project  Edit Rules  ET(Post
Processing) or FT(Post Processing) or applied to individual event trees and fault
trees via highlighting the event tree or fault tree, right mouse click and selecting Edit
Post-processing Rules.

The Post Processing Rules can be used for probabilistic risk assessment techniques
such as:

♦ The automated inclusion of sequence recovery events

♦ The inclusion of dependent operator actions

♦ The elimination of mutually-exclusive events (e.g., impossible combinations of
events).

The rules follow a format similar to the structure that is found in traditional programming
languages (e.g., BASIC or PASCAL). As such, the ability exists to define "macros" and
"if...then" type of structures.

The rules may be developed for a particular fault tree; all fault trees, a single event tree,
or all sequences.

Note:
Formerly called "recovery rules," post processing rules have evolved from the
simple inclusion of recovery events into a powerful rule-based system for cut
set manipulation.

SAPHIRE 8 Advanced Idaho National Laboratory

Item Menu Path Name of rule(s)

Specific fault tree Fault Tree  Edit Post-processing Rules “Fault Tree” Rule Level
All fault trees Project  Edit Rules  FT “Project” Rule Level
Single event tree Event Tree  Edit Post-processing Rules “Event Tree” Rule Level
All sequences Project  Edit Rules  ET “Project” Rule Level

The rules are entered in a free-form text editor within SAPHIRE. Note: The rules can
be exported and loaded through MAR-D.

Use of the Post Processing Rules could result in non-minimal cut sets. Thus, the typical
steps in performing an analysis using the Post Processing Rules are:

♦ Finalize logic models and data changes by saving any modified trees

♦ Solve fault tree or sequence cut sets

♦ Apply Post processing Rules to applicable fault trees or sequences

♦ Perform a Cut Set Update to fault tree or sequence cut sets

♦ Perform Uncertainty analysis

♦ Display or report results

5.2. Post Processing Rules Nomenclature and
Structure

These examples apply to all the Post Processing rules editors. This rule editor
searches existing fault tree or sequence cut sets for cut sets matching the search
criteria defined in the rule. The rule is used to modify the cut sets matching the search
criteria.

Symbols

| Denotes a comment line ~ Operator for "not present"
* Logical AND operator + Logical OR operator
/ Complement () Parentheses

 80

SAPHIRE 8 Advanced Idaho National Laboratory

Search Criteria Examples (for basic events X, Y, and Z)

Search Criteria Meaning of the Search Criteria
X Basic event X appears in the cut set
~X Basic event X does not occur in the cut set
/X Success of basic event X appears in the cut set
X * Y Both basic events X and Y appear in the cut set
X + Y Either basic event X or Y appear in the cut set
X*(Y + Z) Either X and Y or X and Z appear in cut set in the cut set
~X*Y Basic event Y does appear and basic event X does not appear
always This pre-defined macro-name means the criteria is always met.
system(ECS) Fault tree top event with name ECS

5.2.1. Post Processing Rules Examples

Post Processing Rule Structure (Example 1 – if-then)

| The "if-then" Rule Structure:
| This rule adds a recovery action BUSREC when electric bus B or C is failed
if EL-BUS-B + EL-BUS-C then
 AddEvent = BUSREC; |This keyword line must end with a semicolon.
endif

 81

SAPHIRE 8 Advanced Idaho National Laboratory

Post Processing Rule Structure (Example 2 – if-then-elsif)

| The "if-then-elsif" Structure:
| This rule deletes the cut set if both diesel generators are out for maintenance.
| If the two DGs fail randomly, add a common cause event.

if (DG-1-MAINT * DG-2-MAINT) then
 DeleteRoot;
elsif (DG-1-RAND * DG-2-RAND) then

| Copy the original cut set, remove the two failure events, then add CC
CopyRoot;
 DeleteEvent = DG-1-RAND;
 DeleteEvent = DG-2-RAND;
 AddEvent = DG-CCF-1AND2;
endif

Post Processing Rule Structure (Example 3 – appending recovery actions)

The example below shows how the post-processing rules could be used to include
recovery actions on specific cut sets via the Post Processing Rules Option.

| The rule attaches the recovery action NRAC-RMCOOL to every cut set for a
| particular sequence (or all sequences).
| This rule would probably be typed as a project rule to be applied to all event trees;
| however, it can be typed into the event tree sequence rule editor for the sequence
| of interest.
| A rule to apply NRAC-RMCOOL recovery event to all cut sets in the sequence.

if RM-A-FAN * RM-B-FAN then
 recovery = NRAC-RMCOOL;
endif

Post Processing Rule Structure (Example 4 – mutually exclusive event removal)

The example below shows how the rules could be used to completely remove a
particular cut set from the cut set list via the Post Processing Rules Option.

 82

SAPHIRE 8 Advanced Idaho National Laboratory

♦ There may be instances where a cut set should be removed because the
combination of basic events should not occur (e.g., two diesel generators out for
maintenance at the same time).

| This rule could be placed in either (or both) the fault tree project rules or the
| event tree project rules.
| Define a macro to get those cut sets that have combinations of two motor
| driven pumps out for maintenance.

PUMPS-IN-MAINT = MDP-A-MAINT * MDP-B-MAINT;

| Search for the maintenance events and then delete cut set.
if PUMPS-IN-MAINT then
| Delete the cut set
 DeleteRoot;
endif

Post Processing Rule Structure (Example 5 – including dependent operator
action events)

The example below shows how the rules could be used to add dependent operator
action events to the cut sets via the Post Processing Rules Option.

♦ The usefulness of the Post Processing Rules for dependent operator action

modeling is limited by the fact that the cut sets containing the independent
operator actions must exist for the search criteria to work.

♦ If a probability truncation is specified when generating fault tree or sequence cut
sets, the independent operator action cut sets may be truncated.

| The search criterion identifies the failure combination of two operator actions in
|series. If these two basic events are found in a cut set then one of the operator
|actions will be removed and replaced with a new dependent operator action
|performing the same operation.
| This rule could be placed in either (or both) the fault tree project rules or the event
| tree project rules.

 83

SAPHIRE 8 Advanced Idaho National Laboratory

| Define a macro to only pick up those cut sets that have combinations of
| RCI-XHE-XM-ERROR and HCS-XHE-XM-ERROR.

XHE-DEP = RCI-XHE-XM-ERROR * HCS-XHE-XM-ERROR;

| Search for the operator actions
if XHE-DEP then
 | Now remove the independent operator action that is dependent upon the failure
 | of the previous operator action.
 DeleteEvent = HCS-XHE-XM-ERROR;
 | Now add the dependent operator action
 AddEvent = HCS-XHE-XM-ERROR1;
endif

The new cut set would be RCI-XHE-XM-ERROR * HCS-XHE-XM-ERROR1.

Post Processing Rule Structure (Example 6 – use of top events)

The example below shows how the rules could be used to search top events and apply
recovery basic events via the Post Processing Rules Option.

| The search criterion identifies the failure of top event CCS and applies a
| recovery event to all cut sets in the sequence(s).

if system(CCS) then
 recovery = recover-CCS;
endif

5.3. End Section Post Processing Rule Keyword

End section rule keyword was developed to break a post-processing rule into separate
rules that are applied to cut sets. The keyword allows one rule to manipulate the cut
sets and stops at that point and then these manipulated cut sets are processed by the
next rule. This continues until all rules have been applied.

♦ The following will provide an example of the structure and application of this
keyword to post-processing rules.

 84

SAPHIRE 8 Advanced Idaho National Laboratory

 ◊ Assume the following cut sets are generated via the logic model

 EPS-DGN-FR-A5HR * OEP-XHE-XL-1HR +
 EPS-DGN-FR-B5HR * OEP-XHE-XL-1HR;

 ◊ Now based on the structure or some other determining factor the 1 hour
 recovery event (OEP-XHE-XL-1HR needs to be replaced by a 5 hour
 recovery event). The following rule can be developed.

 if OEP-XHE-XL-1HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 DeleteEvent = OEP-XHE-XL-1HR;
 AddEvent = OEP-XHE-XL-5HR;
 endif

 ◊ The new cut sets after the post processing rule is applied is:

 EPS-DGN-FR-A5HR * OEP-XHE-XL-5HR +
 EPS-DGN-FR-B5HR * OEP-XHE-XL-5HR;

 ◊ Now if there is a subsequent rule that has the following search criteria:

 if OEP-XHE-XL-1HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 AddEvent = OEP-XHE-XX-1HR;
 endif

 if OEP-XHE-XL-5HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 AddEvent = OEP-XHE-XX-5HR;
 endif

 this rule will be applied to the original cut sets (generated via logic)
 [EPS-DGN-FR-A5HR * OEP-XHE-XL-1HR +
 EPS-DGN-FR-B5HR * OEP-XHE-XL-1HR]

 ◊ The new cut sets would look like (given the substitution from earlier rule):

 EPS-DGN-FR-A5HR * OEP-XHE-XL-5HR * OEP-XHE-XX-1HR +
 EPS-DGN-FR-B5HR * OEP-XHE-XL-5HR * OEP-XHE-XX-1HR;

 85

SAPHIRE 8 Advanced Idaho National Laboratory

 The final outcome is not the correct resultant cut sets. This is due to how
 SAPHIRE handles the cut sets and rules. SAPHIRE loads the cut sets up and
 looks for all rules that need to be applied to this group of cut sets and then
 applies these rules separately.

 ◊ There are two ways to get the correct cut sets:
 1. Use the elsif option as discussed above, or
 2. Use the End_Rule_Section keyword

◊ The End_Rule_Section rule option will be illustrated below and would use
the following rule structure. The resultant cut sets are also provided.

| Post-processing rules applied in the first pass through the cut sets.
 if OEP-XHE-XL-1HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 DeleteEvent = OEP-XHE-XL-1HR;
 AddEvent = OEP-XHE-XL-5HR;
 endif

| Use the key word End_Rule_Section to separate the first set of post-processing rules
| with the new set of post-processing rules.

 End_Rule_Section

| These rules will be applied to the resultant cut sets that are created (modified) from the
| first set of rules (look at this as the second pass).

 if OEP-XHE-XL-1HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 AddEvent = OEP-XHE-XX-1HR;
 endif

 if OEP-XHE-XL-5HR * (EPS-DGN-FR-A5HR + EPS-DGN-FR-B5HR) then
 AddEvent = OEP-XHE-XX-5HR;
 endif

The resultant cut sets after rules applied:

 EPS-DGN-FR-A5HR * OEP-XHE-XL-5HR * OEP-XHE-XX-5HR +
 EPS-DGN-FR-B5HR * OEP-XHE-XL-5HR * OEP-XHE-XX-5HR;

 86

SAPHIRE 8 Advanced Idaho National Laboratory

The End_Rule_Section takes the group of cut sets that have been manipulated by the
first set of post processing rules and then applies the next set of post processing rules,
and continues if more section breaks are developed.

5.4. Convolution Post Processing Rule Keyword

Convolution keyword was developed to append the specially created basic event to
adjust sequence cut set frequencies based on time related basic events failing within a
cut set. This rule will search through the cut sets and when the cut set has been found
the special basic will be appended to the cut set in order to reduce its frequency based
on what the convolved sequence frequency should be.

♦ The following will provide an example of the structure and application of this

keyword to post-processing rules.

 ◊ Assume the following sequence cut set is generated via the logic model

 IE-LOOP * EPS-DGN-FR-A * EPS-DGN-FS-B * OEP-XHE-XL-NR01H;
 The frequency (assume) is 1.09E-5/yr

◊ Since, the failure of this cut set is assumed to start at time = 0.0 and the
mission time is 24 hours for the diesel generator; this cut set frequency
over-estimates the fact that the failure actually occurred sooner and the
operators only have 1 hour to recover offsite power.

◊ The correction factor needs to be applied. The rule structure is simple,

since the keyword knows exactly what combinations to search for
(developed when the basic event was created).

if Convolve_Cut_Sets then
 AddConvolEvent;
endif

◊ The above rule will search through the cut sets and where the cut set

combinations occur the convolution basic event is applied. For the simple
Demo project created the cut set of interest is:

IE-LOOP * EPS-DGN-FR-A * EPS-DGN-FS-B * OEP-XHE-XL-NR01H;

 87

SAPHIRE 8 Advanced Idaho National Laboratory

Since EPS-DGN-FR-A * OEP-XHE-XL-NR01H shows up together is a cut
set; the convolved basic event created in Section 3 will be appended to
this cut set to reduce the sequence cut set frequency

IE-LOOP * EPS-DGN-FR-A * EPS-DGN-FS-B * OEP-XHE-XL-NR01H * OEP-
XHE-NN-NR01H1;

 The new frequency (correct) is 1.53E-6/yr (a factor of 0.139)

5.5. Post Processing Rule Keywords and
Nomenclature
Each of the “rules” in SAPHIRE (linking, post processing, and partition) has their own
nomenclature. The table below lists the keywords available for post processing rules.

Keyword or
symbol

Definition

Usage

if then

Keyword that indicates search
criteria is being specified.

if "search criteria" then
 perform some action on each cut set;
endif

endif

Keyword that indicates the end of a
particular rule.

if "search criteria" then
 perform some action on each cut set;
endif

else

Keyword that specifies some action
to be taken if all the search criteria
are not met. The else should be the
last condition in the Post Processing
rule.

if "search criteria" then
 perform some action on each cut set;
else
 perform some other action on each cut set
 not meeting the search criteria
endif

elsif

Keyword that specifies an alternative
search criteria. Any number of elsifs
can be used within a Post
Processing rule.

if "search criteria" then
 perform some action on each cut set;
elsif "2nd search criteria" then
 perform some other action on each cut
set;
elsif "3rd search criteria" then
 perform some other action on each cut
set;
endif

always

Keyword that indicates that every cut
set that is being evaluated satisfies
the search criteria.

if always then
 perform some action on each cut set;
endif

 88

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Usage

init()

Keyword used in the search criteria
to indicate that a sequence cut set
has a particular initiating event.

if init(INITIATOR-NAME) * "other search
criteria if needed" then
 perform some action on each cut set;
endif

End_Rule_Section Provides a break from one rule
group to the next rule group in
layered rules.

First set of rules
 End_Rule_Section
Second set of rules.

~

Symbol used in the search criteria to
indicate that a particular event will
not be in the cut set that is being
evaluated.

if (~SEARCH-CRITERIA) * "other search
criteria if needed" then
...
The search criteria will be satisfied for all cut
sets that do not contain SEARCH-
CRITERIA (and also contains the optional
"other search criteria"). SEARCH-
CRITERIA may be an initiating event, basic
event, macro, or logic expression.

/

Symbol used to represent a
complemented event (i.e., the
success of a failure basic event).

if (/BASIC-EVENT) * "other search criteria"
then

The search criteria will be satisfied for all cut
sets that contain the complement of BASIC-
EVENT (and also contains the optional
"other search criteria").

|

Symbol used to represent a
comment contained in the rules.
Everything on a line to the right of
this symbol will be ignored by the
rule compiler.

| Place your comments here!

| Note that blank lines are also permissible!

;

Symbol to indicate the end of a
macro line or a line that modifies the
cut set being evaluated.

| usage for a macro command
MACRO-NAME = "search criteria" ;

| usage for a cut set modification line
 recovery = RECOVERY-EVENT ;

*

Symbol to indicate the logical AND
command.

if SEARCH-CRITERIA1 * SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all cut
sets that match SEARCH-CRITERIA1 and
SEARCH-CRITERIA2. The SEARCH-
CRITERIA# may be an initiating event,
basic event, macro, or logic expression.

 89

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Usage

+

Symbol to indicate the logical OR
command.

if SEARCH-CRITERIA1 + SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all cut
sets that match either SEARCH-CRITERIA1
or SEARCH-CRITERIA2. The SEARCH-
CRITERIA# may be an initiating event,
basic event, macro, or logic expression.

()

Symbols to indicate a specific
grouping of items.

if (A + B) * (C + D) then

The search criteria above would return all
cut sets that contain:
[A * C], [A * D], [B * C], or [B * D].

system() Keyword used in the search criteria
to indicate that a fault tree
contributes to the existence of the
cut set that is being evaluated.

if system(ECS) then
 perform some action on each cut set
endif

Recovery =

Keyword that indicates that a
recovery event is going to be added
to the cut set being evaluated
(SAPHIRE keeps record of all
recovery events).

if "search criteria" then
 recovery = NAME-OF-RECOVERY;
endif

AddEvent =

Keyword that indicates that an event
will be added to the cut set being
evaluated.

if "search criteria" then
 AddEvent = EVENT-NAME;
endif

DeleteEvent=

Keyword that indicates that an event
will be deleted from the cut set being
evaluated.

if "search criteria" then
 DeleteEvent = EVENT-NAME;
endif

NewCutset;

Keyword that indicates that a new,
empty cut set will be added to the list
of cut sets. This new cut set then
becomes the cut set that is being
evaluated.

if "search criteria" then
 NewCutset;
 now make additions to the empty cut set...
endif

DeleteRoot;

Keyword that indicates that the
original cut set (i.e., that cut set that
satisfied the search criteria) will be
deleted.

if "search criteria" then
 DeleteRoot;
endif

CopyCutset;

Keyword that indicates that the cut
set being evaluated will be copied
and added to the list of cut sets.
This copied cut set then becomes
the cut set that is being evaluated.

if "search criteria" then
 CopyCutset;
 now make modification to a copy of the
cut set...
endif

 90

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Usage

CopyRoot;

Keyword that indicates that the
original cut set (i.e., that cut set that
satisfied the search criteria) will be
copied. This copied cut set will then
become the cut set that is being
evaluated.

if "search criteria" then
 CopyRoot;
 now make modifications to a copy of the
original cut set...
endif

MACRO

A macro is a user-definable keyword
that specifies search criteria. The
macro name must be all upper-case,
must be 16 characters or less, and
must not include any of the restricted
characters (e.g., a space, *, ?, \, /).
The macro line can wrap around to
more than one line, but must end
with a semicolon.

MACRO-NAME = SEARCH-CRITERIA;
if MACRO-NAME "and other search criteria"
then
 perform some action on each cut set...;
endif

|Macros are only applicable in the |particular
rule they are entered into

Convolve_Cut_Sets Keyword that indicates the original
cut set (i.e., that cut set that satisfied
the search criteria) will be adjusted
by a correction factor. The keyword
for the correction factor in the rule is
AddConvolEvent.

If Convolve_Cut_Sets then
 AddConvolEvent;
endif

InvalidRASP_XProd
uct

Keyword that indicates the original
cut set (i.e., that cut set that satisfied
the search criteria) will be removed
from the cut set. This is used when
fully expanded R-Type CCF events
are used in the PRA model

If InvalidRASP_XProduct then
 DeleteRoot;
endif

5.6. Fault Tree Post Processing Rules

♦ To create or edit Fault Tree Post Processing Rules on an individual fault tree,

highlight the fault tree in the fault tree list, right-click and select Edit Post-
processing Rules.

 91

SAPHIRE 8 Advanced Idaho National Laboratory

♦ To create or edit Fault Tree Post Processing Rules that will be used on all fault
trees in the project, from the main SAPHIRE screen, select Project  Edit
Rules  FT(Post Processing).

♦ Fault Tree Post Processing Rules are applied to fault tree cut sets by checking
the Apply Post-processing Rules checkbox. If the project contains post-
processing rules, this option will be available to be checked. If there are no post-
processing rules, this checkbox option will be grayed out. If there are post-
processing rules that need to be applied, this checkbox needs to be checked or
no rules will be applied.

 92

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The post-processing rules are applied in the following order:
1. Fault tree specific post-processing rule
2. Project (Fault Tree) post-processing rule

♦ If there are any over lapping rules, the final cut sets may be incorrect (i.e., fault
tree specific rule adds a recovery event and then the project rule adds a different
recovery event, the final cut set will have multiple recovery events, which may be
incorrect.)

5.7. Event Tree Sequence Post Processing Rules

♦ To create or edit Event Tree Post Processing Rules on an individual event tree,

highlight the event tree in the event tree list, right-click and select Edit Post-
processing Rules.

 93

SAPHIRE 8 Advanced Idaho National Laboratory

♦ To create or edit Event Tree Post Processing Rules on all event trees in the
project, from the main menu, select Project  Edit Rules  ET(Post
Processing).

♦ Event Tree Post Processing Rules are applied to event tree cut sets by checking
the Apply Post-processing Rules checkbox. If the project contains post-
processing rules, this option will be available to be checked. If there are no post-
processing rules, this checkbox option will be grayed out. If there are post-
processing rules that need to be applied, this checkbox needs to be checked or
no rules will be applied.

 94

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The post-processing rules are applied in the following order:

1. Event tree specific post-processing rule
2. Project (Event Tree) post-processing rule

♦ If there are any over lapping rules, the final cut sets may be incorrect (i.e., event
tree specific rule adds a recovery event and then the project rule adds a different
recovery event, the final cut set will have multiple recovery events, which may be
incorrect.)

 95

SAPHIRE 8 Advanced Idaho National Laboratory

Rules Editor Toolbar:

 Save

 Compile

 Undo or Redo action

 Find, Find Next, and Find Previous

 Replace

 Comment highlighted block, Un-Comment highlighted block

Rules Editor Menu Bar:

File – The file drop down menu allows the user to compile, import or export text,
and save or both save and exit the rule editor. A check of the script status is
performed on an exit of the rule editor. If there is a problem found (i.e. script is
not compiled or has errors in the compile) the user is prompted to optionally fix
the problem without exiting the editor.

Edit – The edit drop down menu allows the user to undo, redo, cut, copy, paste
insert indents or spaces, comment or uncomment any portions of the existing
rules,

Search – The search drop down menu allows the user the ability to search the
rules, find the next or previous, or replaces character strings.

View – The view drop down menu is used in concurrence with Options  Show
Item Lists and will show or hide items in the list pane opened to the left of the
editing pane.

Options – The options drop down menu controls what panes are visible (Show
Function List and Show Item List), what is displayed in the list pane (Header and
Description), and can save the current configuration as the default configuration
for the rules editors in the project.

The following image shows the rules editor including the list pane.

 96

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Editing Pane

◊ Items can be dragged and dropped to the editing pane from the main list
panes outside of the editor, the list pane within the editor, and the
function pane within the editor.

◊ Items can be inserted where the cursor is in the editing pane by double-
clicking on a list item or function within the editor.

• Double-clicking on a main list item outside the editor opens that list
item for editing.

Note:
Functions are not case sensitive, (i.e. AddEvent is the same as
addevent) but variables are case sensitive (DG-A is different
than DG-a).

 97

SAPHIRE 8 Advanced Idaho National Laboratory

5.8. A “Complicated” Post Processing Rule Example
Now, an example is presented that utilizes several of the Post Processing rule
keywords. In this example, it is assumed that only a single cut set matches the search
criteria. This cut set has a single basic event (A) and is called the Root cut set. The
overall rule looks like:

If A then
 AddEvent = B;
 NewCutset;
 AddEvent = C;
 DeleteRoot;
 CopyCutset;
 AddEvent = D;
endif

The outcome of applying this Post Processing rule is shown in the following table.

Step Applied Keyword Resulting cut set(s) Comment

1 AddEvent = B; (1) A * B Event B is attached to the "currently-
evaluated" cut set.

2 NewCutset; (1) A * B
(2) blank

A new blank cut set is included in
the list of cut sets. This new cut set
now becomes the "currently-
evaluated" cut set.

3 AddEvent = C; (1) A * B
(2) C

Event C is attached to the "currently-
evaluated" cut set.

4 DeleteRoot; (1) C The Root cut set is removed.

5 CopyCutset; (1) C
(2) C

A new cut set is included in the list
of cut sets that is a duplicate of the
old "currently-evaluated" cut set.
Note that this is different than the
“CopyRoot” command which would
have included a new cut set with
event A in the cut set (i.e., the
starting cut set).

6 AddEvent = D; (1) C
(2) C * D

Event D is attached to the "currently-
evaluated" cut set.

 98

SAPHIRE 8 Advanced Idaho National Laboratory

 99

| 6 | END STATE ANALYSIS

Section 6 describes the end state analysis features in SAPHIRE. Cut sets derived by
analyzing event tree sequences can be grouped into end states by specifying the
sequence end state on the event tree or by developing end state partitioning rules.
Both approaches are described in this section.

SAPHIRE 8 Advanced Idaho National Laboratory

6.1. End State Analysis Approaches
End state analysis is simply the grouping of cut sets generated from event tree
sequences in ways that are useful to the analyst. Cut sets grouped by end state can be
conveniently displayed and reported, and end state uncertainty analysis can be
performed. There are two basic approaches provided in SAPHIRE to group cut sets
into end states:

1. End state analysis by specifying sequence end states — in this approach, the
end state is specified for each event tree sequence in the graphical file.

2. End state analysis using partitioning rules — in this approach, user-defined
rules are used to assign end states. Features include:

• Application of rules to the entire database project, event trees, and/or
sequences.

• Cut sets from the same sequence can be grouped into separate end
states.

• End state names can be creating using a "layering process" that allows
character substitutions.

 100

SAPHIRE 8 Advanced Idaho National Laboratory

6.2. End States by Specifying Sequence End States
Two accident end states (SMALL_RELEASE and LARGE_RELEASE) are specified on
the LOSP event tree. Note that OK end states are ignored.

The end states specified in the "End-State" column automatically become end states in
the database.

♦ The graphical event tree editor discussed in the Basics course on how to develop
an event tree.

♦ To edit the description of an end state from the main screen, double click on an
end state in the End State list panel. More detailed editing can be accomplished
in the Event Tree editor by right clicking on the sequence end state and selecting
Edit as described in the basics manual.

♦ Delete end states that are no longer used by right clicking on the end state and
selecting Delete.

♦ Cross reference an end state by highlighting the end state and using the main
menu Tools  Cross References to list the event tree sequences that are
grouped into the highlighted end state.

 101

SAPHIRE 8 Advanced Idaho National Laboratory

6.2.1. Gather End State Cut Sets
Steps to gather End State Cut Sets:

1. Sequence cut sets must be generated (highlight all Event Trees then right

click on the highlighted list and select the Solve option).

2. Gather end state cut sets by highlighting all the End States of interest in
the End States list panel, right click on the highlighted list and select
Gather (if end states not visible, use the main toolbar View  End States
to see the End States list panel).

6.2.2. Options to Gather End States Cut Sets
Performing the steps in 6.2.1 opens the Solve Cut Sets form shown below.

 102

SAPHIRE 8 Advanced Idaho National Laboratory

 Cut Set Truncation Options
Cut Set Truncation (Probability)

◊ Choose None (i.e., no truncation) or choose Normal and manually set the
truncation value in the textbox (it automatically defaults to the project
setting). The cut sets below the selected value will not be retained.

Size Truncation – From the dropdown menu,

◊ Size eliminates cut sets having more events than specified value textbox
to the right of Size Truncation.

◊ None and the number of events in a cut set will not affect whether the cut
set is kept or discarded.

◊ Zone eliminates cut sets having more events with the Process Flag = Z
than specified in the value textbox.

Quantification Method

◊ Minimal Cut Set Upper Bound – Calculates the end state frequency
using the mincut upperbound equation.

◊ Rare Event – Calculates the end state frequency by summing up the cut
sets.

◊ Min/Max – Calculates the using the “inclusion/exclusion” rule.

Gather By

◊ Sequence End State – Activate this radio button to gather the end
states specified on the event tree sequences (e.g., via the graphics).

◊ By Cut Set Partition – Activate this radio button to gather the end states
created when end state partitioning rules were applied.

Solution Steps

Gather Cut Sets

◊ This option gathers existing cut sets (generated from the event tree
sequences). The end state frequency is quantified using the minimal cut
set upper bound approximation. (Non-minimal cut sets are eliminated
within each end state.)

Update / Quantify Cut Sets

◊ This option uses the existing end state cut sets and performs Boolean
algebra step to remove any non-minimal cut sets and then requantifies
these cut sets minimal cut set upper bound approximation (or rare event)
to obtain the end state frequency.

 103

SAPHIRE 8 Advanced Idaho National Laboratory

Quantify Cut Sets

◊ This option uses the existing end state cut sets and requantifies the end
state frequencies using the minimal cut set upper bound approximation
(or rare event). This option is designed to quickly requantify the cut sets
when data changes have been made.

Copy Cut Sets to Nominal case

◊ Check this box to update the nominal case with end state cut sets and
overall frequency.

Clear Current Cut Sets

◊ Check this box to clear out the current case cut sets (i.e., zero out the cut
set listing).

Clear Current Cut Sets (All Models)

◊ Check this box to clear out the current case cut sets for all model types
within the project (i.e., zero out the cut set listing).

Copy Cut Sets to Nominal case (All Models)

◊ Check this box to update the nominal case with end state cut sets (for all
Model types within the project) and overall frequency.

Solve For Model Types

◊ Check marks should be in the model types of interest.

6.2.3. Description of End States list menu options
The list menu for End States is accessed by right clicking on highlighted end state(s) of
interest:

 104

SAPHIRE 8 Advanced Idaho National Laboratory

Gather

◊ Discussed above; this option gathers existing cut sets (generated from
the event tree sequences). The end state frequency is quantified using
the specified calculation. (Non-minimal cut sets are eliminated within
each end state.)

View Summary Results

◊ This option opens a results form for the chosen end state(s) which
includes Point estimates and uncertainty.

View Cut Sets

◊ This option displays the chosen end state(s) cut sets as illustrated below:

◊ The minimal cut set upper bound approximation frequency of the end
state and the end state cut sets are now displayed.

◊ The cut sets can be expanded to show basic information and the path by
individually by clicking on the “+” to the left of the numbered cut set or
view all cut sets as expanded by clicking on Expand All. To show the
origin, activate the Show Origin checkbox.

◊ End state cut sets can be reported by clicking the Publish button.

 105

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click on Slice to slice the end state cut sets by Cutoff, Events, and
Attributes using the form and functions described in Section 15, Viewing
Cut Sets (SAPHIRE Basics Manual).

Edit Cut Sets

◊ This option allows the analyst to edit the cut sets (current and nominal)
using the form and functions as described in Section 14, Editing Cut
Sets.

View Importance Measures

◊ This option calculates and lists the basic events importance measures for
a single or group of end states.

View Uncertainty

◊ This option allows Monte Carlo or Latin Hypercube samples calculation
and view of uncertainty analysis for a single or group of end states.

 106

SAPHIRE 8 Advanced Idaho National Laboratory

6.3. End States via Partition Rules
Partition rules are applied either:

♦ Globally to all event trees by using the End State Partition editor under Project
 Edit Rules  End State Partition, or

♦ An individual event tree by right clicking on the event tree in the Event Tree list
panel and selecting Edit Partition Rules.

6.3.1. End State Partitioning Rules Nomenclature and
Structure

The rule structure and nomenclature for the partitioning rules are similar to the "Link
Event Tree" rules and “Post Processing Rules” described in Sections 4 and 5.

The partitioning rule editor tests the existing sequence cut sets for the presence or
absence of specific combinations of basic events or initiating events, and assigns
characters in the end state name when the criteria are met. This allows end state
names to be built as the rules are applied.

Symbols

| Denotes a comment line ~ Operator for "not present"
* Logical AND operator + Logical OR operator
/ Complement () Grouping terms

Search Criteria Examples

Search Criteria Meaning of the Search Criteria
DG-A Basic event DG-A (failure)
~DG-A Failure of DG-A is not present in the cut set
/DG-A Complemented basic event DG-A (success)
init(LOSP) Initiating event with the name LOSP
system(ECS) Fault tree top event with name ECS

 107

SAPHIRE 8 Advanced Idaho National Laboratory

6.3.2. End State Partitioning Rules Examples
Partition Rule Structure (Example 1 – if-then)

| The "if-then" Rule Structure:
| This rule adds -SBO as characters 4 through 7 of the end state name
| when both DG-A and DG-B are present in the cut sets.
| The ??? are placeholders in the end state name. (The end state
| name is initially blank.)

if DG-A * DG-B then
 partition = "???-SBO";
endif

| Note that the partition statement must end with a semicolon.
| The end state name must be <= 24 characters.
| The end state characters are enclosed in quotation marks

Partition Rule Structure (Example 2 – if-always)

| The "if-always" Rule Structure:
| This rule adds END as the first 3 characters in every cut set.

if always then
 partition = "END";
endif

 108

SAPHIRE 8 Advanced Idaho National Laboratory

Partition Rule Structure (Example 3 – if-then-elsif)

| The "if-then-elsif" Structure:
| This rule adds characters 4 through 7 to the end state name.
| When both DG-A and DG-B are failed, -SBO is added.
| When DG-A is failed (but not DG-B), characters -DGA are added.
| When DG-B is failed (but not DG-A), characters -DGB are added.

if DG-A * DG-B then
 partition = "???-SBO";
elsif DG-A then
 partition = "???-DGA";
elsif DG-B then
 partition = "???-DGB";
endif

Partition Rule Structure (Example 4 – if-then-elsif-else)

| The "if-then-elsif-else" Structure:

if DG-A * DG-B then
 partition = "???-SBO";
elsif DG-A then
 partition = "???-DGA";
elsif DG-B then
 partition = "???-DGB";
else
 partition = "???-FLW";
endif

| Note that the cut sets that do not contain DG-A or DG-B are assigned
| to the ???-FLW end state by the else statement, since they do not meet
| the search criteria.

 109

SAPHIRE 8 Advanced Idaho National Laboratory

Partition Rule Structure (Example 5 – Macros)

Macros can be used to streamline complex rules. A macro is simply a user-defined
keyword that specifies a search criterion that can be used in the rule instead of the
individual events (i.e., search criterion). An example is provided below.

| Define a macro named ALL-DGS

ALL-DGS = DG-A * DG-B;

| Use the macro in a rule

if ALL-DGS then
 partition = "???-SBO";
endif

Partition Rule Structure (Example 6 – Macros and ~)
When creating a rule that indicates that events in the macro do not occur, use the ~ (not
present) symbol. (Note, do not "complement" a macro.)

| Using ~macro as the search criteria:
| The rule applies when failure of both DG-A and DG-B is not in the cut set.

if ~(ALL-DGS) then
 partition = "???-TRS";
endif

 110

SAPHIRE 8 Advanced Idaho National Laboratory

Partition Rule Structure (Example 7 – Current Partition)

| The “Current Partition” Rule Structure:

| The “current partition” rule structure uses the end state created by a partition
| rule to create a different end state using only those basic events currently found
| in the current end state. (This rule makes two end states; one end state
| containing all of the basic events that meet the search criteria of the second rule
| and a second end state with those basic events that do not meet the search
| criteria of the second rule. This rule can use wildcards as part of its search
| criteria.

| This rule creates an end state containing all cut sets with the basic event
| C-MOV-CC-1. The rule then creates a new (second) end state using only the
| current end state cut sets, which contains only those cut sets that contains
| either E-MOV-CC-A or E-MOV-CC-B.
|
if C-MOV-CC-1 then
 partition = "CMOV1";
endif

if CurrentPart(C????) * (E-MOV-CC-A + E-MOV-CC-B) then
 partition = "C-E-MOVS";
endif

 111

SAPHIRE 8 Advanced Idaho National Laboratory

 112

SAPHIRE 8 Advanced Idaho National Laboratory

Partition Rule Structure (Example 8 – Global Partition)

| The "GlobalPartition" Rule Structure:

| This rule globally partitions all cut sets in a sequence to an end state.
| This option is activated by using the keyword “GlobalPartition” instead
| of the normal “partition” keyword.
| This partition rule is much faster at gathering cut sets than using the normal
| “partition” rule. This rule is geared more for gathering cut sets based upon
| sequence logic than on individual basic events.

| The “GlobalPartition” rule structure is the same as for “partitioning” rules.
| This example “GlobalPartition” rule will gather all sequence cut sets that
| pertain to specified sequence logic.
| Cut sets will be put into an end state called CD-SEQ2 if they are found in
| sequences that contain the following sequence logic
| LOSP * ECS * /CCS.
| Cut sets will be put into an end state called CD-SEQ3 if they are found in
| sequences that contain the following sequence logic
| LOSP * ECS * CCS.

if INIT(LOSP) * SYSTEM(ECS) * SYSTEM(/CCS) then
 GlobalPartition = "CD-SEQ2";
elsif INIT(LOSP) * SYSTEM(ECS) * SYSTEM(CCS) then
 GlobalPartition = "CD-SEQ3";
endif

♦ The Global Partition rule loads all of the sequence cut sets into the end state in a

single pass instead of evaluating each cut set. Consequently, it is recommended
to “global partition” based upon initiators or system top events.

♦ If a “global partition” is performed on basic events, all cut sets listed after the
basic event’s cut set will be partitioned into the end state.

Note:
Global Partitioning is designed to rapidly partition cut sets into end states
based on sequence logic. Since individual cut sets are not searched, Global
Partitioning rules gather cut sets faster than the other partitioning methods.

 113

SAPHIRE 8 Advanced Idaho National Laboratory

Partition Rule Structure (Example 9 – Global Partition and Transfer)

Global Partition rules should not be mixed with normal “Partitioning” rules. Global
Partition rules are geared more for Level 2 studies since the end state that is created is
also an event tree with the same name. The event tree that is created uses the end
state frequency as its initiating event frequency and then transfers to a Level 2 event
tree. This “end state event tree” can be looked at as an event tree which transfers Level
1 information to Level 2 event trees.

| The “Global Partition” rule to transfer the end state frequency to be used
| by a Level 2 event tree.
|
| This rule creates an end state event tree to be used by a Level 2 event tree
| (which is already created).
|
| LEVEL2TREE can be viewed as a Level 2 event tree name. This tree
| will use the end state frequency gathered in the end state CD-SEQ3 as
| its initiating event frequency.

if init(LOSP) * SYSTEM(ECS) * SYSTEM(CCS) then
 GlobalPartition = "CD-SEQ3";
 transfer = LEVEL2TREE;
endif

 114

SAPHIRE 8 Advanced Idaho National Laboratory

6.4. Partition Rule Keywords and Nomenclature
Each of the “rules” in SAPHIRE (linking, post processing, and partition) has their own
nomenclature. The table below lists the keywords available for partition rules.

Keyword or
symbol

Definition Usage

if then

Keyword that indicates search
criteria is being specified.

if "search criteria" then
 perform some action on each cut set;
endif

endif

Keyword that indicates the end of a
particular rule.

if "search criteria" then
 perform some action on each cut set;
endif

else

Keyword that specifies some action
to be taken if all the search criteria
are not met. The else should be the
last condition in the post processing
rule.

if "search criteria" then
 perform some action on each cut set;
else
 perform action on each cut set if
 search criteria not met;
endif

elsif

Keyword that specifies an alternative
search criteria. Any number of elsifs
can be used within a post
processing rule.

if "search criteria" then
 perform some action on each cut set;
elsif "2nd search criteria" then
 perform action on each cut set;
elsif "3rd search criteria" then
 perform action on each cut set;
endif

always

Keyword that indicates that every
cut set that is being evaluated
satisfies the search criteria.

if always then
 perform some action on each cut set;
endif

init()

Keyword used in the search criteria
to indicate that a sequence cut set
has a particular initiating event.

if init(INITIATOR-NAME) * "other search
criteria if needed" then
 perform some action on each cut set;
endif

system()

Keyword used in the search criteria
to indicate that the sequence logic
contains the particular top event.

if system(TOP EVENT) * “other search
criteria if needed” then
 perform action on each sequence;
endif

 115

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition Usage

~

Symbol used in the search criteria to
indicate that a particular event will
not be in the cut set that is being
evaluated.

if (~SEARCH-CRITERIA) * "other search
criteria if needed" then
...
The search criteria will be satisfied for all cut
sets that do not contain SEARCH-CRITERIA
(and also contains the optional "other search
criteria").

/

Symbol used to represent a
complemented event (i.e., the
success of a system or basic event).

if (/BASIC-EVENT) * "other search criteria"
then

The search criteria will be satisfied for all cut
sets that contain the complement of BASIC-
EVENT (and also contains the optional
"other search criteria").

|

Symbol used to represent a
comment contained in the rules.
Everything on a line to the right of
this symbol will be ignored.

| Place your comments here!

| Note that blank lines are also permissible!

;

Symbol to indicate the end of a
macro line or a line that modifies the
cut set being evaluated.

| usage for a macro command
MACRO-NAME = "search criteria" ;
| usage for a cut set modification line
 partition = ENDSTATE ;

*

Symbol to indicate the logical AND
command.

if SEARCH-CRITERIA1 * SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all cut
sets that match SEARCH-CRITERIA1 and
SEARCH-CRITERIA2.

+

Symbol to indicate the logical OR
command.

if SEARCH-CRITERIA1 + SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all cut
sets that match either SEARCH-CRITERIA1
or SEARCH-CRITERIA2.

()

Symbols to indicate a specific
grouping of items.

if (A + B) * (C + D) then

The search criteria above would return all cut
sets that contain:
[A * C], [A * D], [B * C], or [B * D].

 116

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition Usage

partition =

Keyword that indicates the end state
characters for the cut sets meeting
the search criteria will be modified
according to the text after the equal
sign.

if "search criteria" then
 partition = “END_STATE_NAME”;
endif

CurrentPart()

Keyword that searches for cut sets
that have already been assigned to
the endstate indicated.

if CurrentPart(CORE-DAMAGE) then
 partition = “NEW-CORE-DAMAGE”;
endif

GlobalPartition=

Keyword to indicate that all cut sets
in a particular sequence will be
assigned to the end state identified
after the equal sign.

if "search criteria" then
 GlobalPartition = “MY-END-STATE”;
endif

transfer =

Keyword to indicate the event tree to
be created and transferred to for the
sequence meeting the search
criteria. The sequence end state
frequency will be used as the
initiating event frequency for the new
event tree.

if "search criteria" then
 GlobalPartition = “CORE-DAMAGE”;
 transfer = LEVEL-2-TREE;
endif

MACRO

A macro is a user-definable keyword
that specifies search criteria. The
macro name must be all upper-case,
must be 16 characters or less, and
must not include any of the
restricted characters (e.g., a space,
*, ?, \, /). The macro line can wrap
around to more than one line, but
must end with a semicolon.

MACRO-NAME = SEARCH-CRITERIA;
if MACRO-NAME then
 perform some action on each cut set;
endif

|Macros are only applicable in the particular
rule set where they appear

 117

SAPHIRE 8 Advanced Idaho National Laboratory

6.5. Partition Rule Example
A rule for the DEMO project is added by selecting the Project → Edit Rules → End
State Partition.

♦ The first project rule shown below add characters 1 to 5 as “LOSP-“ when LOSP
is the initiating event and OTHER if LOSP is not the initiating event.

♦ The next rule adds characters 13 through 16 as -SBO when both DG-A and DG-
B are failed. When DG-A is failed, DGA is added, and when DG-B is failed, DGB
is added (as characters in the end state name).

| End State Partitioning Rules: Project

if init(LOSP) then
 Partition = "LOSP-";
else
 Partition = "OTHER-";
 endif

|Create a macro

DG-A = S-DGN-FR-A + S-DGN-FS-A;
DG-B = S-DGN-FR-B + S-DGN-FS-B;

if DG-A * DG-B then
 Partition = "????????????-SBO";
elsif DG-A then
 Partition = "????????????-DGA";
elsif DG-B then
 Partition = "????????????-DGB";
endif

 118

SAPHIRE 8 Advanced Idaho National Laboratory

Rules for LOSP sequences 2 and 3 are entered by right clicking on LOSP in the Event
Tree list and selecting Edit Partition Rules, then keying on the top event fault tree CCS
as shown below:

♦ Create a rule in sequence 2 to add characters 6 through 12 as ECSONLY and a
rule for sequence 3 to add characters 6 through 12 as ECS&CCS by using the
following partition rules for the event tree LOSP:

| End State Rule sequence 2

if System(/CCS) then
 partition = "?????ECSONLY";
endif

| End State Rule sequence 3
if System(CCS) then
 partition = "?????ECS&CCS";
endif

6.5.1. Applying the Partitioning Rules
To apply the partitioning rules, highlight all of the event trees in the event tree list pane,
right click the mouse, and select Solve to open the Solve Cut Sets (ET) window.

Ensure that there is a check in the Apply Partition Rules checkbox and click Solve.

 119

SAPHIRE 8 Advanced Idaho National Laboratory

6.5.2. Using End State Analysis to Gather the
Partitioned Cut Sets

After applying the partition rules, the partitioned end states will be displayed in the End
States list panel. The end states must be "gathered" to group those cut sets that met
the search criteria specified in the rules. To “gather” end states, highlight the end states
in End States list panel, right click to open the End State menu and select Gather.

When you select the Gather option, you will be asked to specify the end state truncation
and solution options. Activate the Cut Set Partition radio button and click Solve.

 120

SAPHIRE 8 Advanced Idaho National Laboratory

The Solve Results form lists the frequency and the number of cut sets leading to each
end state.

To view the cut sets for an end state, highlight the end state or group of end states and
click on Cut Sets.

After the end state cut sets have been gathered, uncertainty analysis can be performed
by using the End States list menu on a highlighted end state and selecting View
Uncertainty. Uncertainty analysis is performed in the same manner as covered for
event tree sequences.

If the Solve Results form is not active, you can view previously solved end state cut sets
by right clicking on the end state or group of end states in the list pane and selecting
View Cut Sets.

Options for viewing and slicing cut sets are identical to those for the event tree
sequence and fault tree cut sets.

 121

SAPHIRE 8 Advanced Idaho National Laboratory

6.6. Reporting End State Results
End State Cut Set reports can be generated through the View Cut Sets menu by
clicking on Publish.

The report created this way is viewed as html and can be printed or saved:

 122

SAPHIRE 8 Advanced Idaho National Laboratory

A Summary report type is available by highlighting the end states desired in the End
States list panel, right clicking to open the list menu and selecting View Summary
Results.

With the end states gathered without the partitioning rules and gathered through
Sequence End States, the LARGE-RELEASE and SMALL-RELEASE end states with
the uncertainty analysis performed previously generates this report:

By marking the end states that were created by using the partition end state rules, the
report shown below was generated.

Note:
When comparing end state results to sequence results, differences can occur
due to the removal of “non-minimal” cut sets when cut sets are gathered into
the end state.

 123

SAPHIRE 8 Advanced Idaho National Laboratory

6.7. Resetting or Deleting Partition Rule End States
To reset the end states created using the partitioning rules, solve the event trees with
the Apply Partition Rules check box unchecked and the Clear Cut Set Partitions box
checked. This will not delete the partitioned end states, just clear the cut sets from
them.

To delete the partitioned end states the event trees need unlinked by highlighting the
event tree in the list pane and right clicking to bring up the menu, then selecting Unlink.
Similarly, perform a Link again on the event tree and the partitioned end states can
then be deleted.

 124

SAPHIRE 8 Advanced Idaho National Laboratory

6.8. Explore Origin from End States
The Explore Origin option from the end state display is designed to provide the analyst
with information on where the cut set originated. This origination is tied to the event tree
and the event tree accident sequence. From any event tree cut set view option or end
state cut set view option, the explore origin option can be executed.

♦ To execute the explore origin option, open up any cut set viewer that contains
accident sequence cut sets (event tree or end state).

◊ Highlight an event tree, select View Cut Sets

♦ The display option lists all of the event trees that the cut sets can be located.

The first tab is just an overview of the total results. This tab lists each event tree
and their frequency along with the number of cut sets. Each event tree can be
expanded out to show their individual sequence by clicking the button.

 125

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The next tab “Dominant Event Tree”, sorts the event tree based on its
contribution to the overall results.

 126

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The third tab “Dominant Sequences” expands out all of the event tree sequences
and sorts them by dominant contribution.

♦ This tab has options on the bottom to provide the analyst additional filters (both
filters need to be adjusted at the same time).

◊ The first filter is Sequence Cutoff Total % - this filter provides a means to
display only those sequences that contribute X% to the overall total.

◊ The second filter is Sequence Cutoff Minimum % - this filter provides a
means to display on those sequences that are above Y% to the overall
total.

For example, if the top 98% sequences are required for display, set Sequence Cutoff
Total% to 98 and then just set Sequence Cutoff Minimum% to 1.

 127

SAPHIRE 8 Advanced Idaho National Laboratory

♦ This last tab “Sequence Cut Sets” provides the cut sets for the dominant
sequences. This tab provides the overall contribution of the sequence plus it
looks at each individual cut set and provides its contribution to both the overall
results and its contribution to the overall sequence result.

◊ The individual cut sets can be expanded out to display the individual
basic event’s probability and description.

 128

SAPHIRE 8 Advanced Idaho National Laboratory

 129

SAPHIRE 8 Advanced Idaho National Laboratory

 130

| 7 | SOLVING FAULT TREE CUT
SETS

Section 7 describes the truncation options for analyzing fault tree cut sets. Model
preparation prior to generating cut sets is discussed, and the various analysis and
truncation options are described. Evaluating "subtrees," flag sets, and using process
flags to prune fault tree logic is also described.

SAPHIRE 8 Advanced Idaho National Laboratory

Examples of Fault Tree Solve Options

The CCS Fault Tree shown below will be used to demonstrate the various solve
options. The CCS-TRAINS portion of the CCS fault tree logic has been paged out into
its own sub-tree. By breaking the CCS fault tree into the two fault trees, the “Developed
Event” options will demonstrated.

 131

SAPHIRE 8 Advanced Idaho National Laboratory

7.1. Fault Tree Cut Sets With No Truncation
To generate cut sets without truncation, highlight the fault tree desired in the Fault Tree
list panel, right click and select Solve. Then select “None” in the drop-down menu for
Cut Set Truncation.

Click the Solve button to solve the cut sets, then clicking on Cut Sets on the following
window:

A printable HTML report can be generated by clicking on the Publish button.

 132

SAPHIRE 8 Advanced Idaho National Laboratory

7.2. Fault Tree Cut Sets With Probability Truncations
The default truncation is Global, which will always be active when the Solve form is
displayed. The Global truncation setting is set from the main menu Project → User
Settings → Analysis options. To use a different truncation enter the truncation value
desired for this case, use 1.00E-06.

Click the Solve button to solve the cut sets, then clicking on Cut Sets on the following
window provides this report:

A printable HTML report can be generated by clicking on the Publish button.

 133

SAPHIRE 8 Advanced Idaho National Laboratory

7.3. Fault Tree Specific Probability Truncation
To use a fault tree specific truncation (i.e., one that will be used instead of the Global
truncation and be specific to just that fault tree), the truncation probability needs to be
applied to the fault tree by highlighting the fault tree and selecting Edit Properties.

In the “Default Truncation Value:” field, type in the fault tree specific truncation value.
This value will be used when the fault tree cut sets are generated if the Global
truncation option is not specified.

To solve the fault tree using its fault tree specific truncation, highlight the fault tree click
the Solve button and then change the Global truncation option to System Specific.

Click the Solve button to solve the cut sets.

 134

SAPHIRE 8 Advanced Idaho National Laboratory

7.4. Fault Tree Cut Sets with Size Truncation
To generate cut sets with truncation on the number of events in a cut set, select Size
from the Size Truncation pull-down menu of the Fault Tree Solve form and enter the
size cutoff value (a 1 in our example). Cut Set Truncation is left at the Global value of
1.00E-15 for this example.

Click the Solve button to solve the cut sets, then clicking on Cut Sets on the following
window provides the report below:

 135

SAPHIRE 8 Advanced Idaho National Laboratory

7.5. Analyzing Fault Tree "Gate Level"
To generate cut sets beginning with a gate below the top gate, enter the gate name by
selecting the “Solve starting at gate” check box. A drop down box will appear which lists
all of the gates in the fault tree. From this list, select the gate that SAPHIRE is going to
use as the starting point to generate cut sets.

When a gate is selected as the starting gate, SAPHIRE generates cut sets and stores
these cut sets for the fault tree selected (e.g., CCS).

 136

SAPHIRE 8 Advanced Idaho National Laboratory

7.6. Analyzing Fault Tree "Sub-trees"
To generate cut sets for a sub-fault tree, the Fault Tree panel drop down box needs to
be changed from Main Trees to Sub Trees. Highlight the appropriate sub-tree, right
click and solve as normal.
The list panel sorts and
displays the fault trees
based on filter type that is
selected from the pull down
menu (e.g., Sub-Trees,
which in the example
includes CCS-TRAINS).

In this example, the cut set probability truncation is the Global value and the cut sets are
generated for the sub tree CCS-TRAINS.

Note that DG-B related failure modes appear in several cut sets when the CCS-TRAINS
sub tree is analyzed. Based on the starting gate, CCS-TRAINS, the cut sets are
minimal and therefore, DG-B shows up in multiple cut sets. However, when the top
gate, CCS, is the starting point, DG-B is a single event and all combinations of DG-B

 137

SAPHIRE 8 Advanced Idaho National Laboratory

become non-minimal cut sets. After Boolean reduction, all cut sets shown above that
contain DG-B will be subsumed and removed from the list.

7.7. Treating a Fault Tree Gate as a Basic Event
Now, we will solve the CCS tree while treating the CCS-TRAINS sub-tree as a basic
event (rather than using its logic structure).

There are a couple of ways to set the CCS-TRAINS sub-tree as though it were a basic
event.

1. Set its Process Flag to the “X” type in the Edit Basic Event form (this is a
permanent change):

2. Make a Change Set in the Change Set list panel or from the main menu

Project  Change Sets to set the CCS-TRAINS event’s process flag is
set to “X” (temporary change).

• Both methods allow any probability to be specified for CCS-TRAINS;
however, it was left as 1.0 in this example.

• Remember: All fault tree top gates and event tree top events are
automatically defined as "basic events" in SAPHIRE (termed Develop
Event). As such, they can be edited with the methods noted.

 138

SAPHIRE 8 Advanced Idaho National Laboratory

Solving the CCS Fault Tree in the normal manner with the Global truncation produces
the following report:

7.8. Treating a Fault Tree Gate as a Basic Event with
an Appropriate Probability

In this example, we will treat the CCS-TRAINS sub-tree as though it were a basic event
with a probability equal to its calculated minimal cut set upper bound value (the sub tree
value).

To have SAPHIRE automatically use the sub-tree cut sets, we must:

1. Make sure CCS-TRAINS basic event Calculation type is “Failure
Probability (1)” and Process Flag to “Failure=>System Logic | Success=>
Delete Term”

2. Generate cut sets for the CCS-TRAINS fault trees

3. Modify the CCS-TRAINS basic event’s Calculation Type to “Use mincut
upper bound …(S)” and the Process Flag to “X” using the Edit Basic Event
form for CCS-TRAINS in the Basic Event list pane.

 139

SAPHIRE 8 Advanced Idaho National Laboratory

Now, solve the CCS fault tree without truncation. Reporting the solve results shows:

7.9. Treating a Fault Tree Gate as Failed
To model failure of the entire CCS-TRAINS sub-tree (for example, if the subsystem is
not functional), we need to specify that CCS-TRAINS was failed (a House Event TRUE).
This again can be set either as a Change Set or by modifying CCS-TRAINS in edit
Basic Event.

♦ Set the CCS-TRAINS Process Flag equal to “X” and set the Calculation Type

equal to “T”

Now, solve the CCS fault tree without truncation. Reporting the solve results shows:

 140

SAPHIRE 8 Advanced Idaho National Laboratory

7.10. Treating a Fault Tree Gate as Working
To model success of the entire CCS-TRAINS sub-tree (for example, if the subsystem is
working), we need to specify that CCS-TRAINS was functional (a House Event FALSE).

♦ Set the CCS-TRAINS Process Flag equal to “X” and set the Calculation Type

equal to “F”

Now, solve the CCS fault tree without truncation. Reporting the solve results shows:

7.11. Ignoring a Fault Tree Gate
Occasionally, one would like to see the output of fault tree logic with a portion of the
fault tree removed. Rather than having to physically delete portions of the tree,
SAPHIRE will allow a gate (or an event) to be ignored.

To remove an event or gate from a fault tree, set its Calculation Type equal to “I” (for
Ignore).

♦ Set the CCS-TRAINS Process Flag equal to “X” and set the Calculation Type
equal to “I”

Now, solve the CCS fault tree without truncation. Reporting the solve results shows:

 141

SAPHIRE 8 Advanced Idaho National Laboratory

7.12. Using Flag Sets during Fault Tree Cut Set
Solving

First, a brief review of flag sets.

Flag Sets are a special type of change set. SAPHIRE will keep flag sets separate from
change sets by specifying it as a flag set. Fault tree flag sets are created using the
Project → Flag Sets menu. This will open the Flag Set List form:

From the Flag Set List a flag set can be
added, modified or deleted.

♦ Flag Sets can only contain

individually selected changes. No
“Class Changes” are allowed.

♦ Flag Sets are used to indicate
modifications to particular events or
gates on individual fault trees.

♦ A basic event probability of failure
may not be changed in Flag Sets.

When generating fault tree cut sets, Flag Sets are used for setting house events or
basic events to either TRUE, FALSE, or IGNORE.

7.12.1. To make a Flag Set
As an example we’ll make a flag set FT-FLAG-1 which will change the basic event
S-DGN-FR-A and S-DGN-FS-A from their nominal probability value to a FALSE value.

♦ Enter the Project → Flag Sets menu

♦ Select Add Flag Set from the dropdown menu and Click Go, this will open the
Flag Set Editor window.

♦ Enter the Flag Set name (maximum of 24 characters) and description.

♦ Click and drag desired Basic Events from the basic event list panel and drop
them into the Singles area.

♦ Select the event to modify by clicking on the basic event in the Singles window.
This opens the event in the Values to be Applied area.

 142

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Check the Model Type to modify by checking the box and then selecting the New
Value from the dropdown list.

♦ Continue adding as many events as necessary to the Flag Set.

7.12.2. To use a Flag Set
♦ The Flag set can be assigned to a fault tree permanently using the following

steps or applied temporarily during the solve option, each will be discussed.

♦ After the Flag Set has been created, the Flag Set name needs to be assigned to
one or more fault trees.

♦ Open the desired fault tree (ECS in our
example) by double clicking on the fault
tree name in the Fault Tree list panel and
select Edit  Properties.

♦ With the ECS fault tree open, select from
the Fault Tree main menu Edit 
Properties to open the Edit Fault Tree
Properties form.

♦ Alternately, the flag set can be assigned
by highlighting the fault tree, right-clicking
to invoke the menu and selecting Edit
Properties.

 143

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The FT-FLAG-1 flag set is assigned to the ECS fault tree by using the pull down
menu on the Edit Fault Tree Properties window as shown. Click OK and to save
the flag set to the fault tree (permanently assigned to this fault tree and every
time it is solved the flag set will be applied).

♦ In summary, thus far:

◊ Flag Set FT-FLAG-1 was created which set the DG-A basic event
failure models to FALSE.

◊ The Flag Set FT-FLAG-1 was assigned to fault tree ECS.

♦ Now, highlight the ECS fault tree, right mouse click and select the Solve option
and solve without truncation. Reporting the solve results shows the following
(note that the cut sets do not include basic events S-DGN-FR-A and S-DGN-FS-
A).

 144

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Another way to solve a fault tree using a flag set is to select the Flag Set in the
Solve option. This will apply the flag set during just this cut set generation. It can
be viewed as a temporary application, since the next time the fault tree is solved
this flag set will not be applied.

 145

SAPHIRE 8 Advanced Idaho National Laboratory

7.13. Steps Performed During Fault Tree Solving

 146

SAPHIRE 8 Advanced Idaho National Laboratory

 147

| 8 | QUANTIFYING FAULT TREE
CUT SETS

Section 8 describes the process of quantifying fault tree cut sets. Included in the
discussion is a review of the minimal cut set upper bound approximation and details of
the Min/Max option. The Min/Max option quantifies existing cut sets using an "exact"
calculation for the union of the cut sets.

SAPHIRE 8 Advanced Idaho National Laboratory

8.1. Cut Set Quantification Approaches
In general, there are different ways to quantify minimal cut sets. But, it is standard to
use one of three methods, which include

♦ Rare event approximation. - This calculation approximates the probability of the

union of minimal cut sets. The equation for the rare event approximation is:

where P is the probability of interest, Ci is the probability of the i'th cut set, and m
is the total number of cut sets.

♦ Minimal cut set upper bound - This calculation approximates the probability of
the union of minimal cut sets. The equation for the minimal cut set upper bound
is

where P is the probability of interest, Ci is the probability of the i'th cut set, and m
is the total number of cut sets. Note (1) that the capital pi symbol implies
multiplication and (2) most analysis tools utilize this equation as the default
method of quantification.

♦ Exact - There are various methods of determining the exact probability given a
set of cut sets. One approach, referred to as the "inclusion-exclusion rule," goes
by the name “Min/Max” within SAPHIRE.

P Ci
i

m

=
=
∑

1

P Ci
i

m

= − −
=

∏1 1
1

()

 148

SAPHIRE 8 Advanced Idaho National Laboratory

8.2. The Min/Max Approach to Quantifying Cut Sets
The Min/Max quantification option quantifies the current case cut sets using the "exact"
probability quantification algorithm.

♦ To quantify the union of events, the first pass consists of adding the events, the

second pass consists of subtracting pairs of events, the third pass consists of
adding "triples", and so on.

For a simple example, assume that a fault tree X has only three cut sets which are the
union of [BE-A*BE-B], [BE-B*BE-C], and [BE-D]; which can be expressed as
[BE-A∩BE-B] ∪ [BE-B∩BE-C] ∪ [BE-D].

For 3 passes, the exact solution is:

[BE-A*BE-B]+[BE-B*BE-C]+[BE-D] - {[BE-A*BE-B]*[BE-B*BE-C]+[BE-A*BE-B]*[BE-D]+
[BE-B*BE-C]*[BE-D]} + {[BE-A*BE-B]*[BE-B*BE-C]*[BE-D]}, which reduces down to:

[BE-A*BE-B]+[BE-B*BE-C]+[BE-D] - {[BE-A*BE-B*BE-C]+[BE-A*BE-B*BE-D]+ [BE-
B*BE-C*BE-D]} + {[BE-A*BE-B*BE-C*BE-D]}

Note that the Min/Max algorithm applies the Boolean idempotent law (A * A = A) to
reduce identical terms during the multiplication of cut sets.

♦ To obtain the probability of X, one simply evaluates the expression above with

the individual event probabilities.

It is useful to compare the Min/Max algorithm to the Minimal Cut Set Upper Bound
algorithm. The results are usually quite close; however, the Minimal Cut Set Upper
Bound will be the more conservative estimate when the cut set probabilities are high
(e.g., greater than 0.1) or when complemented events appear in the cut sets.

8.2.1. Example Quantification Options
For our example above, let’s assume the probability of the basic events are P(BE-A) =
0.7, P(BE-B) = 0.7, P(BE-C) = 0.7 and P(BE-D) = 0.5.

♦ the minimal cut set upper bound approximation for fault tree X is

 Pr(X) = 1 – [(1-Pr(BE-A*BE-B))(1-Pr(BE-B*BE-C))(1-Pr(BE-D))]

 Pr(X) = 1-[(1-0.49)*(1-0.49)*(1-0.5)] = 0.870

 149

SAPHIRE 8 Advanced Idaho National Laboratory

♦ the rare event approximation for X is simply

 Pr(X) = Pr(BE-A*BE-B) + Pr(BE-B*BE-C) + Pr(BE-D)

 Pr(X) = 0.49 + 0.49 + 0.5 = 1.0

The equation used for the Min/Max quantification depends on the number of passes
(which is user defined). To get the exact answer, the number of passes must be equal
to the number of cut sets, but depending on the number of cut sets, this calculation may
be intractable.

The Min/Max calculation is shown below, where the results are displayed for each pass.
(Note: the Min/Max and the minimal cut set upper bound will be equal when the cut sets
do not contain common events.) However, in this case they do contain common events.

of
Passes Min/Max Equation Min/Max Probability

1 BE-A*BE-B + BE-B*BE-C + BE-D 1.48

2
BE-A*BE-B + BE-B*BE-C + BE-D –
{[BE-A*BE-B*BE-C]+[BE-A*BE-B*BE-D]+ [BE-
B*BE-C*BE-D]}

1.5 - 0.833 = 0.647

3
BE-A*BE-B + BE-B*BE-C + BE-D –
{[BE-A*BE-B*BE-C]+[BE-A*BE-B*BE-D]+ [BE-
B*BE-C*BE-D]} + {[BE-A*BE-B*BE-C*BE-D]}

1.48 - 0.833 + 0.1715 =
0.8185

4 Same as above Same as above

8.2.2. Using the Min/Max Quantification Option
Cut sets for the fault tree or sequence selected must have already been generated.

The number of passes must be selected by the user.
♦ The number of passes required for convergence is a function of the number of

cut sets for the selected fault tree or sequence and the value of the basic events
included in the cut sets.

♦ Setting the number of passes equal to the number of cut sets for the selected
fault tree or sequence will obtain the exact probability.

The computer run-time needs to be compatible with the user's needs. The Min/Max
run-time is a function of the number of cut sets and the number of passes.

 150

SAPHIRE 8 Advanced Idaho National Laboratory

To analyze fault tree cut sets, select the Fault Tree menu by right clicking on the
highlighted fault tree of interest and select Solve (Similarly, to analyze sequence cut
sets, select the Event Tree of interest). Then choose Quantification Method of Min/Max
in the drop-down menu and enter a Pass Count to use in the text field. The graphic
below shows the CCS tree ready to solve for Min/Max quantification with 15 passes.

Click the Solve button and the Min/Max Quantification results will display on the screen
for review (very quickly).

 151

SAPHIRE 8 Advanced Idaho National Laboratory

The following was captured to show the pass calculation for the ECS fault tree at 7
passes.

 152

SAPHIRE 8 Advanced Idaho National Laboratory

 153

| 9 | SOLVING EVENT TREE CUT
SETS

Section 9 describes how to solve for event tree cut sets. Model preparation prior to
generating cut sets is discussed. Also, the fault tree linking approach is addressed.
Uses of process flags, “dynamic” flag sets, and traditional flag sets are also presented.

SAPHIRE 8 Advanced Idaho National Laboratory

9.1. Solving Sequence Cut Sets
Sequence cut sets are derived from both the fault tree and event tree logic.

Prerequisites that are required prior to solving for sequence minimal cut sets are:

♦ Fault tree and event tree logic was created by using the graphics editors (or
loaded into the database via the MAR-D interface).

♦ Basic event data were added through the Basic Event edit menu.

♦ Sequence logic was generated via the Event Tree list menu → Link option
(SAPHIRE automatically performs this step when the event tree is saved).

Menus and options for sequence cut set solving

Selecting Event Trees to Solve
♦ Highlight the Event Tree(s) of interest in

the Event Tree list panel to solve.

♦ Right-click to invoke the pop-up menu.

♦ Select the Solve option.

Selecting Individual Sequences to Solve
♦ Expand the Event Tree(s) of interest in the Event Tree list panel and highlight the

sequence(s) to solve.

♦ Right-click to invoke the pop-up menu.

♦ Select the Solve option.

 154

SAPHIRE 8 Advanced Idaho National Laboratory

Solve Sequence Cut Sets Dialogue
The Solve Cut Sets window for sequences is similar to the one for fault trees.

Cut Set Truncation Options – Use the pull down menus to select the options.

By Probability:

None – solves without probability value truncation.

Normal – uses the cutoff value in the text field divided by the initiating
event frequency.

Conditional – uses the cutoff value in the text field, but assumes that
each initiating event has a value of one (just to solve cut sets). Note that
the correct initiating event frequency will be used to quantify the cut sets.

By Size:

None – solves without size truncation

Size – cut sets having more events than specified in the text field will not
be retained.

 155

SAPHIRE 8 Advanced Idaho National Laboratory

Zone – cut sets having more Zone Flagged Events than specified in the
text field will not be retained. This option is generally not used.

Solve Using Flag Set – Check this box to enable the drop down menu that lists
available Flag Sets to use when solving the sequences selected.

Threads to use on solve – This value can be set from 1 through 32. Leaving this as a
value of 1 will solve at the same speed as previous versions of SAPHIRE. To take
advantage of multiple processor computers, increasing the number of threads can save
significant solving time for lower level truncations or large models.

Quantification Method – This drop down menu that lists available quantification
methods available to calculate the resultant sequence cut sets.

Solution Steps – This section of the form provides check boxes to choose the steps
that are taken to solve the sequence cut sets.

Solve for Cut Sets – If you check box, sequence logic will be solved for minimal
cut sets using the truncation options specified. A situation where one might want
to uncheck this box would be to re-quantify the results of the cut sets after
changing some basic event values, but the structure of the fault trees and event
trees stayed the same. This would save some time in solving large models.

Apply Post Processing Rules – If you check box, any post-processing rules
associated with the sequence(s) will automatically be applied after the
sequence(s) cut sets have been generated. Generally, this box will be checked
in parallel with Solve for Cut Sets.

Update / Quantify Cut Sets – If this box is checked, the cut sets will be updated
by removing any non-minimal cut sets that may have been introduced when post-
processing rules were applied and then quantified. Again, if one might want to
uncheck this box to just solve the cut sets during a model review and save some
time by omitting the quantification.

Quantify Cut Sets – If this box is checked, cut sets will be re-quantified using
the truncation options specified.

Clear Cut Set Partitions – If this box is checked, the end states created with the
Apply Partition option will be delinked (i.e., no longer associated to cut sets and
they can be deleted).

 156

SAPHIRE 8 Advanced Idaho National Laboratory

Apply Partition Rules – If this box is checked, any partition rules associated
with this sequence will be applied to group sequence cut sets into end states
based on user specified partition rules.

Copy Cut Sets to Nominal case – If this box is checked, the solved sequence
cut sets will be stored into the Nominal case (permanent record of this
information).

Clear Current Case – If this box is checked, all sequence(s) cut sets is cleared
from the current case.

Solve for Model Types – Select as many model types as desired to include in
the cut sets. Typically, only one would be selected at a time.

9.2. Process Flags and Sequence Cut Set Generation
Process Flags are special identifiers that tell SAPHIRE how to the treat top events in an
event tree when the sequences are solved. For example, SAPHIRE has a Process Flag
that identifies the top events as Basic Events with a split-fraction probability rather than
its Fault Tree logic.

♦ The process flag is entered in the basic event editing. From the Basic Event list
drop down menu, select All (or Developed Event) to be able to view the top
events of the fault trees. Highlight the fault tree top event to be modified, click
the right mouse button, and select Edit Basic Event.

 157

SAPHIRE 8 Advanced Idaho National Laboratory

♦ When evaluating event tree accident sequences, you would modify the process
flags for the event tree top events. Recall that both fault tree and event tree top
events show up in the list of basic events (they are Developed Events).

♦ The process flag has different characteristics depending on the sequence branch
path (recall that an up branch is success while a down branch is failure).

"Sequence" Process Flags
Flag Use on failure branches Use on success branches

" "
(a space)

This is the
default
process flag.

Failure - Use system logic

Use fault tree logic (if available) for
the top event. If fault tree logic is
not present, then use the developed
event probability.

Success - Use the “delete term”

Use the "delete term" process to eliminate failure
cut sets based on the event tree success
event(s). The “delete term” process looks for,
and removes, impossible cut sets from the
analysis.

I

Failure - Use system logic

Use fault tree logic (if available) for
the top event. If fault tree logic is
not present, then use the developed
event probability.

Success - Use the complement of the logic

Use the complement of the system logic for the
successful branch. SAPHIRE will then treat the
success tree as part of the sequence cut set
solving process. Note that (1) this calculation
may take a long time and (2) SAPHIRE does not
perform the Boolean operation A*B + A*/B = A.

W

Failure - Use system logic

Use fault tree logic (if available) for
the top event. If fault tree logic is
not present, then use the developed
event probability.

Success - Use the complement of the developed
event

Use the complement of the developed event (i.e.,
one minus the probability specified for the top
event).

X

Failure - Use a developed event

Use a basic event (named the same
as the top event) instead of fault tree
logic. The user must specify the
failure probability of the top event.

Success - Use the “delete term”

Use the "delete term" process to eliminate failure
cut sets based on the event tree success
event(s). The “delete term” process looks for,
and removes, impossible cut sets from the
analysis.

Y

Failure - Use a developed event

Use a basic event (named the same
as the top event) instead of fault tree
logic. The user must specify the
failure probability of the top event.

Success - Use the complement of the developed
event

Use the complement of the developed event (i.e.,
one minus the probability specified for the top
event).

 158

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Any combination of top events with process flags could be used as needed. But,
care should be taken since some combinations of process flags could result in
questionable results.

♦ The " " (space) process flag gets the most use since this is the default flag.

♦ The “I” process flag is used when the analyst wants to see the success basic
events in the cut sets.

♦ The “Y” process flag is used when the analyst only wants to use a split fraction
for the top event. Note that in the next section, the “large event tree
methodology,” we will demonstrate a technique for using split-fractions for each
top event in the event tree.

♦ The “W” and “X” process flags are not used that often when solving sequence
cut sets.

9.3. Process Flag Example
Once the process flags have been defined for the top events, sequence cut sets are
then solved by highlighting the event tree(s) of interest in the Event Tree panel, right
clicking and selecting Solve.

♦ The LOSP event tree will be used to demonstrate how process flags operate.

◊ Modify the process flag via a change set (section 2.4) for both CCS and
ECS to Y. Also, set the CCS and ECS developed events to a probability
of 2.53E-2 (representing the individual system failure probabilities).

Example:
If an event tree top event is treated as a basic event (via
the Y process flag) but is not independent of other top
events, it is possible to obtain non-conservative results
due to double counting of basic events.

 159

SAPHIRE 8 Advanced Idaho National Laboratory

When both top events CCS and ECS have their process flags set to Y, the sequence
cut set solve option will yield the cut sets below for LOSP.

♦ Now, modify the process flag (via a second change set) for both CCS and ECS.

First, set CCS to a process flag of I and then set ECS to a process flag of Y.
Also, set the ECS developed event to a probability of 2.53E-2.

♦ Generate the sequence cut sets. Sequence 2 cut sets are shown below.

 160

SAPHIRE 8 Advanced Idaho National Laboratory

Notes:
♦ The original frequency (i.e., calculated without process

flags) for sequence 2 was found to be 5.81E-2 (truncation
at 1.0E-8)

♦ There is a large difference between the sequence 2
frequency calculated with process flags and the original
sequence frequency.

♦ Not accounting for the dependencies between ECS and
CCS results in a non-conservative sequence frequency.

 161

SAPHIRE 8 Advanced Idaho National Laboratory

9.4. Flag Sets and Sequence Cut Set Generation

First, let us present a brief review of Flag Sets.

♦ Flag Sets are a special type of change set. SAPHIRE will keep flag sets
separate from change sets by specifying it as a flag set. Flag sets are created
under Project → Flag Sets menu which opens the Flag Set List, then select
Add Flag Set from the drop down menu and click Go. The Flag Set Editor looks
similar to the change set editor.

♦ Flag Sets can only contain individually selected changes. No "Class Changes"
are allowed in a Flag Set.

♦ Flag Sets are used to indicate modifications to particular events on a sequence-
by-sequence basis (or to events in specific fault trees).

♦ The probability of failure may not be changed in a Flag Set.

When generating sequence (or fault tree) cut sets, Flag Sets are used for one of two
purposes.

♦ Setting house events, basic event, or top events to TRUE, FALSE, or IGNORED.

♦ Modifying the top event Process Flags from its default condition.

Therefore, Flag Sets can only contain house event changes (T, F, or I) to the calculation
type or changes to the Process Flag (space, I, W, X, or Y).

♦ To make a Flag Set:

◊ Open the Flag Set Editor and name the Flag Set using 24 or less
 characters in length.

◊ Click the event to be modified, drag and drop it into the Singles area of
 the Flag Set Editor.

 162

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Modify either the calculation type or the process flag.

♦ Continue to add events and modify in the same manner until finished.

♦ To use a Flag Set after it has been created the Flag Set name must be assigned
to a sequence or sequences.

♦ To assign the Flag Set to a sequence

◊ Highlight the accident sequence after the event tree has been expanded,
right click and select Edit Properties.

◊ Click the drop down box next to the “Default Flag Set:” option and select
the Flag Set from the list of created flag sets.

To illustrate the use of Flag Sets, the DEMO project will be used.

♦ Create a Flag Set named "PICK-UP-

SUCCESS"

◊ In this Flag Set, set the process flag
for top event CCS was changed to a
value of I.

♦ Assign the Flag Set "PICK-UP-SUCCESS"

to LOSP sequence 2.

 163

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The resulting cut sets for LOSP sequence 2 are shown here. Notice that

success cut sets from the CCS logic now appears in the list of cut sets.

♦ Assigning Flag Sets to individual sequences this way is not recommended, since
the event tree logic could change or just opening the event tree and saving it will
cause the event tree to generate new sequence logic and the Flag Set would no
longer be utilized by that specific sequence.

 164

SAPHIRE 8 Advanced Idaho National Laboratory

9.5. “Dynamic” Flag Sets and Sequence Cut Set
Generation

“Dynamic” Flag Sets are a special type of Flag Set that is assigned to sequences by the
use of event tree rules. “Dynamic” Flag Sets are named such since the flag set is
created “on-the-fly” based upon a special type of Linking Rule. Also, existing Flag Sets
can be assigned using event tree linking rules.

♦ A Dynamic Flag Set is assigned to a sequence(s) if the search criteria in the rule

are met.

♦ The advantages of using Dynamic Flag Sets are:

◊ If event tree logic changes are made (e.g., sequences are added or
deleted), then the proper flag sets will be applied to new sequences
automatically. Otherwise, the analyst would have to manually assign flag
sets to the applicable accident sequences.

◊ The flag set does not first need to be created. Instead, a rule can be
used to change a calculation type to TRUE, FALSE, or IGNORE.

♦ Dynamic Flag Sets are treated the same as Flag Sets when solving cut sets. For
example, changes can only be specified to individual basic events (i.e., no class
changes).

♦ No probability changes can be made with Dynamic Flag Set.

♦ Dynamic Flag Sets can only contain house event changes to the calculation type
for an event.

Type of Change Allowable Values

Calculation type
T (TRUE)
F (FALSE)
I (IGNORE)

♦ Dynamic Flag Sets will appear in the list of Flag Sets after the flag set rule is

applied. However, the name given to a Dynamic Flag Set is in a form such as
ET-000001-000001. This name is based upon the event tree, sequence name,
and number of Dynamic Flag Sets already created.

 165

SAPHIRE 8 Advanced Idaho National Laboratory

9.5.1. "Dynamic Flag Set" Rule Nomenclature and
Structure

Dynamic Flag Set rules are created by using the Linking Rule editor (see Section 4).

If linking rules are written for Dynamic Flag Sets, SAPHIRE searches the event
tree logic for the search criteria specified in the rule and assigns the Dynamic
Flag Set to sequences as dictated by the rule. This process takes place only
during the “link” step (see Section 4.1).

Dynamic Flag Set Rule Structure (Example 1 – Setting an event to TRUE)

| The “if-then” rule structure for creating Dynamic Flag Sets:
| This rule sets E-MOV-CC-A and E-PUMP-FR-A to TRUE only if top event ECS
| fails in the LOSP event tree sequence.

if ECS then
 Eventree(LOSP) = True(E-MOV-CC-A, E-PMP-FR-A);
endif

| The rule above could have set the basic events in parenthesis to house events
| FALSE or IGNORE by replacing True with either False or Ignore, respectively.

Therefore, either rule below will append a Flag Set to the same sequence, which
in this case is any sequence that has an initiator named “IE-NAME.”

 if Init(IE-NAME) then
 Eventree(main event tree) = True(event1);
 endif
or
 if init(IE-NAME) then
 Eventree(subtree) = True(event1);
 endif

Note:
The Dynamic Flag Set is designed to assign a Flag Set to the sequence
meeting the search criteria even if the specified event tree transfers to a
subtree.

 166

SAPHIRE 8 Advanced Idaho National Laboratory

9.6. Dynamic Flag Set Keywords and Nomenclature
Each of the “rules” in SAPHIRE (e.g., linking, post processing, and partition) has their
own nomenclature. The table below lists the keywords available for Dynamic Flag Set
rules.

Keyword or
symbol

Definition

Usage

if then

Keyword that indicates search
criteria is being specified.

if "search criteria" then
 perform some action on the sequence;
endif

endif

Keyword that indicates the end of
a particular rule.

if "search criteria" then
 perform some action on the sequence;
endif

else

Keyword that specifies some
action to be taken if all the search
criteria are not met. The else
should be the last condition in the
post processing rule.

if "search criteria" then
 perform some action on the sequence;
else
 perform some other action on the sequence if
the search criteria not met;
endif

elsif

Keyword that specifies an
alternative search criteria. Any
number of elsifs can be used
within a post processing rule.

if "search criteria" then
 perform some action on the sequence;
elsif "2nd search criteria" then
 perform some other action on the sequence;
elsif "3rd search criteria" then
 perform some other action on the sequence;
endif

always

Keyword that indicates that every
sequence that is being evaluated
satisfies the search criteria.

if always then
 perform some action on the sequence;
endif

init()

Keyword used in the search
criteria to indicate that a sequence
has a particular initiating event.

if init(INITIATOR-NAME) * "other search criteria if
needed" then
 perform some action on the sequence;
endif

~

Symbol used in the search criteria
to indicate that a particular system
will not be in the sequence that is
being evaluated.

if (~SEARCH-CRITERIA) * "other search criteria if
needed" then
...
The search criteria will be satisfied for all
sequences that do not contain SEARCH-
CRITERIA (and also contains the optional "other
search criteria"). SEARCH-CRITERIA may be an
initiating event, fault tree, or macro.

 167

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Usage

/

Symbol used to represent a
complemented event (i.e., the
success of a system).

if (/SYSTEM) * "other search criteria" then

The search criteria will be satisfied for all
sequences that contain the complement of
SYSTEM (and also contains the optional "other
search criteria").

|

Symbol used to represent a
comment contained in the rules.
Everything on a line to the right of
this symbol will be ignored by the
rule compiler.

| Place your comments here!

| Note that blank lines are also permissible!

;

Symbol to indicate the end of a
macro line or a line that modifies
the cut set being evaluated.

| usage for a macro command
MACRO-NAME = "search criteria" ;

*

Symbol to indicate the logical
AND command.

if SEARCH-CRITERIA1 * SEARCH-CRITERIA2
then

The search criteria will be satisfied for all
sequences that match SEARCH-CRITERIA1 and
SEARCH-CRITERIA2. The SEARCH-CRITERIA#
may be an initiating event, fault tree, or macro.

+

Symbol to indicate the logical OR
command.

if CRITERIA1 + CRITERIA2 then

The search criteria will be satisfied for all
sequences that match either CRITERIA1 or
CRITERIA2. The CRITERIA# may be an initiating
event, fault tree, or macro.

()

Symbols to indicate a specific
grouping of items.

if (A + B) * (C + D) then

The search criteria above would return all
sequences that contain:
[A * C], [A * D], [B * C], or [B * D].

True() Keyword to construct a Flag Set
where the identified basic events
(in parenthesis) are set to TRUE
for the applicable sequence.
Multiple basic events should be
separated using commas.

if “search criteria” then
 eventree(ET-NAME) = True (EVENT1,
 EVENT2, EVENT3, …);
endif

 168

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Definition

Usage

False() Keyword to construct a Flag Set
where the identified basic events
(in parenthesis) are set to FALSE
for the applicable sequence.
Multiple basic events should be
separated using commas.

if “search criteria” then
 eventree(ET-NAME) = False (EVENT1,
 EVENT2, EVENT3, …);
endif

Ignore() Keyword to construct a Flag Set
where the identified basic events
(in parenthesis) are set to
IGNORE for the applicable
sequence. Multiple basic events
should be separated using
commas.

if “search criteria” then
 eventree(ET-NAME) = Ignore (EVENT1,
 EVENT2, EVENT3, …);
endif

Flag() Keyword to assign an existing
Flag Set to sequences meeting
the search criteria.

if “search criteria” then
 eventree(ET-NAME) = Flag (FS-NAME);
endif

Endstate()

Keyword to assign a sequence
meeting the search criteria to a
particular end state.

If “search criteria” then
 eventree(ET-NAME) = endstate(ES-NAME);
endif

MACRO

A macro is a user-definable
keyword that specifies search
criteria. The macro name must be
all upper-case, must be 16
characters or less, and must not
include any of the restricted
characters (e.g., a space, *, ?, \,
/). The macro line can wrap
around to more than one line, but
must end with a semicolon.

MACRO-NAME = SEARCH-CRITERIA;
if MACRO-NAME "and other search criteria" then
 perform some action...;
endif

|Macros are only applicable in the |particular rule
they are entered into

9.6.1. To make a Dynamic Flag Set

♦ Enter the Event Tree list panel. Highlight the event tree, right click the mouse,
and select Edit Linkage Rules.

♦ Using the rule structures discussed above, construct a rule that will modify a
basic event.

♦ Generate event tree sequences by: saving the event tree – SAPHIRE
automatically links the event tree or highlighting the event tree, right click the
mouse, and select Link Trees. When asked, select the applicable output option
and click OK.

 169

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The event tree sequences are now ready to be analyzed in the Sequence menu
 option.

To illustrate the use of Dynamic Flag Sets, the DEMO project will be used

♦ A rule was entered to set S-DGN-FR-A and C-PMP-FR-B to a house event

FALSE only if CCS fails in the LOSP event tree. The Link rule looks like:

 if CCS then
 Eventree(LOSP) = False(S-DGN-FR-A, C-PMP-FR-B);
 endif

♦ The Dynamic Flag Set will append itself to sequences meeting the rule search
criteria. For this rule, only Sequence 3 will have the Flag Set associated with it
since CCS fails only within this sequence.

♦ The resulting cut sets for Sequence 3 are shown below. Notice that basic events
S-DGN-FR-A and C-PMP-FR-B do not show up in the cut sets.

Note:
Event tree sequences must be generated for the Dynamic Flag Set to be
appended to the sequence. The Dynamic Flag Set will automatically be
assigned to the sequence without having to manually modify the sequence.

 170

SAPHIRE 8 Advanced Idaho National Laboratory

9.7. Hierarchical Flag Set Applications
Hierarchical flag sets are created when event tree sequences are generated when the
event trees transfer from one event tree to another and both event trees contain flag
sets. This operation is required when external events are added to models and flag
sets are created for sub-event trees, which are necessary for the accident sequences to
be analyzed correctly.

Example of this type of flag set:

♦ A new event tree is added to the project (assume Fire event tree), which requires
certain basic event settings. This event tree then transfers to an existing event
tree (assume LOOP), which has a pre-existing flag set

♦ The new event tree requires a flag set to set basic events; HE-FIRE and OEP-
XHE-XL-NREC to TRUE, so a flag set is created and applied to this new event
tree. Create the linkage rule for the fire event tree

if always then
 eventree(FIRE) = Flag(FIRE-FLAG);
endif

♦ The LOOP event tree already contains a flag set to analyze that event tree.
Instead, of creating a super flag set manually, SAPHIRE will now create the
hierarchical flag set automatically and append the two flag sets together.

if always then
 eventree(LOSP) = Flag(LOSP-FLAG);
endif

♦ Now when the FIRE event tree is linked the two different flag sets will be
combined to create the hierarchical flag set with a unique name based on the
names of the two individual flag sets (HFS-FIRE-FLAG-LOOP-FLAG).

This flag set looks like:

 171

SAPHIRE 8 Advanced Idaho National Laboratory

9.8. Other Rule Based Flag Set Applications
Previously created Flag Sets can be assigned to specific sequence via use Link Rules.
This performs the same option as “Dynamic” Flag Sets except the user has provided a
specific name and specific combinations of basic events.

Dynamic Flag Set Rule Structure (Example 2 – Using an existing Flag Set)

| The “if-then” rule structure can be used to assign an existing Flag Set to a
| sequence.
| Note that the Flag Set must be created prior to solving by using the
| Modify → Flags option. (This is the predominate way Flag Sets are used.)
|
| This rule adds the Flag Set “FLAG-SET-1" to the sequence(s) that meets
| the criteria specified (failure of ECS).
|
if ECS then
 Eventree(LOSP) = Flag(FLAG-SET-1);
endif

 172

SAPHIRE 8 Advanced Idaho National Laboratory

9.9. Steps Used by SAPHIRE to Solve Sequences
SAPHIRE is designed to solve for minimal cut sets. The cut set solve process can
occur for both sequences and fault trees. For sequences, several different methods
exist.

♦ Sequence cut set solving for the “fault tree linking” approach.

◊ Cut set generated using fault tree logic and "cut set matching" (i.e.,
delete term) method. This is the standard technique.

◊ Cut set generated using fault tree logic while solving sequence Boolean
logic.

◊ Cut set generated using existing fault tree cut sets. This method is not
used very often.

♦ Sequence cut set solving for the “large event tree” approach.

Additional technical details on cut set generation are contained in NUREG/CR-6116,
Volume 1, Technical Reference Manual.

 173

SAPHIRE 8 Advanced Idaho National Laboratory

Sequence Cut Set Solving Using Fault Tree Linking (“Cut Set Matching”)

 174

SAPHIRE 8 Advanced Idaho National Laboratory

Sequence Cut Set Solving Using Fault Tree Linking (Solve Full Logic)

Sequence Cut Set Solving Using Large Event Tree Method

 175

SAPHIRE 8 Advanced Idaho National Laboratory

9.10. Example of Sequence and Fault Tree Flag Sets
for Cut Set Solving

The example in this subsection will illustrate how to model changes in logic
dependencies when analyzing event tree accident sequences. Two potential ways to
handle a change in logic dependency include:

1. Use multiple fault trees

2. Use fault tree and sequence flag sets

Both methods are discussed in this section with an emphasis on how SAPHIRE handles
logic changes based upon fault tree and sequence flag settings.

If a given sequence contains a flag set and a fault tree in that sequence has a flag set,
the fault tree flag set takes precedence over the sequence flag set.

The following event tree will be used to illustrate this example.

Sequences 3 and 5 contain a sequence flag set (FLAG-SEQ). This flag set changes
events LOSP-A and LOSP-B to TRUE.

Note:
Both fault tree and sequence flag sets can be used simultaneously when
analyzing event tree accident sequences.

 176

SAPHIRE 8 Advanced Idaho National Laboratory

These house events force the emergency diesel generators (EDG) to supply ac power
to the auxiliary feedwater (AFW) and high pressure injection (HPI) pumps (in the fault
tree logic).

From the event tree structure, we can see that sequences 3 and 5 are different because
offsite power has been recovered (i.e., top event LOOP-REC) in sequence 3. The
success or failure of this top event requires different logic for the HPI system.

 177

SAPHIRE 8 Advanced Idaho National Laboratory

After failure of LOOP-REC (i.e., no recovery), the HPI pumps depend on the EDGs for
ac power. After success of LOOP-REC, the HPI pumps no longer depend on the EDGs
for ac power.

♦ Analysis of sequence 5 is straightforward because there is no logic dependency

change for the HPI pumps. Specifically, sequence 5 requires LOSP-A and
LOSP-B to be TRUE (EDGs are required since offsite ac power was not
recovered).

No special treatment is required to analyze this sequence, because the flag set
“FLAG-SEQ” already sets LOSP-A and LOSP-B to TRUE.

♦ Analysis of sequence 3 is more complicated because the logic dependency on ac
power for the AFW and HPI pumps varies.

The AFW pumps depend on the EDGs to supply ac power. However, the HPI
pumps do not depend on the EDGs because offsite ac power was recovered.

◊ The difficulty related to sequence 3 is due to the changing house event

settings for LOSP-A and LOSP-B.

 Sequence 3 requires the house events LOSP-A and LOSP-B be set to

TRUE in order for the EDGs to supply ac power to the AFW pumps. But,
this sequence also requires the house events LOSP-A and LOSP-B be set
to FALSE since the HPI pumps are no longer dependent upon the EDGs.
So, how do we model something as both TRUE and FALSE in the same
sequence?

♦ In risk and reliability assessment, there are two common methods that can be
used to ensure that the sequence is solved correctly.

1. We could create two HPI fault trees that are almost identical. One fault
tree (HPI-L) would transfer to the EDG fault trees for the required ac
power. The other fault tree (HPI) would not transfer to the EDG fault
trees, which assumes that EDGs are not needed in this mode. Note
though that the analyst would have to ensure that both HPI and HPI-L fault
trees are created, modified, and maintained. or;

2. We could use both sequence and fault tree flag sets when solving
accident sequences. To use this method, a flag set needs created that

 178

SAPHIRE 8 Advanced Idaho National Laboratory

sets LOSP-A and LOSP-B to FALSE (for HPI in accident sequence 3).
This new flag set would be assigned just to the HPI fault tree.

To implement the second approach, we can use the AFW and HPI trees, but we need to
create the HPI-L fault tree:

No flag set is assigned to HPI-L. HPI is assigned a flag set where LOSP-A and LOSP-B
are FALSE.

♦ Since HPI is a subtree in the HPI-L fault tree, the HPI flag set will not be used on

the HPI-L fault tree (flag sets are assigned only to the top gate). By using this
approach, only a single fault tree model is required to be maintained.

♦ Note that SAPHIRE applies sequence flag sets first then fault tree flag sets
second. Thus, fault tree flag sets will take precedence (since they will override
the sequence flags).

♦ When analyzing sequence 3, the house events LOSP-A and LOSP-B will be set
to TRUE for the AFW fault tree but will be set to FALSE for HPI. By having these
two different house event settings, the correct cut sets will be generated.

♦ When solving sequence 5, the house events LOSP-A and LOSP-B will use the
sequence flag set (i.e., they will be set to TRUE).

 179

SAPHIRE 8 Advanced Idaho National Laboratory

NOTES

 180

SAPHIRE 8 Advanced Idaho National Laboratory

 181

| 10 | EDITING CUT SETS

Section 10 describes the edit cut set option that allows you to manipulate cut sets based
on user-defined options. The edited cut sets may then be viewed or reported. The edit
cut set feature is available for fault tree, sequence, or end state cut sets.

SAPHIRE 8 Advanced Idaho National Laboratory

10.1. The Edit Cut Sets Option
The edit cut sets option is available in the Fault Tree, Event Tree, and End State list
menus.

Highlight the desired fault tree, event tree(s) [and/or sequences], or end states, right
click and select the Edit Cut Sets option.

As an example, the Edit Cut Set option will use the LOSP event tree cut sets. These cut
sets have been solved at a truncation of 1.0E-15.

From the LOSP event tree cut sets, the minimal cut set upper bound approximation
frequency is 5.988E-2 and there are a total of 332 cut sets.

 182

SAPHIRE 8 Advanced Idaho National Laboratory

The Edit Cut Set option screen lists all of the cut sets, which can be manipulated using
the many options provided. This screen allows the analyst to:

♦ Display the current case cut sets

♦ Display the nominal case cut sets (if they have been saved)

♦ Show the model type for the basic event (Show MT), show the phase for the
basic event (Show Phase), and expand all of the cut sets to show each of the
basic events and their information.

♦ The “Importance” button will provide the importance information for each
basic event that is in the current display.

♦ The current displayed cut sets can be saved to an user defined end state.

♦ The displayed cut sets can be published into one of the formats (html, rtf,
excel spreadsheet, or pdf).

 183

SAPHIRE 8 Advanced Idaho National Laboratory

10.1.1. The Modify Cut Set Options
The drop down option provides the list of modifications that can be applied to the
current displayed cut sets. Each option will be discussed along with the outcome of the
option.

 Apply Change Set

♦ The apply change set functions the same as the change set option. The difference
is this becomes a temporary change set that is applied the current display of cut
sets.

♦ Click the drop down option, select the Apply Change Set option and then select the

Go button .

♦ Drag and drop the basic event of interest into the Singles column and then make
the change of interest in the Values to be Applied column.

◊ For this example, the diesel generator B fails to run (S-DGN-FR-B) probability
will be increased by a factor of 10.

 184

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select Apply , the change set will be applied to the cuts.

 185

SAPHIRE 8 Advanced Idaho National Laboratory

 Truncation Level

♦ The truncation level allows the analyst to re-quantify the current cut sets at a new
higher truncation.

♦ Click the drop down option, select the Truncation Level option and then select the

Go button .

♦ For this example, the truncation level was increased to 1.0E-05 versus the default
of 1.0E-15. This display option shows the value of the minimum cut set.

 186

SAPHIRE 8 Advanced Idaho National Laboratory

 Quantification Method

♦ The quantification method provides the analyst the option to use the minimal cut
sets upperbound approximation or rare event approximation on the currently
displayed cut sets.

♦ Click the drop down option, select the Quantification Method option and then select

the Go button .

♦ For this example, the quantification was changed to rare event. This display option
shows the value of the minimum cut set.

 187

SAPHIRE 8 Advanced Idaho National Laboratory

 Post-Processing Rules

♦ The post-processing rules operate the same as discussed in Section 5. The
difference is this rule is temporary and will only be applied to the currently
displayed set of cut sets.

♦ Click the drop down option, select the Post-Processing Rules option and then

select the Go button .

♦ The rule is created in the same format as discussed in Section 5. Once the rule

has been created, select the compile option to make sure the rule is correct.

◊ For this example, a new basic event will be added every cut set that contains
diesel generator A fails to run and start (S-DGN-FR-A and S-DGN-FS-A).

◊ Select Apply , the change set will be applied to the cuts.

 188

SAPHIRE 8 Advanced Idaho National Laboratory

 Add, Modify, and Remove Cut Set

♦ These options work on individual cut sets. The analyst will select one of these
options and then highlight the cut set of interest. Select the Go button and
SAPHIRE will perform the requested option.

◊ The Add Cut Set option allows a new cut set to be added directly into the list
of cut sets.

◊ Since no Boolean reduction goes on (unless specified) any cut set can be
created by dragging an event from the list and placing it into the open field.
SAPHIRE will then calculate the cut set frequency (probability) and place it
into correct area depending upon sorted frequency (probability).

 189

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Select Apply , the change set will be applied to the cuts.

◊ The Modify Cut Set option allows an existing cut set to be modified (i.e., a
basic event removed or a recovery event added directly into the cut set.

◊ Since no Boolean reduction goes on (unless specified) any cut set can be
modified and create a non-minimal cut set.

◊ The following example will remove (S-DGN-FR-A) from the cut set of interest.

 190

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Highlight the cut set and from the drop down option select Modify Cut Set and
select Go.

◊ Highlight the basic event that needs to be deleted from the cut set and then
right mouse click and select from the pop-up menu “Delete”.

◊ Select Apply , and the newly modified cut set will now show up in
the cut set list at the sorted frequency (probability).

 191

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The Remove Cut Set option removes the selected cut set from the displayed
set of cut sets.

◊ Highlight the cut set that needs to be removed from the list and select
Remove Cut Set from the drop down menu.

◊ Select the Go button and the cut set will be removed from the list.

 Slice and Invert Slice Cut Sets

♦ The slice option work allows the analyst to parse the displayed cut sets up into
different groups based on search criteria. The invert slice option will then display
those cut sets that did not meet the search criteria.

◊ The Slice Cut Set option will create a new group of cut sets based on the
search criteria.

 192

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click the drop down option, select the Slice option and then select the Go

button .

◊ The cut sets can be parsed based on different cut off options:

1. Top X Cut Sets (i.e., top 10 dominant cut
sets)

2. Top Y % (i.e., top 90 percent dominant cut
sets)

3. Value (cut sets that have a frequency
(probability) greater than some specified
value [i.e., cut sets greater than 1E-5])

4. % Contribution (those cut sets that
contribute greater than some specified
value to the overall [i.e., cut sets
contribute greater than 5 percent])

5. Size (cut sets that contain at least that
number of basic events or less [i.e., size
of 3 will display only cut sets that have 3
or fewer basic events])

◊ The cut sets can be parsed by an individual basic event

 193

SAPHIRE 8 Advanced Idaho National Laboratory

◊ For this example, the C-PMP-(all) components are selected and will be
parsed into one group of cut sets.

◊ The invert cut sets can now be displayed. This option will list all those cut
sets that did not meet the search criteria (i.e., all cut sets that do not contain
C-PMP-(all)).

 194

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The display option keeps a running list of the modified cut sets. The analyst
can now move from one modification to another by selecting the Tab of
interest.

Re-minimalize Cut Sets

♦ The Re-minimalize option will take the displayed cut sets and perform Boolean
algebra on these cut sets. This option may be required depending upon which
editing option was performed.

◊ The Re-minimalize Cut Set option will remove non-minimal cut sets (based
on the existing list not taking into account the sequence information [i.e.,
success logic]).

 195

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Importance measures for the displayed set of cut sets can be generate. Select the
importance button on the bottom and the basic events that are shown in the
displayed set of cut sets will have their importance measures calculated.

 196

SAPHIRE 8 Advanced Idaho National Laboratory

 197

| 11 | GENERAL ANALYSIS FOR
SENSITIVITY STUDIES

Section 11 discusses the General Analysis workspace. When compared to the Change
Set method presented above and in the SAPHIRE Basics manual, General Analysis is
more versatile for logic changes made to Fault Trees and Event Trees and less versatile
for Basic Event changes. General Analysis is the only way to temporarily change the
logic of Fault Trees and Event Trees. The Basic Event data is limited to changing the
basic event probability and does not allow changes to the failure model for the event.

11.1. General Analysis Example
General Analysis is found in the Workspaces List Panel. To start a new General
Analysis, perform the following:

♦ Double click on New Analysis… under General Analysis in the Workspaces List
Panel. Alternately, right click on New Analysis… and choose Open from the
pop-up.

♦ The General Analysis worksheet will open with lists of Basic Events, Fault Trees,
and Event Trees. The DEMO General Analysis worksheet is shown here:

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Choose the Basic Events, Fault Trees, and Event Trees for modification by
clicking on the appropriate check boxes. In this example, we will modify Basic
Event E-MOV-CC-1 and the LOSP Event Tree

♦ Click on to proceed

♦ The General Analysis Editing worksheet will appear.

◊ Editing buttons are available on this screen for the items selected for edit
on the prior worksheet. The image below shows E-MOV-CC-1 after
selection by clicking on Edit. The basic event’s probability is changed to
1.00E-2.

♦ Perform the change shown on the probability of E-MOV-1 to 1.00E-2 and then
click on the Edit Logic button for the LOSP Event Tree. The Event Tree
graphical editor will appear.

♦ Remove the SMALL-RELEASE branch for Containment Cooling System by right
clicking on the branch node and selecting Delete.

 198

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Remove the Containment Cooling System top event by right clicking on the top
event box and selecting Delete.

♦ Close and save the Event Tree editor. It should just have one top event,
Emergency Cooling System with a single branch. The lower branch should be
LARGE-RELEASE.

♦ Click and the General Analysis Solve Worksheet will appear. Selections
here can be made for what items to solve, their truncation values and the method
of solving. A Single pass solution is faster for large models, but less accurate
overall. In the case of DEMO model, the Multiple pass solution is desirable. It is
ok to use all the defaults as shown:

 199

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Click on and then OK on the confirmation message to perform the
analysis.

♦ The results screen will show the Min Cut for the LOSP event tree. View the Fault
Trees list panel by clicking on the to the right of the Fault Tree menu.

♦ Right clicking on LOSP or The ECS Fault Tree will provide options to view the
modified cut sets, uncertainty and importance measures through summary
results or cut set lists.

 200

SAPHIRE 8 Advanced Idaho National Laboratory

 201

SAPHIRE 8 Advanced Idaho National Laboratory

NOTES

 202

SAPHIRE 8 Advanced Idaho National Laboratory

 203

| 12 | MUTUALLY EXCLUSIVE
EVENTS

Section 12 presents the topic of mutually exclusive events. A review of mutually
exclusive events is provided along with methods to remove these events from SAPHIRE
PRA results.

SAPHIRE 8 Advanced Idaho National Laboratory

12.1. Mutually Exclusive Events Introduction
The term "mutually exclusive events" refers to two or more basic events that appear in a
single cut set which should not appear together.

♦ Technical specifications or other facility restrictions may prevent two or more
components from being tested or in maintenance at the same time.

♦ Other general logic modeling concerns may lead the analyst to remove specific
combinations of events.

♦ A component cannot be both failed and working (success) in the same cut set.

Most mutually exclusive groups include only two or more components.

An analyst may recognize "up-front" that mutually exclusive event combinations will
appear just by knowing how the fault or event tree logic modeling was performed.

♦ Other unrecognized mutually exclusive events may not be evident until the

analyst solves and evaluates the fault tree or sequence cut sets.

12.1.1. Mutually Exclusive Event Example
The fault tree logic below will produce a cut set containing the two maintenance events

S-DGN-TM-A * S-DGN-TM-B

Assuming that the facility procedures restrict both diesel generators from being in
maintenance simultaneously while at power; this cut set is an example of mutually
exclusive events.

DGS-FAIL

Both DGs Fail

DG-A-FAIL

Diesel Generator A Fails

2.1130E-02S-DGN-FR-A

Diesel Generator A Fails to Run

4.0000E-03S-DGN-FS-A

Diesel Generator A Fails to Start

1.2000E-02S-DGN-TM-A

Diesel Generator A in
Maintenance

DG-B-FAIL

Diesel Generator B Fails

2.1130E-02S-DGN-FR-B

Diesel Generator B Fails to Run

4.0000E-03S-DGN-FS-B

Diesel Generator B Fails to Start

1.2000E-02S-DGN-TM-B

Diesel Generator B in
Maintenance

 204

SAPHIRE 8 Advanced Idaho National Laboratory

There are different methods to remove cut sets containing mutually exclusive events.
Two methods are discussed below, in order of increasing preference:

♦ Modify logic models (via NOT gates or complemented events) to remove
prohibited combinations of events.

♦ Using the Post-processing Rules to define combinations of events in cut sets that
would be deleted (via the DeleteRoot keyword).

Let us discuss these methods in turn.

12.1.1.1. Logic modification method

This method requires that the analyst modify the fault tree logic in order to
remove excluded combinations of events. An example of the “modified” example
fault tree is shown below. Drawbacks to the “logic modification” method include:

1. The effort needed to modify the fault tree logic

2. The fact that complemented basic events (i.e., success event) will appear
in the list of cut sets.

DGS-FAIL

Both DGs Fail

DG-A-FAIL

Diesel Generator A Fails

2.1130E-02S-DGN-FR-A

Diesel Generator A Fails to Run

4.0000E-03S-DGN-FS-A

Diesel Generator A Fails to Start

DGS-FAIL03

1.2000E-02S-DGN-TM-A

Diesel Generator A in
Maintenance

9.8800E-01S-DGN-TM-B

Complement of: Diesel
Generator B in Maintenance

DG-B-FAIL

Diesel Generator B Fails

2.1130E-02S-DGN-FR-B

Diesel Generator B Fails to Run

4.0000E-03S-DGN-FS-B

Diesel Generator B Fails to Start

DGS-FAIL13

1.2000E-02S-DGN-TM-B

Diesel Generator B in
Maintenance

9.8800E-01S-DGN-TM-A

Complement of: Diesel
Generator A in Maintenance

 205

SAPHIRE 8 Advanced Idaho National Laboratory

12.2. Mutually Exclusive Event Removal via Post-
processing Rules

Post-processing Rules, discussed in Section 5, are heuristics which allow the user to
define groups of events that, if appearing together, results in the deletion of the cut set.

Mutually exclusive rules may be specified for either fault trees or sequences.

During cut set generation, the post-processing rules may be automatically applied.
Thus,

♦ No changes to logic models are needed.

♦ No manual manipulations to cut sets are required.

The rules for removing mutually exclusive events may be developed for a single fault
tree; all fault trees, a single sequence, a single event tree, or all sequences.

Apply or edit the FAULT TREE Post-processing Rules:
♦ To edit the Post-processing Rules for a particular fault tree, highlight the fault tree

name in the Fault Trees list panel, right click the mouse and select Edit Post-
processing Rules.

♦ To edit the Post-processing Rules for all fault trees, select from the project main
menu Project → Edit Rules → FT (Post-processing).

Apply or edit the Event Tree Post-processing Rules:
♦ To edit the Rules for a particular event tree, highlight the event tree name in the

Event Trees list panel, right click, and select Edit Post-processing Rules.

♦ To edit the Post-processing Rules for all sequences, select from the project main
menu Project → Edit Rules → ET (Post-processing).

 206

SAPHIRE 8 Advanced Idaho National Laboratory

To demonstrate the uses of the Post-processing Rules, the example below shows how
the rules can be used to remove the cut set containing both diesel generators failing to
start from the DEMO project. Add a rule for the LOSP event tree Post-processing
Rules as follows:

 | This rule searches for both diesel generators failing
 if S-DGN-TM-A * S-DGN-TM-B then
 DeleteRoot; | Delete the cut set matching the search criteria
 endif

Apply this Post-processing Rule when we solve the LOSP event tree for sequence cut
sets (using no truncation).

 207

SAPHIRE 8 Advanced Idaho National Laboratory

Compare cut sets for sequence 3:

Sequence 3 changed from an original value of 3.688E-3/yr to a value of 3.357E-3/yr.

 Note: Only one cut set was removed from sequence 3, but it happened
to be the 4th dominant cut set.

 208

SAPHIRE 8 Advanced Idaho National Laboratory

 209

| 13 | USING MODEL TYPES

Section 14 introduces the different model types that can be used in SAPHIRE. Model
types are designed to contain different failure potentials for components and different
modeling options for user defined assessments. The following section will discuss the
development of model types and how these can be used for evaluating seismic, fire,
flood and user defined types.

13.1. User Defined Model Type

♦ To add a new Model Type, select Project → Model Types and click the Go

option with the Add Model Type drop down option selected.

♦ Type in the Model Type and provide this model type with an ID, which will be

used when displaying the basic events in cut sets, etc. Then specify a
description and color for the model type.

SAPHIRE 8 Advanced Idaho National Laboratory

♦ This newly added model type (EXAMPLE) can now be developed.

♦ The event tree(s) fault tree(s) are developed as discussed in the SAPHIRE
Basics manual.

♦ The difference in developing a new model type versus the default Random model
type is selecting this model type for each specific event. This is how SAPHIRE
knows where to segregate the information for specific analyses.

13.1.1. Logic Models

♦ Event tree

◊ The event tree is developed as discussed in the SAPHIRE Basics
manual. Start with the initiating event and then identify the systems (tops)
needed to respond.

◊ The initiating event will be stored in the basic event listing and needs to
be modified to specify which susceptibilities (model types) it is available
for when performing analyses.

♦ Fault tree

◊ The fault tree is developed as discussed in the SAPHIRE Basics manual.

◊ The basic events (components and human errors) will be stored in the
basic event listing and need to be modified to specify which
susceptibilities (model types) it is available for when performing
analyses.

◊ The fault tree shown below shows the colors specified for Random model
type. The colors will change once the basic event is specified as an
EXAMPLE model type.

 210

SAPHIRE 8 Advanced Idaho National Laboratory

13.1.1. Basic Event Modifications

♦ Initiating event

◊ To modify the initiating event, select it in the Basic Event list panel and
then double click or highlight the initiating event, right click the mouse
and select Edit Basic Event.

◊ Specify the frequency to be used for this event and uncertainty
information and then select the Applicability Tab.

◊ Under the Applicability tab, check the EXAMPLE model type, this tells
SAPHIRE that this event can be evaluated in this model type (to uncheck
the Random option, uncheck the phase_1 option and SAPHIRE will
correctly update the information).

MT-EX-TOP1

System 1 (Model Type)

MT-EX-TOP12

2.0000E-01MT-EX-COMP2

Component 2

2.0000E-01MT-EX-COMP3

Component 3

5.0000E-03MT-EX-COMP1

Component 1

7.0000E-04MT-EX-OPERATOR

Operator action 1

 211

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Basic events

◊ To modify the basic events, select the basic event of interest in the Basic
Event list panel and then double click or highlight the initiating event,
right click the mouse and select Edit Basic Event.

◊ Select the Applicability tab and check EXAMPLE model type. If this
basic event (component or human action) is susceptible to the RANDOM
model type, leave this model type checked.

◊ Now specify the specific failure probability for this basic event. A
different probability can be used for the EXAMPLE model type versus the
RANDOM model type. This allows for flexibility and specific type of
analyses.

 212

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The fault tree graphics can show the different susceptibilities of the basic events

◊ Under this view option, only one Model Type can be displayed. To
change the display from the default of Random, the fault tree must be
solved in that Model Type.

 213

SAPHIRE 8 Advanced Idaho National Laboratory

◊ or all the different Model Types can be viewed together by selecting File
→ View Expanded Model Types

13.2. Solve Logic Models Using New Model Type
13.2.1. Fault Trees

♦ Highlight the Fault Tree to be analyzed, then right click and select Solve.

♦ To solve the Fault Tree and have the results stored in the new Model Type
(EXAMPLE) in the Solve for Model Types column check the EXAMPLE box and
de-check the RANDOM box.

 214

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The truncation options work the same, except now the results will be stored in
the new Model Type field within SAPHIRE.

♦ The cut sets can be viewed by selecting the Cut Sets button on bottom of the
Results tab or with the Fault Tree highlighted right click and select View Cut Sets.

 215

SAPHIRE 8 Advanced Idaho National Laboratory

13.2.2. Event Trees

♦ Highlight the Event Tree to be analyzed, then right click and select Solve.

♦ To solve the Event Tree and have the results stored in the new Model Type
(EXAMPLE), check the EXAMPLE box in the Solve for Model Types column
and de-check the RANDOM box.

♦ The truncation options work the same, except now the results will be stored in
the new Model Type field within SAPHIRE.

♦ The cut sets can be viewed by selecting the Cut Sets button on bottom of the
Results tab or with the Event Tree highlighted, right click and selct View Cut
Sets.

 216

SAPHIRE 8 Advanced Idaho National Laboratory

♦ To show the Model Type, the Show MT button in the upper right hand corner
needs to be selected. SAPHIRE will then add [EX] at the end of each basic
event that is applicable to the Example Model Type. (SAPHIRE does not show
the model types unless this option is selected.)

13.3. FIRE and FLOOD Model Types

♦ The Fire and Flood Model Types are very similar to the EXAMPLE Model Type

just discussed.

♦ The Model Type is selected and the logic structures (event trees and fault trees)
are developed with specific information pertaining to these analyses types.

♦ The initiating event and basic events (components and operator actions) are
modeled the same as above except now the FIRE or FLOOD model type needs
to be selected along with these components failing randomly.

♦ There are no special calculations that must be done at this time; therefore, these
Model Types (analyses) can be handled and evaluated similarly to the EXAMPLE
defined Model Type.

 217

SAPHIRE 8 Advanced Idaho National Laboratory

13.4. SEISMIC Model Type

♦ The Seismic Model Type is a specific Model Type, which utilize built-in equations

to calculate the probability a component fails given a certain magnitude of
earthquake or greater. Therefore, SAPHIRE has specific calculation types for
this analysis.

♦ To set up the Seismic Model Type for analyses

◊ Add the new Model type as discussed above.

◊ Develop the logic structure (event trees and fault trees) as needed based
on plants response to a seismic event.

 218

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The seismic analysis can be done by setting up the components as a single
ground motion or develop a histogram of ground motions that allows for the
evaluation to account for all potential ground motions (frequency of occurrence)
at a particular plant.

◊ The initiating event needs to be identified as a seismic event in the
Applicability tab and the selection of either a single ground motion
event or a histogram. If a single ground motion is to be evaluated, then
just specify the exceedance frequency of that specific ground motion.
Otherwise, leave the frequency as 1.0 and SAPHIRE will use the
developed histogram.

◊ The seismic susceptible basic events need to be modified to include all
of their appropriate information.

◊ If the evaluation is only based on a single ground motion, then the basic
event’s calculation type is set to “G - User defined seismic g-level”.
Otherwise, select the “H - use maximum g-level from histogram”.

 219

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Once all of the basic events are designated with the appropriate calculation type,
the fault trees and/or event trees can be evaluated.

♦ Highlight the event tree, right click the mouse and select Solve.

 220

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The results from solving the SEISMIC event tree (using the histogram data input)
are listed below.

♦ To get the [EQU] to show up, click the Show MT
button .

♦ The cut sets above are based on using the
hazard curve input into SAPHIRE as a
histogram. Therefore, the initiating event
frequency is 1.0 and the basic events’
probabilities are based on the highest g-level
ground motion.

♦ To get result, an uncertainty analysis is required.

◊ To perform a seismic uncertainty analysis,
highlight the event tree, right mouse click
and select View Uncertainty  (Group
by Event Trees or Single Sequence)
[depending upon final result needed].

◊ Input the necessary parameters, # of Samples, Random Seed #, Monte
Carlo or Latin Hypercube and then which seismic bin or all combined to
get the overall result.

 221

SAPHIRE 8 Advanced Idaho National Laboratory

◊ Click the Calculate button and SAPHIRE will perform the sampling from
the hazard curve and basic events to give an overall result.

♦ To analyze a single ground motion, this can be achieved two different ways:

◊ The exceedance frequency needs to be manually put into the initiating
event at that specific ground motion and all of the basic events failure
model needs to be set to a G: ground motion calculation type and the
specific g-level ground motion is specified. Then solve the event tree and
the results will reflect that information.

◊ The uncertainty analysis allows for specific bins to be analyzed. Select
the bin that pertains to a specific ground motion and perform the
uncertainty analysis.

 222

SAPHIRE 8 Advanced Idaho National Laboratory

 223

| 14 | THE LARGE EVENT TREE
METHODOLOGY

Section 15 describes the "large event tree" methodology and how SAPHIRE can be
used to evaluate sequences using this approach. The options that allow truncation of
sequences during the process of linking event tree sequences and other options related
to analyzing large event trees are presented.

SAPHIRE 8 Advanced Idaho National Laboratory

14.1. Large Event Tree Methodology Introduction
There are two basic approaches for accident sequence quantification:

1. Fault-tree linking (covered in the SAPHIRE Basics, demonstrated in the
DEMO project, and described in previous sections).

2. Large event tree methodology (also called "event trees with boundary
conditions").

Characteristics of the large event tree methodology include:

♦ Important support systems are modeled as top events in the event trees rather
than being contained in the "frontline system" or "plant response system" fault
trees.

This type of modeling accounts for shared dependencies in the plant response
system fault trees, and the plant response system fault trees are quantified
based on the status of the support systems. This quantified probability is known
as the top event split fraction.

♦ The paths through the event tree (i.e., sequences) can be quantified by
multiplying the split-fractions along the path because the top events are
independent (i.e., their dependencies are accounted for in the split fraction
values).

This multiplication is in contrast to the fault-tree linking approach, where simply
multiplying the branch probabilities together may yield incorrect results because
of the potential for double-counting component failures (i.e., a component that
appears in more than one of the systems in a particular sequence).

♦ The split-fraction for each branch point in the model is derived from a fault tree
that applies to the branch point.

The successes and failures on the path leading to that branch point (which define
the "boundary conditions" for the system fault tree) must be recognized when the
fault tree is developed and solved. The resulting "split-fraction" is conditional
upon the path through the event tree.

This is in contrast to the fault-tree linking approach which usually has only one
fault tree that corresponds to a particular top event.

♦ The split-fractions underneath the top event are assigned by using the "Link

Event Tree" rules to specify the particular fault tree that corresponds to the
branch point.

 224

SAPHIRE 8 Advanced Idaho National Laboratory

♦ Each path through the event tree (i.e., sequence) is characterized by the initiating
event and by the combination of failed and successful systems in the path.
Success branch probabilities are retained along with the failed branch
probabilities for the sequence.

In SAPHIRE, the sequence is stored as a single "cut set" even though the term
"cut set" implies retaining only the failed branch probabilities.

Important features of the large event tree approach (with regard to model construction
and use) are:

♦ The sharing of support system event trees with different plant response event

trees, depending on the initiating event. (Described in the next section)

♦ The use of the "Link Event Tree" rules to assign split-fractions. (Described in
Sections 4 and 14.4.)

♦ The use of multiple-split branching in the event tree, such as 3-split or 4-split
branching. (Described in Sections 4 and 14.4.)

♦ The use of truncation when linking event trees because of the large number of
sequences that could be generated. (Described in Section 14.5.)

 225

SAPHIRE 8 Advanced Idaho National Laboratory

14.2. Large Event Trees (i.e., Initiating Event Trees,
Support System Event Trees, and Plant
Response Event Trees)

♦ Event trees for the large event tree methodology contain all of the independent
components as individual top events. Because of this modeling practice, these
event trees can become very large and very complicated. Therefore, these event
trees are separated into distinct separate event trees that represent the different
systems required to mitigate events.

♦ The LOSP event tree in the DEMO project is modified to show how a large event
tree would be created based on the simple systems. The event tree is shown
below.

 226

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The LOSP event tree is now separated into the distinct event trees that are
usually developed and discussed in PRAs that utilize the large event tree
methodology.

◊ The “initiating event tree” represents the different events that can cause
a reactor trip and requires plant responses. The “initiating event tree” for
this example contains the initiating event frequency, which passes
straight through the event tree and transfers to the “support system event
tree”. An illustration of the “initiating event tree” is shown on the next
page.

◊ The "support system event tree" represents the support systems that are
required for the frontline systems to operate (i.e., power systems,
instrument air, etc.). These event trees may be used by several initiating
events. The "support system event tree" needs to transfer to the
appropriate “plant response event tree”, depending on the initiating
event.

◊ The “plant response event tree” represents the frontline systems that are
required to mitigate the event (i.e., emergency cooling, containment
cooling).

♦ To connect the event trees (and avoid having to duplicate event trees), the
following approach is preferred:

◊ Create an event tree that contains the initiating event and transfers to the
appropriate support system event tree. (Note: SAPHIRE requires that at
least 2 tops are present in each event tree; however, there does not
need to be any branching.)

◊ The path through the support system event trees (which may contain
many transfers to include all of the support systems) will ultimately result
in the need to transfer to the appropriate plant response event tree.

• Rules can be written in the "Link Event Tree" rule editor to enact this
transfer (see Section 4).

 227

SAPHIRE 8 Advanced Idaho National Laboratory

These three event trees will be used as examples in this section.

The "Initiating Event" Tree

The "Support System" Tree

The "Plant Response" Tree

 228

SAPHIRE 8 Advanced Idaho National Laboratory

Notice that more than one initiating event can call the same support system tree. And
the support system tree could transfer to different plant response trees.

 "Initiating Event" Trees" "Plant Response" Trees

 The "Support System" Tree

 229

SAPHIRE 8 Advanced Idaho National Laboratory

14.2.1. The Support System Tree
♦ The support system event tree contains all of the support systems that are

required to operate in order for the front line systems to be available. If the
support systems are unavailable or partially available this will impact the
operability of the front line systems.

♦ In this example, top event TANK is a support component that is required for both
front line systems ECS and CCS. Therefore, top event TANK questions the
status of the tank, and if the tank is unavailable, then both ECS and CCS cannot
operate.

♦ The probability of failure for top event TANK is specified directly. Modification of
failure probabilities for top events will be discussed in the next section.
SAPHIRE determines the success probability as the complement of the failure
probability.

/TANK = 1 - TANK

Top event DG questions the status of the two diesel generators that provide support to
ECS and CCS.

◊ The top branch for DG represents that both DGs are available to supply
electrical power to the front line system components (top event
assignment is DG0).

◊ The second branch under DG represents the success of DG-A and
failure of DG-B (top event assignment is DG1). (By knowing what
support system components are available, the front line components are
adjusted for further evaluation through the plant response event tree).

◊ The third branch under DG represents the success of DG-B and failure of
DG-A (top event assignment is DG2).

 230

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The fourth and final branch represents the failure of both DG-A and DG-
B (top event assignment is DG3).

♦ (Again, the next section will go into detail on how to specify the failure probability
(i.e., split-fraction probability for the top event DG).

♦ The support system event tree now transfers to the plant response event tree.
The different sequences will transfer to the same plant response event tree;
however, different front line top events will be questioned due to the availability or
unavailability of the support system components.

14.2.2. The Plant Response Tree
♦ The “plant response tree” represents how the plant will respond to a given

initiating event based on the availability or unavailability of the support system
components. The top events/split fractions on the “plant response tree” are
conditioned on the availability of support systems.

♦ For this example, the front line system top events (ECS and CCS) are modified
based on the following changes:

1. The TANK event is removed from the ECS and CCS fault trees
because it supports both systems.

2. The ECS and CCS top events are modified based on the status of the
DGs (i.e., conditional probabilities for ECS and CCS are calculated
based on the status of the DGs).

♦ The split-fraction probability (i.e., conditional failure probability) of ECS (and
CCS) is dependent upon the path through the support system event tree. In
other words, the split-fraction probability for ECS is different if ECS is questioned
via sequence 2 versus sequence 1 of the support system tree.

♦ Once we know the sequence path through the support system tree, which
specifies what support system is available (or unavailable), a special version of

 231

SAPHIRE 8 Advanced Idaho National Laboratory

the ECS (or CCS) fault tree is created, which is used to calculate the split-fraction
probability conditional on the path (shown in the next section).

14.3. Top Event Split-Fraction Probability Assignment

♦ There are two ways to assign the appropriate split-fraction probability to the top

events in both the support system event tree and plant response event tree:

1. Assign the split-fraction probability directly to the top events once they
are added to the SAPHIRE database.

2. Create new fault trees for each top event in the event trees (TANK,
DG, ECS and CCS). (The new fault trees for ECS and CCS are
conditional on the status of the DGs and TANK. These new fault trees
are solved and then assigned the “S” calculation type.)

14.3.1. Assign the split-fraction probabilities directly
♦ To assign the split-fraction probability directly, the probability is entered via

double clicking on the basic event in the Basic Event List Pane and using the
Basic Events list panel (because SAPHIRE recognizes top events as developed
events).

♦ Prior to assigning the split-fraction probability, this probability needs to be
calculated. This can be done by hand calculations or developing and solving a
representative fault tree, depending on the complexity of the top event.

♦ The split-fraction probability for each DG branching is calculated using the
following fault trees.

◊ A “fault tree” for each diesel generator needs to be developed. The fault
trees are developed based on the event tree logic.

◊ Let us look at the DGS top event in detail. The top branch (/DGS)
represents success of both diesel generators and is represented by fault
tree DG0. The next branch down represents success of diesel
generator A and failure of diesel generator B. Thus, DG1 is a fault tree
containing just DG-B. The third branch represents success of diesel
generator B and failure of diesel generator A. Thus, DG2 is a fault tree
containing just DG-A. The bottom branch represents both diesel
generators being failed. Thus, DG3 is a fault tree containing DG-A
“AND” DG-B.

 232

SAPHIRE 8 Advanced Idaho National Laboratory

◊ The split-fraction probabilities for each branch are determined from the

corresponding fault trees. The split-fraction for /DG is taken as the
complement of the DG0 fault tree.

♦ The developed fault trees representing the different states of the two diesel
generators can now be solved via highlighting the Fault Tree, invoking the menu
through right clicking, and then using the Solve option with no truncation.

♦ The probability calculated from each fault tree can now be assigned to the fault
tree top events in the Basic Events list panel.

♦ The same process needs to be performed for the ECS system and the CCS
system. The ECS and CCS fault trees need to be solved via the use of change
sets to calculate their conditional probabilities. These conditional probabilities
are then used as the split-fraction probability for these top events in the “plant
response tree”.

 233

SAPHIRE 8 Advanced Idaho National Laboratory

♦ The ECS and CCS fault trees are shown below with the modifications required in
order to calculate their conditional probabilities and the name of the new top
events that are required to handle the different conditions due to electrical
support. (i.e., DGs).

DG Status ECS System Name Split-Fraction
 No DGs failed ECS-0 2.079E-4
 Only DG-A failed ECS-A 1.0
 Only DG-B failed ECS-B 3.001E-3
 Both DGs failed ECS-AB 1.0

 234

SAPHIRE 8 Advanced Idaho National Laboratory

DG Status CCS System Name Split-Fraction

 No DGs failed CCS-0 2.079E-4
 Only DG-A failed CCS-A 3.001E-3
 Only DG-B failed CCS-B 1.0
 Both DGs failed CCS-AB 1.0

♦ A simple fault tree to represent the TANK top event needs to be created in order

to determine its split fraction probability.

14.3.2. Assign probabilities using “S” calculation
♦ To assign the top event probabilities using the “S” calculation, the following steps

are required.

1. Multiple copies of the ECS and CCS fault trees need to be created with
the names listed above (i.e., ECS-0, ECS-A, ECS-B, and ECS-AB). This
can be accomplished by opening the root fault tree (ECS for instance) and
using the fault tree main menu File  Save As option.

 235

SAPHIRE 8 Advanced Idaho National Laboratory

2. Create fault tree flag sets that can be assigned to the different ECS and
CCS fault trees in order to handle the conditional probability calculation.
Flag Set Name Basic Events House Event Identifier
FT-FLAG-0 S-DGN-FS-A

S-DGN-FR-A
S-DGN-FS-B
S-DGN-FR-B
S-TNK-FC-T1

FALSE
FALSE
FALSE
FALSE
FALSE

FT-FLAG-A S-DGN-FS-A
S-DGN-FR-A
S-DGN-FS-B
S-DGN-FR-B
S-TNK-FC-T1

TRUE
TRUE
FALSE
FALSE
FALSE

FT-FLAG-B S-DGN-FS-A
S-DGN-FR-A
S-DGN-FS-B
S-DGN-FR-B
S-TNK-FC-T1

FALSE
FALSE
TRUE
TRUE
FALSE

FT-FLAG-AB S-DGN-FS-A
S-DGN-FR-A
S-DGN-FS-B
S-DGN-FR-B
S-TNK-FC-T1

TRUE
TRUE
TRUE
TRUE
FALSE

3. Assign the fault tree flag sets to the appropriate fault tree for the

calculation process. This is performed using the open fault tree’s main
menu Edit  Properties option. Open each fault tree individually, click
Edit  Properties to open up the editor, and then select the Default Flag
Set to assign the appropriate flag.

Flag Set Name Fault Tree
FT-FLAG-0 ECS-0

CCS-0
FT-FLAG-A ECS-A

CCS-A
FT-FLAG-B ECS-B

CCS-B
FT-FLAG-AB ECS-AB

CCS-AB

 236

SAPHIRE 8 Advanced Idaho National Laboratory

4. Modify the calculation type for the fault trees via the Edit Basic Events
option.

• This step is performed to all of the fault trees (DG0, DG1, DG2, DG3,
ECS-0, ECS-A, ECS-B, ECS-AB, CCS-0, CCS-A, CCS-B, and CCS-
AB).

5. Generate fault tree cut sets for all of the fault trees (highlight all fault trees,

right click, then Solve) with no truncation.

♦ Now that all of the split-fraction probabilities have been calculated, these top
events need to be assigned to the event tree for sequence cut set generation.

14.4. Using "Link Event Tree" Rules to Assign Split-
Fractions

As discussed, the particular path through the event trees (support system and plant
response trees) determines the status of support systems and frontline systems. These
paths determine the appropriate “top event” substitutions for the support systems and
plant response systems.

In contrast, with the fault-tree linking approach, each top event usually corresponds to a
single fault tree or a single top event probability for the failed branch.

 237

SAPHIRE 8 Advanced Idaho National Laboratory

Note:
The rules can be written in terms of the branch identifier (e.g. DG[1]) or in
terms of the fault tree name (e.g. DG1). Also, the system name in the search
criteria (e.g., DG) must have been assigned by earlier rules (usually the
support system rules).

14.4.1. Assigning the Support System Split-Fractions

♦ The "Link Event Tree" rule editor is

used to assign the appropriate "top
event" to each branch (i.e., split-
fraction probability). This top event
substitution is dependent upon the
path through the event tree. The
rules assigned to the support system
event tree for proper substitution are
as shown.

14.4.2. Assigning the Plant Response Split-Fractions

♦ The "Link Event Tree" rule editor is used to assign the appropriate "top event" to

each branch (i.e., split-fraction probability). This top event substitution is
dependent upon the path through the event tree. The rules assigned to the plant
response event tree for proper substitution are as shown.

 238

SAPHIRE 8 Advanced Idaho National Laboratory

14.5. Truncating Sequences during Event Tree Linking

♦ The prerequisites for generating sequences with truncation during the link step

(note this is different than the truncation during the “solve” option for sequence
cut sets) are:

◊ The "fault trees" that do not have fault tree logic should have a failure
probability specified prior to linking the event tree(s).

◊ The fault trees that have fault tree logic should also have a failure
probability specified prior to generating (and truncating) sequences. This
can be accomplish by either directly specifying a probability or by using
the "S" Calculation Type (discussed in Section 14.3).

14.5.1. Generating the Sequence “Cut Sets” During
Event Tree Linking

♦ The L-LOSPIE event tree (from Section 14.2) will transfer to the L-SUPP tree,
which subsequently transfers to the L-LOSP tree.

◊ To generate the sequence cut sets for the L-LOSPIE event, highlight only
the L-LOSPIE tree.

◊ Click the right mouse button and select Link.

♦ When using the large event tree approach, we generally need to use sequence
truncation (i.e., discard sequences with low frequencies) due to the potentially
large number of sequences.

◊ To perform truncation when generating sequence cut sets via the Link
option, we need to specify two options.

1. Select either Normal or Conditional truncation from the pull-down
menu and then enter the cut off value.

• The Normal option will truncate the sequence once its value is
below the “cut off” value specified divided by the initiating event

 239

SAPHIRE 8 Advanced Idaho National Laboratory

frequency. In effect, this approach “equalizes” the sequences
across different initiators.

• The Conditional option will truncate the sequence once its value is
below the “cut off” value specified.

2. Click the Create Logic Cut Sets check box. This option tells

SAPHIRE that the logic being created (for each sequence) via the
link process should simply be treated as a cut set. Consequently, a
single cut set will appear for the sequence (after linking) that is the
product of the initiating event, all failure tops in the sequence, and all
success tops in the sequence.

The sequences generated from the L-LOSPIE tree are determined as:

Note:
During this sequence truncation process, fault tree logic is not evaluated.
Instead, the fault tree (i.e., top event) split fractions are used to obtain the
sequence frequency.

 240

SAPHIRE 8 Advanced Idaho National Laboratory

After completing the Link process, these sequences will now appear in the project list of
sequences. For example, going to the Sequence option and viewing the cut sets for
sequence 1-5 (from event tree L-LOSPIE) would display a single cut set:

 L-LOSPIE * TANK

If many sequences are generated, the sequence generation process may take a long
time. For some large event tree risk assessments, the potential number of sequences
exceeds one billion.

The following presents the cut sets of the L-LOSPIE event tree. Notice that the cut sets
are the sequences generated during the link process.

 241

SAPHIRE 8 Advanced Idaho National Laboratory

NOTES

 242

SAPHIRE 8 Advanced Idaho National Laboratory

 243

Appendix A – Link, Post Processing &
Partition Rule Keyword List

Keyword or
symbol

Type

Definition

Example Usage

() General Symbols to indicate a
specific grouping of items.

if (A + B) * (C + D) then

The search criteria above would return all
top events that contain:
[A * C], [A * D], [B * C], or [B * D].

* General Symbol to indicate the
logical AND command.

if SEARCH-CRITERIA1 * SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all
cut sets that match SEARCH-CRITERIA1
and SEARCH-CRITERIA2.

/ General Symbol used to represent a
complemented event (i.e.,
the success of a failure
basic event).

if (/BASIC-EVENT) * "other search criteria"
then

The search criteria will be satisfied for all
cut sets that contain the complement of
BASIC-EVENT (and also contains the
optional "other search criteria").

; General Symbol to indicate the end
of a macro line or a line that
modifies the cut set being
evaluated.

| usage for a macro command
MACRO-NAME = "search criteria" ;
| usage for a cut set modification line
 partition = ENDSTATE ;

[] Link Indicates the number of the
event tree branch for
multiple-split branch points.
The first branch under the
top branch is designated as
1. The second is
designated as 2, etc.

if "search criteria" then
 /ET-FT = NEW-TREE-NAME1;
 ET-FT[1] = NEW-TREE-NAME2;
 ET-FT[2] = NEW-TREE-NAME3;
endif

| General Symbol used to represent a
comment contained in the
rules. Everything on a line
to the right of this symbol
will be ignored by the rule
compiler.

| Place your comments here!

| Note that blank lines are also permissible!

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Type

Definition

Example Usage

~ General Symbol used in the search
criteria to indicate that a
particular event will not be in
the cut set that is being
evaluated.

if (~SEARCH-CRITERIA) * "other search
criteria if needed" then
...
The search criteria will be satisfied for all
cut sets that do not contain SEARCH-
CRITERIA (and also contains the optional
"other search criteria"). SEARCH-
CRITERIA may be an initiating event,
basic event, macro, or logic expression.

+ General Symbol to indicate the
logical OR command.

if SEARCH-CRITERIA1 + SEARCH-
CRITERIA2 then

The search criteria will be satisfied for all
cut sets that match either SEARCH-
CRITERIA1 or SEARCH-CRITERIA2.

= General Keyword to indicate the
substitution of one event
tree top (i.e., fault tree) for
another event.

if "search criteria" then
 ET-FT = ET-FT1;
endif

AddEvent = Post
Processing

Keyword that indicates that
an event will be added to the
cut set being evaluated.

if "search criteria" then
 AddEvent = EVENT-NAME;
endif

always General Keyword that indicates that
every fault tree top event
satisfies the search criteria.

if always then
 perform some action on the sequence.;
endif

CopyCutset; Post
Processing

Keyword that indicates that
the cut set being evaluated
will be copied and added to
the list of cut sets. This
copied cut set then becomes
the cut set that is being
evaluated.

if "search criteria" then
 CopyCutset;
 now make modification to a copy of the
cut set...
endif

CurrentPart() Partition Keyword that searches for
cut sets that have already
been assigned to the
endstate indicated.

if CurrentPart(CORE-DAMAGE) then
 partition = “NEW-CORE-DAMAGE”;
endif

DeleteEvent= Post
Processing

Keyword that indicates that
an event will be deleted from
the cut set being evaluated.

if "search criteria" then
 DeleteEvent = EVENT-NAME;
endif

 244

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Type

Definition

Example Usage

DeleteRoot; Post
Processing

Keyword that indicates that
the original cut set (i.e., that
cut set that satisfied the
search criteria) will be
deleted.

if "search criteria" then
 DeleteRoot;
endif

else General Keyword that specifies some
action to be taken if all the
search criteria(s) are not
met. The else should be the
last condition in the event
tree linking rule.

if "search criteria" then
 PERFORM SOME ACTION ON THE
SEQUENCE;

else
 perform some other action on the
sequence if search criteria not met;
endif

elsif General Keyword that specifies an
alternative search criteria.
Any number of elsifs can be
used within an event tree
linking rule.

if "search criteria" then
 perform some action on the sequence.;
elsif "2nd search criteria" then
 perform some other action on the
sequence;
elsif "3rd search criteria" then
 perform some other action on the
sequence;
endif

endif General Keyword that indicates the
end of a particular rule.

if "search criteria" then
 perform some action on the sequence.;
endif

endstate Link Keyword to assign a
sequence (based upon
sequence logic) to a
particular end state.

If “search criteria” then
 eventree(ET-NAME) = endstate(ES-
NAME);
endif

End_Rule_Section Link/Post-
processing

Provides a break from one
rule group to the next rule
group in layered rules.

eventree() Link Keyword to indicate a
change in the sequence
transfer name.

if "search criteria" then
 eventree(ORIG-TRAN) = eventree(NEW-
TRAN);
endif

False() Link Keyword to construct a Flag
Set where the identified
basic events (in parenthesis)
are set to FALSE for the
applicable sequence.
Multiple basic events should
be separated using
commas.

if “search criteria” then
 eventree(ET-NAME) = False (EVENT1,
 EVENT2, EVENT3, …);
endif

 245

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Type

Definition

Example Usage

Flag() Link Keyword to assign an
existing Flag Set to
sequences meeting the
search criteria.

if “search criteria” then
 eventree(ET-NAME) = Flag (FS-NAME);
endif

GlobalPartition= Partition Keyword to indicate that all
cut sets in a particular
sequence will be assigned
to the end state identified
after the equal sign.

if "search criteria" then
 GlobalPartition = “MY-END-STATE”;
endif

if then General Keyword that indicates
search criteria is being
specified.

if "search criteria" then
 perform some action on the sequence.;
endif

Ignore() Link Keyword to construct a Flag
Set where the identified
basic events (in parenthesis)
are set to IGNORE for the
applicable sequence.
Multiple basic events should
be separated using
commas.

if “search criteria” then
 eventree(ET-NAME) = Ignore (EVENT1,
 EVENT2, EVENT3, …);
endif

init() General Keyword used in the search
criteria to indicate that a
sequence cut set has a
particular initiating event.

if init(INITIATOR-NAME) * "other search
criteria if needed" then
 perform some action on each cut set;
endif

MACRO General A macro is a user-definable
keyword that specifies
search criteria. The macro
name must be all upper-
case, must be 24 characters
or less, and must not include
any of the restricted
characters (e.g., a space, *,
?, \, /). The macro line can
wrap around to more than
one line, but must end with a
semicolon.

MACRO-NAME = SEARCH-CRITERIA;
if MACRO-NAME then
 perform some action on each sequence.;
endif

|Macros are only applicable in the
particular |rule set where they appear. In
other words,
|you cannot define a macro in event tree
|”A” and expect to use it in event tree “B.”

NewCutset; Post
Processing

Keyword that indicates that
a new, empty cut set will be
added to the list of cut sets.
This new cut set then
becomes the cut set that is
being evaluated.

if "search criteria" then
 NewCutset;
 now make additions to the empty cut
set...
endif

 246

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Type

Definition

Example Usage

partition = Partition Keyword that indicates the
end state characters for the
cut sets meeting the search
criteria will be modified
according to the text after
the equal sign.

if "search criteria" then
 partition = “END_STATE_NAME”;
endif

Recovery = Post
Processing

Keyword that indicates that
a recovery event is going to
be added to the cut set
being evaluated (SAPHIRE
keeps record of all recovery
events).

if "search criteria" then
 recovery = NAME-OF-RECOVERY;
endif

SeqTransfer()

Link Keyword to indicate a
change in the sequence
transfer name.

if "search criteria" then
 SeqTransfer(ORIG-TRAN) =
eventree(NEW-TRAN);
endif

Skip()

Link Keyword to indicate that a
sequence meeting the
search criteria will be
“skipped” (i.e., not
generated and will not show
up in the database).

if "search criteria" then
 ET-FT = Skip(ET-FT);
endif

SkipSequence
SkipSystem

Link Keywords with the same
function as Skip(), however
it provides further
delineation between
sequence and system with
the use of categories.

if “search criteria” then
 SkipSequence;
endif

system() General Keyword used in the search
criteria to indicate that the
sequence logic contains the
particular top event. Can be
used in either Post
Processing rules or partition
rules.

if system(TOP EVENT) * “other search
criteria if needed” then
 perform action on each sequence;
endif

transfer = Partition Keyword to indicate the
event tree to be created and
transferred to for the
sequence meeting the
search criteria. The
sequence end state
frequency will be used as
the initiating event frequency
for the new event tree.

if "search criteria" then
 GlobalPartition = “CORE-DAMAGE”;
 transfer = LEVEL-2-TREE;
endif

 247

SAPHIRE 8 Advanced Idaho National Laboratory

Keyword or
symbol

Type

Definition

Example Usage

True() Link Keyword to construct a Flag
Set where the identified
basic events (in parenthesis)
are set to TRUE for the
applicable sequence.
Multiple basic events should
be separated using
commas.

if “search criteria” then
 eventree(ET-NAME) = True (EVENT1,
 EVENT2, EVENT3, …);
Endif

Keep
(placeholder not

functional)

Slice Keyword to group the cut
sets that meet the search
criteria together for display
in the “Included In Slice”.

If “search criteria” then
 keep;
endif

Discard
(placeholder not

functional)

Slice Keyword to group the cut
sets that meet the search
criteria together for display
in the “Excluded From
Slice”.

If “search criteria” then
 discard;
endif

Convolve_Cut_Sets Post
Processing

Keyword that indicates the
original cut set (i.e., that cut
set that satisfied the search
criteria) will be adjusted by a
correction factor. The
keyword for the correction
factor in the rule is
AddConvolEvent.

If Convolve_Cut_Sets then
 AddConvolEvent;
endif

InvalidRASP_XProd
uct

Post
Processing

Keyword that indicates the
original cut set (i.e., that cut
set that satisfied the search
criteria) will be removed
from the cut set. This is
used when fully expanded
R-Type CCF events are
used in the PRA model

If InvalidRASP_XProduct then
 DeleteRoot;
Endif

LerfFactor Link Keyword to assign LERF
factors to sequences that
meet the search criteria.
These factors are used for
SPAR models when
performing SDP analyses.

if init(event tree) then
 lerffactor = 1.0; |numerical value between
0 < 1
elsif RPS then
endif

 248

SAPHIRE 8 Advanced
Workbook

Curtis Smith
James Knudsen

Kurt Vedros

Idaho National Laboratory

February 2016

SAPHIRE Advanced Workbook Idaho National Laboratory

SAPHIRE – The “Big Picture”

Develop Project Models

(logic and data)
Produce Current

Case Data

Perform Analysis

Final Product

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for any third
party's use, or the results of such use, of any information, apparatus, product or process disclosed in this
report, or represents that its use by such third party would not infringe privately owned rights. The views
expressed in this report are not necessarily those of the U.S. Nuclear Regulatory Commission.

Build Fault Trees
(Basics Manual)

Build Event Trees
(Basics Manual)

Modify Basic
Events

(Section 3)

 - Human Error
 - Compound
 - CCF

Fault Tree Analysis
(Sections 7 and 8)

Link Event Trees
(Section 4)

Sequence Analysis
(Section 9)

Results

- Viewing/Edit cut

sets
(Section 10)

Fault Tree
Development

Event Tree
Development

Generate Probabilities
 - Analysis Type
 - Flag Sets

(Section 2 and 9)

Cut Set Post-
Processing
(Section 5)

End State Analysis
(Section 6)

 ii

SAPHIRE Advanced Workbook Idaho National Laboratory

CONTENTS

| 1 |
 INTRODUCTION 1

| 2 |
 DATABASE CONCEPTS 3

| 3 |
 BASIC EVENT INFORMATION 7

| 4 |
 LINKING EVENT TREES 15

| 5 |
 POST PROCESSING RULES 21

| 6 |
 END STATE ANALYSIS 25

| 7 |
 SOLVING FAULT TREE CUT SETS 31

| 8 |
 QUANTIFYING FAULT TREE CUT SETS 37

| 9 |
 SOLVING EVENT TREE CUT SETS 39

| 10 |
 EDITING CUT SETS 45

| 11 |
 GENERAL ANALYSIS FOR SENSITIVITY 53

| 12 |
 MUTUALLY EXCLUSIVE EVENTS 59

| 13 |
 USER-DEFINED MODEL TYPES 63

| 14 |
 THE LARGE EVENT TREE METHODOLOGY 73

 iii

SAPHIRE Advanced Workbook Idaho National Laboratory

NOTES

 iv

SAPHIRE Advanced Workbook Idaho National Laboratory

| 1 | INTRODUCTION

Section 1 contains an introduction to the SAPHIRE Advanced course workbook

This SAPHIRE Advanced course workbook accompanies the SAPHIRE Advanced training course manual. The workbook
provides instructions for modeling exercises that will provide students with hands-on experience using advanced
SAPHIRE features. The workbook provides model information for the workshop problems, describes the exercises to
perform, and provides the results that should be achieved during the exercise.

The SAPHIRE Advanced training course manual and SAPHIRE Reference Manuals should be used to provide additional
instructions as needed to perform the exercises.

Many of the workshop exercises will utilize simplified versions of a reactor and containment cooling systems. A diagram
of this system is shown in Figure 1. The fault trees and event tree related to this system are contained in the DEMO-ADV
project. Additional projects or modifications to DEMO-ADV will be utilized as needed for some of the workshops.

 1

SAPHIRE Advanced Workbook Idaho National Laboratory

Figure 1. System diagram of the coolant systems to be used in the workshop exercises. Note that electrical support
system dependencies are shown in brackets ().

 2

SAPHIRE Advanced Workbook Idaho National Laboratory

| 2 | Database Concepts

Workshop Objectives

The SAPHIRE Data Base Concepts workshop objectives are to understand how to change the model type and to practice
making Flag Sets.

The following advanced training manual sections are referenced:

♦ Section 2: Database Concepts
◊ Projects, model types, and general flag set creation

♦ Section 7: Solving Fault Tree Cut Sets
◊ Flag Set creation and use with fault trees

♦ Section 9: Solving Event Tree Sequence Cut Sets
◊ Flag Set creation and use with event trees

Workshop Instructions

1. This workshop consists of two sections. First, the DEMO-ADV project will be used to switch between different
Model Types (random and seismic). Second, two flag sets will be created in the DEMO-ADV project that will be
utilized in a later workshop.

 3

SAPHIRE Advanced Workbook Idaho National Laboratory

2. Select the DEMO-ADV project using the Current Project pull-down menu from the entry screen or File → Open
existing project… if SAPHIRE is already open. (Make sure the DEMO-ADV project has been installed on your
computer.)

3. Solve the ECS and CCS Fault Trees for the Random Model Type.

a. In the Fault Trees list panel, right click on the desired fault tree(s) and select the Solve option. Place a

check in the checkbox in only the Random Failure Model Type checkbox and solve at the default 1.00E-15
truncation.

b. View the cut sets for the ECS and CCS fault trees by highlighting the fault tree, right click and selecting the
View Cut Sets option.

4. Now, change the model type to SEISMIC by placing a check only in the SEISMIC Model Type checkbox on the

fault tree solve form and proceed to solve for both ECS and CCS fault trees. View the cut sets for the ECS and
CCS fault trees that used the seismic model type.

5. Solve the SEISMIC and LOSP event tree sequences using the RANDOM Model Type and then view the cut sets

for the sequences using the View Cut Sets option of the event tree menu invoked by right-clicking on the event
tree.

6. Change the Model Type to SEISMIC by placing a check only in the SEISMIC Model Type checkbox on the event

tree solve form and proceed to solve for both SEISMIC and LOSP event trees. View the cut sets for the seismic
sequences that used the seismic Model Type.

 4

SAPHIRE Advanced Workbook Idaho National Laboratory

7. Perform seismic uncertainty analysis, highlight the SEISMIC event tree and select the View Uncertainty option
and then specifying a specific g-level earthquake to determine the overall seismic result.

Creating Flag Sets

We will now use the DEMO-ADV project to create two Flag Sets (named FLAG-SET-SBO1 and FLAG-SET-SBO2). Note
that these Flag Sets will be needed in later workshop exercises.

1. To make a Flag Set, enter the main menu Project → Flag Sets to open the Flag Set List form

2. Create a new flag sets by selecting Add Flag Set from the pull-down menu on the Flag Set List form and clicking

the Go button. Enter the Flag Set names and descriptions provided below (two Flag Sets will be added and they
will be modified in subsequent steps).

 Name Description

FLAG-SET-SBO1 “Both diesel generators (A & B) are failed”
FLAG-SET-SBO2 “Just diesel generator B is failed”

3. To make a data change in a Flag Set, highlight the Flag Set, select Modify Flag Set from the pull-down menu and

click the Go button.
• Drag and drop the basic events required into the Singles pane
• Make the changes in the Values to be Applied pane
• Click OK when finished

4. For the two Flag Sets that were just added, make the changes indicated below to the RANDOM model type field.

 5

SAPHIRE Advanced Workbook Idaho National Laboratory

Name Events to be Changed Changes
FLAG-SET-SBO1 S-DGN-FS-A

S-DGN-FS-B
Failure Model set to “T”
(by clicking the Random
Model Type only)

FLAG-SET-SBO2 S-DGN-FS-B Calculation type set to “T”
(by clicking the Random
Model Type only)

5. These flag sets will be assigned to event tree sequences in a later workshop. However, a Flag Set can be

assigned to a sequence via the Sequence Properties menu (not recommended):
• Expand the sequences under the event tree in the event tree list panel
• Highlight the desired event tree sequence
• Right click on a highlighted sequence and select Edit Properties
• The Flag Set name is entered in the field labeled Default Flag Set pull-down menu for the selected

sequence

 6

SAPHIRE Advanced Workbook Idaho National Laboratory

| 3 | Basic Event Information

Workshop Objectives

The Basic Event Information workshop accompanies Section 3 in the Advanced SAPHIRE training manual. The
workshop objectives are to become familiar with the construction and use of compound events and human reliability
worksheet.

Workshop Instructions

This workshop consists of two sections. First, a new fault tree will be developed that will use compound events. Second,
a basic event representing an operator action will be added to the fault tree.

Compound Basic Event - Using the DEMO-ADV project, a new fault tree needs to be developed which has three basic
events, two basic events being a compound basic event and the third being a human reliability event. The compound
events are comprised of other basic events that need to be added to the database.

 7

SAPHIRE Advanced Workbook Idaho National Laboratory

1. Create a fault tree called COMPOUND. The fault tree top gate is an “OR” gate with and basic event and an “AND”
gate. The “AND” gate contains two basic events as inputs:

HPI-MDP-FC-A
HPI-MDP-FC-B

2. The basic events HPI-MDP-FC-A and HPI-MDP-FC-B are compound basic events. Basic event HPI-MDP-FC-A is

comprised of MDP-FR-A, MDP-FS-A and CKV-CC-A, while basic event HPI-MDP-FC-B is comprised of MDP-FR-
B, MDP-FS-B and CKV-CC-B. These basic events need to be added to the DEMO-ADV project database. (See
below for the basic events that need to be added to the project and their specific information.)

3. Event HPI-MDP-FC-A needs to be made a compound event, by highlighting the basic event, right click to invoke

the pop-up menu, then Edit Basic Event. Alternately, you can double click on the basic event either in the Basic
Event list panel or on the basic event in the COMPOUND fault tree graphical representation. Change the Failure
Model to “Compound Event (C)”.

 8

SAPHIRE Advanced Workbook Idaho National Laboratory

Basic Event Failure Model Probability Failure Rate Mission
Time

Lognormal
EF

Correlation
Class

MDP-FS-A Failure Probability (1) 3.0E-3 5 1
MDP-FS-B Failure Probability (1) 3.0E-3 5 1
MDP-FR-A Fails to operate

(without repair) (3)
 3.0E-5 24 10 2

MDP-FR-B Fails to operate
(without repair) (3)

 3.0E-5 24 10 2

CKV-CC-A Failure Probability (1) 1.0E-4 3 3
CKV-CC-B Failure Probability (1) 1.0E-4 3 3

4. Select “PLUGUTIL” from the Library list and then select “MIN_CUT” from the Procedure list. Click the Add Event

button to input the basic events MDP-FR-A, MDP-FS-A, and CKV-CC-A into the sub event fields Event 0, Event 1,
and Event 2. Note the probability will automatically update in the upper right of the Edit Basic Event form. Click the
Apply or OK button to save the changes.

 9

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Repeat steps 3 and 4 for basic event HPI-MDP-FC-B, except use basic events MDP-FR-B, MDP-FS-B, and CKV-

CC-B as the sub events.

6. Adjust the probability for the basic event “OP-ACTION”. Select the “SPAR-H human reliability model (X)” failure

model. This operator action is only an action type of operation and no diagnosis is required. Adjust the following
PSFs:

 10

SAPHIRE Advanced Workbook Idaho National Laboratory

 Available Time is “Extra time” [100%]
 Stress/Stressors is “high” [100%]
 Complexity is “moderately complex” [100%]

6. Solve cut sets for the COMPOUND fault tree. Two cut sets should exist:

 11

SAPHIRE Advanced Workbook Idaho National Laboratory

Additional Workshop - Using the different common cause failure equations

1. Add two CCF basic events (i.e., HPI-MDP-CF-FTS and HPI-MDP-CF-FTR) to the COMPOUND fault tree by

changing the top gate to an “OR” and adding a new OR gate as an input into COMPOUND that the two CCF basic
events will be an input to. The two independent basic events (HPI-MDP-FC-A and HPI-MDP-FC-B) need to be
placed under a new “AND” gate (called COMPOUND0). The fault tree should look as follows:

(Optional) For additional practice, add descriptions to the gates and basic events as shown.

 12

SAPHIRE Advanced Workbook Idaho National Laboratory

2. For the CCF basic event HPI-MDP-CF-FTS, use the MGL equation:
• Failure Model = Compound Event (C)
• Library = PLUGCCFMGL
• Procedure = TwoEventGroup
• Input Parameters (see paragraph below)

o Failure Count = 2
o CCFEvent1 = MDP-FS-A
o CCFEvent2 = MDP-FS-B
o Beta = BETA

The MDP-FS-A and MDP-FS-B can be used as the independent events for this CCF basic event. A new “Basic
Event” called BETA needs to be added for use in the MGL equation, since the equation requires a β-factor. Set
the value for the β-factor (basic event BETA) to 0.21. Add the applicable events into their correct fields and note
the calculated probability (6.3E-04).

3. For the CCF basic event HPI-MDP-CF-FTR, use the Alpha Factor equation (PLUGCCFSTAG). The MDP-FR-A

and MDP-FR-B can be used as the independent events for this CCF basic event. New “Basic events” called
ALPHA-1 and ALPHA-2 need to be added for use in the alpha factor equation. The values for these events are
alpha-1 = 0.9 and alpha-2 = 0.1. Add the applicable events into their correct fields note the calculated probability
(7.197E-05).

4. Solve cut sets for the COMPOUND fault tree. Three cut sets should be generated:

 13

SAPHIRE Advanced Workbook Idaho National Laboratory

 14

SAPHIRE Advanced Workbook Idaho National Laboratory

| 4 | Linking Event Trees

Workshop Objectives

The "Link Event Trees" Rule Editor workshop accompanies Section 4 in the Advanced SAPHIRE training manual. The
workshop objectives are to practice using the rule editor and become more familiar with the rule nomenclature.

Workshop Instructions

To practice using the “Link Event Tree” rules, create a new project named RULES and use this project to edit event tree
linking rules.

1. Create a new SAPHIRE project named RULES (main menu File → New → Project).

2. Create the event tree shown by selecting the New Event Tree in the Event Tree list panel. Name the new event

tree ABC and specify its initiating event as IE.

 15

SAPHIRE Advanced Workbook Idaho National Laboratory

 16

SAPHIRE Advanced Workbook Idaho National Laboratory

3. Enter the rules shown below for event tree ABC by highlighting the event tree, right clicking the mouse, and
selecting Edit Linkage Rules. Note that the “system” C-SYS is called by the rule, so this new fault tree called C-
SYS needs to be created prior to saving the linking rule or it will not compile. C-SYS does not require any inputs to
its top gate for this workshop.

 | RULE 1.
 | The "if-then" Rule Structure:
 | This rule replaces C with C-SYS when A and B
 | are both failed.
 | (Only sequences 6 and 7 are affected by this rule)
 if A * B then
 /C = C-SYS;
 C = C-SYS;
 endif

4. When the rule has been added and compiled (from the editor, use the compile button , then File → Save/Exit).
Link the event tree sequences by right clicking on the ABC event tree in the Event Tree list panel to invoke the
menu, then choosing using the Link option. Sequence logic can be printed to the screen by clicking the checkbox
Create Report.

 17

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Experiment by adding the different rules listed below. Remember to delete or "comment out" (by placing a "|" at the
beginning of the line) the prior rules. The new fault trees need to be added to the database.

| RULE 2.
| The "if-always" Rule Structure:
| This rule replaces every occurrence of
| C with C-SYS.
| (Sequences 2 through 7 are affected)
if always then
 /C = C-SYS;
 C = C-SYS;
endif

| RULE 3.
| The "if-then-elsif" Structure:
| This rule replaces C with C-AB if A and B are
| failed, & replaces C with C-B if only B is failed.
if A * B then
 /C = C-AB;
 C = C-AB;
elsif B then
 /C = C-B;
 C = C-B;
endif

| RULE 4. The "if-then-elsif-else" Structure:
| Rule replaces C with C-NA when A is successful,
| replaces C with C-NB if B is successful, & replaces
| C with C-XX in any other case
if /A then
 /C = C-NA;
 C = C-NA;
elsif /B then
 /C = C-NB;
 C = C-NB;
else
 /C = C-XX;
 C = C-XX;
endif

| RULE 5.
| The “Skip” Structure: Rule has the ability to “skip”
| sequences in sequence logic. The rule also uses a
| MACRO to search on system B.
SEARCH-B = B;
if SEARCH-B then
 /C = Skip(C);
 C = Skip(C);
endif

 18

SAPHIRE Advanced Workbook Idaho National Laboratory

Optional Workshop:

1. Using the ABC event tree, perform a top event substitution in the graphical editor.

2. Highlight the ABC event tree, right click and select the Edit Logic (or double left mouse click to open the ABC

event tree).

3. Select the node under top event C for sequence 6, right click and select Edit, click the drop down box “Substitute

Model Name” and change from “–USE-TOP-EVENT-AS-IS-“ to “C-SYS”.

 19

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Perform this same step for the top event C for sequence 7.

5. Save the event tree. SAPHIRE will automatically link the even tree and update the sequence logic. To get a
report, with the ABC event tree highlighted right click and select “Link”.

 20

SAPHIRE Advanced Workbook Idaho National Laboratory

| 5 | Post Processing Rules

Workshop Objectives

The Post Processing Rules workshop accompanies Section 5 in the Advanced SAPHIRE training manual. The workshop
objectives are to gain experience using the Post Processing Rules editors, applying Post Processing Rules, and viewing
cut sets after modification via the Post Processing Rules.

Workshop Instructions

Post processing rules will be created for the ECS fault tree in the DEMO-ADV project. These post processing rules will
then be applied to the ECS fault tree where the nominal case and current case ECS cut sets can be compared to see the
effect of the rules.

1. Open the DEMO-ADV project. Prior to creating the post processing rule, make a new basic event called SYS-ECS

(via the Basic Events list panel New basic event… option and set its probability to 0.5). Enter the post processing
rules shown using the appropriate rule editor.

 21

SAPHIRE Advanced Workbook Idaho National Laboratory

Rule type Menu Rule
Fault tree Highlight the ECS fault tree. Right click

and select the Edit Post-processing
Rules option.

| Add an identifier onto ECS cut sets
if always then
 AddEvent = SYS-ECS;
endif

Fault tree project Main menu Project → Edit Rules → FT
(Post-processing) option.

| Take out cut sets that have DG-B
if S-DGN-FS-B then
 DeleteRoot;
endif

2. Unmark any change sets that may have been previously marked.

3. Solve the ECS Fault Tree with a check in the checkbox “Apply Post-processing Rules”.

4. View the fault tree cut sets to see what changes have been applied to the cut sets.

 22

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Return to the recovery rules and either delete or comment out (using “|”) the recovery rules that were created.

 23

SAPHIRE Advanced Workbook Idaho National Laboratory

NOTES

 24

SAPHIRE Advanced Workbook Idaho National Laboratory

| 6 | End State Analysis

Workshop Objectives

The End State Analysis workshop accompanies Section 6 in the Advanced SAPHIRE training manual. The workshop
objective is to gain experience using the End State Analysis module.

Workshop Instructions

Using the DEMO-ADV project, a new event tree named SBO will be constructed. The sequences for both the LOSP and
SBO event trees need to be solved and then gather the end state cut sets.

1. Open the DEMO-ADV project. Construct the new event tree SBO as shown in Figure 2.

2. Generate the SBO sequences, these are done automatically generated when the event tree is saved or by using

the Event Trees list panel menu (right click on SBO event tree) and using the Link option. Five new sequences
should be created.

3. Access the SBO top events through the Basic Events list panel pull down menu Developed Event or All selection

• Modify the top event RDG-A to change its mean failure probability to 0.25 and its Process Flag to “Y”
• Modify the initiating event SBO to a mean frequency of 4.0E-3/yr.

 25

SAPHIRE Advanced Workbook Idaho National Laboratory

Figure 2. The SBO event tree required for the end state workshop.

4. Solve sequence cut sets with no change sets marked for all sequences for both the LOSP and SBO event trees

using a frequency truncation of 1.0E-8.

5. View the End States list panel by selecting main menu View → End States.

6. Gather end state cut sets by highlighting the end states SMALL-RELEASE and LARGE-RELEASE in the End

States list panel, right click and select Gather using a frequency truncation of 1.0E-8.

 26

SAPHIRE Advanced Workbook Idaho National Laboratory

7. View the end state cut sets by highlighting the SMALL-RELEASE end state right click and select View Cut Sets.

Compare your results with those shown below.

8. View the LARGE-RELEASE end state cut sets by selecting the View Cut Sets menu. You should see a total of 52

cut sets with an overall value of 1.808E-03.

 27

SAPHIRE Advanced Workbook Idaho National Laboratory

9. Now, add a partition rule that will create a new end state containing cut sets that have S-DGN-FS-B and
S-DGN-FR-B in them (similar to example Rule 5 in the Advanced Manual). Enter the rule below into the project
partition rules via the Project → Edit Rules → End State Partition option.

10. Apply the partition rule:

• Highlight only the SBO event tree in the event tree list panel (this selects all sequences in SBO)
• Solve SBO sequence cut sets with the Apply Partition Rules checkbox checked and truncation set at

1.000E-08

11. Now, the new end state ES-WITH-DGB exists, but the “partitioned” cut sets need to be gathered into this end state.

To do this, highlight the listed end state in the End States list panel (and gather with Gather By  Cut Set
Partition radio button selected).

 28

SAPHIRE Advanced Workbook Idaho National Laboratory

12. View the ES-WITH-DGB end state cut sets by highlighting the end state and selecting View Cut Sets option.

Compare your results with those shown. Note that each cut set contains S-DGN-FS-B or S-DGN-FR-B.

 29

SAPHIRE Advanced Workbook Idaho National Laboratory

13. Given the cut sets that were grouped into the end state SMALL-RELEASE, select the Explore Origin
option.

14. Preview each tab:

Dominant Event – Lists the event trees sorted on highest frequency
Dominant Sequences – Lists the event tree accident sequences sorted by highest frequency
Sequence Cut Sets – Provides a list of the cut sets for each dominant sequence.

 30

SAPHIRE Advanced Workbook Idaho National Laboratory

| 7 | Solving Fault Tree Cut Sets

Workshop Objectives

The Solving Fault Tree Cut Sets workshop accompanies Section 7 in the Advanced SAPHIRE training manual. The
workshop objective is to practice using different truncation options for solving fault tree cut sets.

Workshop Instructions

Using the DEMO-ADV project, fault tree cut sets will be solved for the CCS fault tree using a variety of truncation options.

1. Open the DEMO-ADV project and select the CCS fault tree.

2. Solve the CCS fault tree cut sets using the truncation options described below. View the CCS cut set results via

one of the View Cut Sets options.

CCS Fault Tree Solve Options
No truncation
Probability truncation of 1E-6
Probability truncation of 1E-8 and Size cutoff of 1
Starting Gate Name of “CCS-TRAINS” and Probability truncation of 1E-8

 31

SAPHIRE Advanced Workbook Idaho National Laboratory

No Truncation:

 32

SAPHIRE Advanced Workbook Idaho National Laboratory

Probability Truncation at 1.0E-06:

 33

SAPHIRE Advanced Workbook Idaho National Laboratory

Probability Truncation 1.0E-08 and Cut Set Size of 1:

 34

SAPHIRE Advanced Workbook Idaho National Laboratory

Starting Gate Name of “CCS-TRAINS” and Probability truncation of 1E-8:

 35

SAPHIRE Advanced Workbook Idaho National Laboratory

3. Now we will make a flag set (refer to workshop 2 as needed).
• Make a flag set called ECS-PUMP-FLAG.
• Add the event E-PMP-FS-A to the flag set and set the Failure Model to a TRUE house event

4. Assign the flag set to fault tree ECS by opening ECS Fault Tree editor, then select Edit → Properties from the

fault tree main menu. Use the Default Flag Set pull-down menu to set the flag set assigned to ECS as ECS-
PUMP-FLAG or highlight the ECS fault tree, right click, and select Edit Properties. Click OK to save and also save
the changes when exiting the fault tree editor.

5. Solve cut sets for the ECS fault

tree (turn off all truncation).
Compare your results to those
shown here.

6. Restore ECS by removing the flag set by repeating step 4 and setting the Default Flag Set to set to the blank

selection on the top of the pull-down menu.

 36

SAPHIRE Advanced Workbook Idaho National Laboratory

| 8 | Quantifying Fault Tree Cut Sets

Workshop Objectives

The Quantifying Fault Tree Cut Sets workshop accompanies Section 8 in the Advanced SAPHIRE training manual. The
workshop objective is to gain experience using the Min-Max analysis option.

Workshop Instructions

Using the DEMO-ADV project, all motor-operated valve basic event probabilities will be increased and then the ECS fault
tree will be reevaluated using the Min-Max option. The minimal cut set upperbound results will be compared to the Min-
Max results.

1. Make a change set called MOD-MOVS by selecting the View  Change Sets or Project  Change Sets option.

Double click New Change Set, name the change set MOD-MOVs and provide a description, click the Class Tab,
check the Name Mask and enter the search criteria as:

 Event Attribute → Name = “*-MOV*” Probability/Frequency = 0.5

2. Mark just the MOD-MOVS change set (by placing a check in its checkbox). If you have more than one change set,

this change set should be the only one with a number to the left of its name.

3. Solve the ECS fault tree (turn off all truncation).

 37

SAPHIRE Advanced Workbook Idaho National Laboratory

4. The cut sets, with minimal cut set upper-bound value, are shown here (we are interested in the top Prob/Freq sum):

5. Now, perform the Min-Max calculation by solving ECS with the Quantification Method set to Min/Max and the

pass count set to 5.

The result for the Min-Max quantification is 6.379E-1. Note that (1) the minimal cut set upper-bound is higher than the
exact quantification and (2) the min-cut approximation is close to the exact even though the overall system failure
probability is quite high.

 38

SAPHIRE Advanced Workbook Idaho National Laboratory

| 9 | Solving Event Tree Cut Sets

Workshop Objectives

The Solving Event Tree Cut Sets workshop accompanies Section 9 in the Advanced SAPHIRE training manual. The
workshop objective is to generate event tree sequence cut sets using both Process Flags and Flag Sets.

Workshop Instructions

Using the DEMO-ADV project, top event process flags will be modified and applied to the LOSP sequences. The LOSP
event tree sequences will then be solved to generate the new sequence cut sets.

 39

SAPHIRE Advanced Workbook Idaho National Laboratory

Part I – Change Sets

1. In the DEMO-ADV project, double click on New change set… under the Change Sets list panel. Enter the

Change Set name and description below.

 Name Description

SET-CCS-TO-I Top event CCS has Process Flag set to I

2. To make a data change in a Change Set, view All basic events in the Basic Events list panel. Drag and drop the

event CCS to the Single pane of the Change Set Editor.

3. For the SET-CCS-TO-I Change Set that was just added, make the change indicated below.

 Event to be changed Changes

CCS Process Flag set to "I"

4. "Unmark" any change sets that may be marked. Then, mark the change set named SET-CCS-TO-I.

5. Now, solve sequence cut sets for Sequence 2 of the LOSP event tree (with truncation of 1E-6).

• Cut sets for Sequence 3 will not change since both systems (CCS and ECS) fail in this sequence.

6. View the sequence cut sets and compare to the following:

 40

SAPHIRE Advanced Workbook Idaho National Laboratory

 41

SAPHIRE Advanced Workbook Idaho National Laboratory

Part II – Flag Sets

Using the DEMO-ADV project, the Flag Sets created in the Section 2 workshop (FLAG-SET-SBO1 and FLAG-SET-SBO2)
will be assigned to the SBO event tree sequences. Then, sequence cut sets for SBO will be solved.

1. The two Flag Sets developed in the Section 2 workshop will be used in this workshop exercise. These two Flag

Sets and the settings are shown below. (If these two Flag Sets do not exist, refer back to the Section 2 workshop
and add the two Flag Sets to the database.)

Name Events to be Changed Changes

FLAG-SET-SBO1 S-DGN-FS-A
S-DGN-FS-B

Calculation type set to “T”

FLAG-SET-SBO2 S-DGN-FS-B Calculation type set to “T”

2. Assign a Flag Set to a sequence via the Sequence Properties menu:

• Expand the sequences under the event tree in the event tree list panel
• Highlight the desired event tree sequence
• Right click on a highlighted sequence and select Edit Properties
• The Flag Set name is entered in the field labeled Default Flag Set pull-down menu for the selected

sequence
• OR write a “Link Event Tree” rule to assign the flag sets and then link the event tree.

3. Assign the Flag Sets to the SBO sequences as shown:

Event Tree Sequence Flag Set Name
SBO 2 FLAG-SET-SBO2
SBO 3 FLAG-SET-SBO2
SBO 4 FLAG-SET-SBO1
SBO 5 FLAG-SET-SBO1
SBO 6 FLAG-SET-SBO1

 42

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Solve all of the SBO event tree sequences by highlighting the sequences (or just SBO), right clicking to invoke the

menu and selecting Solve (with truncation turned off).

5. View the cut sets and compare them against the results below generated through main menu Publish → Event

Tree Report→ Cut Sets (by Sequence) Rich Text Format (RTF):

Note: Cut sets that contribute >=
1.0% are reportedSequence/CS#

Prob./Freq. Total % Cut Sets

SBO - 2 0.000E+0 100% Displaying 0 of 1 cut sets

SBO - 3 8.405E-5 100% Displaying 5 of 8 cut sets
1 6.340E-5 75.43% SBO, /RDG-A, S-DGN-FR-A
2 1.200E-5 14.28% SBO, /RDG-A, S-DGN-FS-A
3 3.600E-6 4.28% SBO, E-PMP-FS-A, /RDG-A
4 3.000E-6 3.57% SBO, E-MOV-CC-A, /RDG-A
5 1.512E-6 1.80% SBO, E-PMP-FR-A, /RDG-A

SBO - 4 0.000E+0 100% Displaying 0 of 1 cut sets

SBO - 5 0.000E+0 100% Displaying 0 of 1 cut sets

SBO - 6 1.000E-3 100% Displaying 1 of 1 cut sets
1 1.000E-3 100% SBO, RDG-A

 43

SAPHIRE Advanced Workbook Idaho National Laboratory

NOTES

 44

SAPHIRE Advanced Workbook Idaho National Laboratory

| 10 | Editing Cut Sets

Workshop Objectives

The Editing Cut Sets workshop accompanies Section 10 in the Advanced SAPHIRE training manual. The workshop
objective is to perform cut set editing by using the “edit cut set” option

Workshop Instructions

The DEMO-ADV project will be used to illustrate the use of the “Edit Cut Set” option.

1. Solve for sequence cut sets, both the LOSP and SBO event tree. Make sure that no recovery rules or flag sets are

assigned to these event trees. Solve the sequence cut sets with a 1E-10 truncation.

2. Gather the LARGE-RELEASE end state with no truncation. There should be 95 cut sets and a frequency of

1.808E-03/yr.

3. With the LARGE-RELEASE end state highlighted, right mouse click and select Edit Cut Sets.

 45

SAPHIRE Advanced Workbook Idaho National Laboratory

3. Apply a Change Set to these cut sets. Under the Modify Cut Sets as desired drop down option, select Apply

Change Set and set S-DGN-FR-A to “FALSE” and apply this change set.

 46

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Select Apply. SAPHIRE will apply this change set to the cut sets and then re-calculate the new frequency.

 47

SAPHIRE Advanced Workbook Idaho National Laboratory

 48

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Click the option at the end of the Tab to erase the change set Tab. This way a new Edit can be performed on
the original cut sets.

6. Click the drop down option and select Post-Processing Rules. The option will open up the form to allow the analyst

to create a rule that will be applied to the cut sets that are displayed. Create the following rule (the recovery basic
event will have to be added to the project):

 49

SAPHIRE Advanced Workbook Idaho National Laboratory

7. Apply the post-processing rule to the cut sets.

 50

SAPHIRE Advanced Workbook Idaho National Laboratory

 51

SAPHIRE Advanced Workbook Idaho National Laboratory

NOTES

 52

SAPHIRE Advanced Workbook Idaho National Laboratory

| 11 | General Analysis for Sensitivity

Workshop Objectives

The General Analysis workshop accompanies Section 11 in the Advanced SAPHIRE training manual. The workshop
objectives are to gain experience using General Analysis Workspace to perform sensitivity evaluations to a project.

Workshop Instructions

For this workshop the General Analysis Workspace will be used to modify the DEMO-ADV project by adding an operator
recovery action to the CCS fault tree, modify the LOSP event tree and adjust the ECS check valves failure probabilities.

1. Using the DEMO-ADV project, double click the New Analysis… option under the General Analysis option in the

Workspace list panel. The whole project is copied into a temporary directory for modification and evaluation.

2. Select the logic models (CCS and ECS fault trees and LOSP event tree) and basic events (E-CKV-CC-A and E-

CKV-CC-B) that will be modified for this sensitivity evaluation and then select Next.

3. Click the Edit button under the E-CKV-CC-A basic event and change its nominal probability to 1E-02, do the same
 for E-CKV-CC-B basic event .

 53

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Modify the CCS fault tree by adding a new basic event that is ANDed to the failure of the motor-driven pumps (both
fails to start and run). This basic event is called CCS-MDP-REC and has a probability of 0.5.

 54

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Modify the LOSP event tree by adding the RDG-A top event. This top event is questioned given failure of both
ECS and CCS.

6. Select Next, once the LOSP event tree has been saved (along with the previous modifications).

 55

SAPHIRE Advanced Workbook Idaho National Laboratory

 7. Solve the fault trees (ECS and CCS) and LOSP event tree accident sequences by selecting the “Selected Event
Trees” and “Selected Fault Trees” radio buttons, since only the modified logic models need to be re-solved and
then click the Finish button.

 56

SAPHIRE Advanced Workbook Idaho National Laboratory

8. The results from the analyses can be viewed by selecting event tree or fault tree of interest, right-click the mouse
and then select the report option.

 57

SAPHIRE Advanced Workbook Idaho National Laboratory

NOTES

 58

SAPHIRE Advanced Workbook Idaho National Laboratory

| 12 | Mutually Exclusive Events

Workshop Objectives

The Mutually Exclusive Events workshop accompanies Section 12 in the Advanced SAPHIRE training manual. The
workshop objectives are to gain experience using Post-processing Rules to remove mutually exclusive events and to
practice using the Post Processing Rules editor.

Workshop Instructions

It is assumed that any combination of two (or more) motor operated valves appearing in a single cut set constitutes a
mutually exclusive event. The DEMO-ADV project is used to create Post-processing Rules that will remove mutually
exclusive events from all sequence cut sets.

1. Using the DEMO-ADV project, unmark any previously marked change sets and solve the ECS and CCS fault trees

and then the LOSP Event Tree at 1.000E-15 truncation.

2. Edit the event tree accident sequence post-processing rules via the Project → Edit Rules → ET (Post

processing) option.

3. Enter the post-processing rule as shown:

 59

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Apply the sequence Post-processing Rules by solving the LOSP

event tree with a check in the checkbox “Apply Post-processing
Rules” and a truncation of 1.000E-08.

5. Display the cut sets by right clicking on the LOSP-3 sequence

under LOSP in the Event Tree list panel and selecting the View
Cut Sets option.

 60

SAPHIRE Advanced Workbook Idaho National Laboratory

6. Review the LOSP sequence 3 cut sets to see the changes to the cut sets. Note that no cut sets with two (or more)
motor operated valve failures appear:

 61

SAPHIRE Advanced Workbook Idaho National Laboratory

Optional

Modify the recovery rule to remove instances of two diesel generator events appearing in the same cut set. For example,
the line:

if RM-MOV then

could be changed to:

if RM-MOV + (S-DGN-FS-A * S-DGN-FS-B) then

Resolve Sequence 3 cut sets (Sequences → Solve) using the “Auto Apply Post-Processing Rules” check box checked to
verify that the rule functions as intended.

 62

SAPHIRE Advanced Workbook Idaho National Laboratory

| 13 | User-Defined Model Types

Workshop Objectives

This Model Type workshop accompanies Section 13 in the Advanced SAPHIRE training manual. The workshop
objectives are to investigate the user-defined Model Type features of SAPHIRE 8.

Workshop Instructions

Using the DEMO-ADV project, a new model type is created and its use in event trees and fault trees is investigated.

1. Use the DEMO-ADV project. Go to Project → Model Types and select Add Model Type from the pull-down menu

on the Model Type dialogue and select Go.

2. Use the Model Type Edit dialogue to name the

model type EXAMPLE, select a color that is
different than the RANDOM model type and give
it a Description of Example Model Type and an
ID of EX. Select OK and you’re ready to use this
new model type.

 63

SAPHIRE Advanced Workbook Idaho National Laboratory

3. Build an event tree with the following tops:

Top Name Description
Initiating Event INIT-MT-EX Model Type Initiating Event
Top #1 MT-EX-TOP1 System 1 (Model Type)
Top #2 MT-EX-TOP2 System 2 (Model Type)

Add the branches and end states as below:

 64

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Build the two fault trees in the event tree with the following components using the RANDOM (default) model type
and leave the basic event probabilities as default for now.

 65

SAPHIRE Advanced Workbook Idaho National Laboratory

5. Open up the initiator Basic Event “INIT-MT-EX” for editing and select the Applicability tab. Change the Model
Type to EXAMPLE. Then select the Failure Model tab and change the Frequency to 0.5 and click Apply or OK.

The value field for ModelType in the Failure Model tab for INIT-MT-EX should now show the color of the model type
selected.

• Note that SAPHIRE will only allow one model type to be used for an initiating event and the current form
allows you to select more than one model type. If more than one model type is selected SAPHIRE will use
the one that is first alphabetically, so be sure to de-select all model types other than the one you want to use
for initiating events.

 66

SAPHIRE Advanced Workbook Idaho National Laboratory

6. Modify the basic events with the following values:

• All events will have Failure Model = Failure Probability
• All events will be applicable to both EXAMPLE and RANDOM Model Types

Basic Event Model Type Probability Uncertainty
MT-EX-COMP1 EXAMPLE

RANDOM
2.000E-02
5.000E-03

Beta, b = 200
Log Normal, EF = 5

MT-EX-COMP2 EXAMPLE
RANDOM

1.000E-01
2.000E-01

Point Value
Point Value

MT-EX-COMP3 EXAMPLE
RANDOM

8.000E-02
2.000E-01

Point Value
Point Value

MT-EX-OPERATOR EXAMPLE
RANDOM

6.000E-03
7.000E-04

Point Value
Point Value

MT-EX-RECOVERY EXAMPLE
RANDOM

5.000E-01
5.000E-01

Point Value
Point Value

 67

SAPHIRE Advanced Workbook Idaho National Laboratory

7. To view the Model Type, the analyst will have to solve the Fault Tree using that Model Type and then SAPHIRE will
default to this Model Type (the drop down option does not allow to change from one Model Type to another unless
it has been invoked):

 68

SAPHIRE Advanced Workbook Idaho National Laboratory

8. Use File  View Expanded Model Types to see all Model Types used in the fault tree:

 69

SAPHIRE Advanced Workbook Idaho National Laboratory

9. Solve the MX-EX-TOP1 fault tree for the EXAMPLE Model Type by selecting ONLY EXAMPLE in the solve cut
sets dialogue.

• NOTE that there is an option to select multiple model types by checking their boxes in the solve screen. If

EXAMPLE and RANDOM were selected, SAPHIRE would solve the tree shown previously in the Expanded
Model Types. Typically we are concerned with just one model type at a time. Practice solving for the two
different model types.

 70

SAPHIRE Advanced Workbook Idaho National Laboratory

• Here are the expanded cut sets for MT-EX-TOP1 solved for the EXAMPLE model type:

• Notice that “{EX}” is appended on the end of each basic event to denote that the basic event is susceptible
to the EXAMPLE model type (Select the Show MT option).

 71

SAPHIRE Advanced Workbook Idaho National Laboratory

10. Solve the MT-EXAMPLE event tree for the EXAMPLE Model Type by selecting ONLY EXAMPLE in the solve cut
sets dialogue.

• Here are the sequences for MT-EXAMPLE solved for the EXAMPLE model type:

• These sequences are only available in the EXAMPLE model type

 72

SAPHIRE Advanced Workbook Idaho National Laboratory

| 14 | The Large Event Tree Methodology

Workshop Objectives

The Large Event Tree Methodology workshop accompanies Section 14 in the Advanced SAPHIRE training manual. The
workshop objectives are to gain experience using the large event tree methodology by creating and analyzing an example
case in SAPHIRE.

Workshop Instructions

A new project will be created using the project name LET-DEMO. Within this project, create three event trees, add event
tree rules, and develop fault tree flag sets. Then, generate the sequence logic, evaluate the sequence “cut sets,” and
view the results.

1. Open up the DEMO-ADV project in SAPHIRE 8 and use the main menu File → Save As… option to create a new

folder called LET-DEMO and save the DEMO project there.

 73

SAPHIRE Advanced Workbook Idaho National Laboratory

C
l
i
c
k

S
k
i
p

l

Click Skip

Click OK

 74

SAPHIRE Advanced Workbook Idaho National Laboratory

2. Change the project name (Project → Modify) to LET-DEMO for the project in the LET-DEMO folder and archive
the project in the current LET-DEMO folder.

3. Create the three event trees shown below. Save each event tree using their respective event tree name shown.

Remember to include the end states and transfers in the event trees.

The "Initiating Event" Tree “named L-LOSPIE”

The "Support System" Tree
“named L-SUPP”

The "Plant Response" Tree “named L-LOSP”

 75

SAPHIRE Advanced Workbook Idaho National Laboratory

4. Create the following ECS fault trees. To create these fault trees, go into Fault Trees list panel and highlight the
ECS fault tree, right click, and select Edit Logic. Then save the fault tree using File → Save As and type in the
new fault tree name (i.e., ECS-0) (There is a check box to have SAPHIRE rename gates, if unchecked SAPHIRE
will leave gate names the same and descriptions will stay. Unchecking this option is OK, since the fault tree will not
be linked to the event tree logic). (Perform this step to create the following fault trees.)

 ECS-0 ECS-A ECS-B ECS-AB

5. Perform the same process as step 4 to create the following CCS fault trees.
 CCS-0 CCS-A CCS-B CCS-AB

6. Create the following diesel generator fault trees and TANK fault tree using the logic specified in the Advanced
SAPHIRE training manual.

 DG0 DG1 DG2 DG3 TANK

7. Create the following fault tree flag sets to be used to trim the fault tree logic in order to generate the appropriate
split fraction probability for the event tree.

Flag Set Name Basic Events House Event Identifier

FT-FLAG-0 S-DGN-FR-A
S-DGN-FS-A
S-DGN-FR-B
S-DGN-FS-B
S-TNK-FC-T1

FALSE
FALSE
FALSE
FALSE
FALSE

FT-FLAG-A S-DGN-FR-A
S-DGN-FS-A
S-DGN-FR-B
S-DGN-FS-B
S-TNK-FC-T1

TRUE
TRUE
FALSE
FALSE
FALSE

 76

SAPHIRE Advanced Workbook Idaho National Laboratory

Flag Set Name Basic Events House Event Identifier

FT-FLAG-B S-DGN-FR-A
S-DGN-FS-A
S-DGN-FR-B
S-DGN-FS-B
S-TNK-FC-T1

FALSE
FALSE
TRUE
TRUE
FALSE

FT-FLAG-AB S-DGN-FR-A
S-DGN-FS-A
S-DGN-FR-B
S-DGN-FS-B
S-TNK-FC-T1

TRUE
TRUE
TRUE
TRUE
FALSE

8. Assign the fault tree flag sets to the appropriate fault tree for the calculation process. This is performed by

highlighting the fault tree in the Fault Trees list panel, right clicking and selecting Edit Properties. Click the drop
down box under Default Flag Set and selecting the appropriate flag set. Perform this step for each fault tree.

Flag Set Name Fault Tree

FT-FLAG-0 ECS-0
CCS-0

FT-FLAG-A ECS-A
CCS-A

FT-FLAG-B ECS-B
CCS-B

FT-FLAG-AB ECS-AB
CCS-AB

9. Generate fault tree cut sets for all of the new fault trees (Fault Trees list panel, highlight the fault trees, right click

and select Solve with no truncation.

 77

SAPHIRE Advanced Workbook Idaho National Laboratory

10. Modify the Failure Model for the new DG, ECS and CCS fault trees by changing the Basic Events filter to show All
and then highlight the fault tree top event and select Edit Basic Event (or double click the fault tree top). Change
the Failure Model from Failure Probability (1) to Use mincut upperbound of fault tree with same name (S).
Also, change the process flag for these top events to Y Failure => Developed Event | Success => /Developed
Event.

11. Set the L-LOSP-IE initiating event frequency to 2.3/yr.

12. From the Event Tree list panel, highlight the L-SUPP event tree (change the event tree filter to show All), right click

and select Edit Linkage Rules, enter the support system event tree rules for the L-SUPP event tree.
 | Support system rules
 if always then
 /DG = DG0;
 DG[1] = DG1;
 DG[2] = DG2;
 DG[3] = DG3;
 Endif

13. From the Event Tree list panel, highlight the L-LOSP event tree, right click and select Edit Linkage Rules, enter
the plant response event tree rules for the L-LOSP event tree.

 | Plant response system rules
 | THE RULES CAN BE WRITTEN IN TERMS OF BRANCH IDENTIFIERS OR SUBSTITUTED NAMES
 if /DG then
 /ECS = ECS-0;
 ECS = ECS-0;
 /CCS = CCS-0;
 CCS = CCS-0;
 elsif DG[1] then
 /ECS = ECS-B;
 ECS = ECS-B;
 /CCS = CCS-B;
 CCS = CCS-B;

 78

SAPHIRE Advanced Workbook Idaho National Laboratory

 elsif DG2 then
 /ECS = ECS-A;
 ECS = ECS-A;
 /CCS = CCS-A;
 CCS = CCS-A;
 else
 /ECS = ECS-AB;
 ECS = ECS-AB;
 /CCS = CCS-AB;
 CCS = CCS-AB;
 endif

14. Link the L-LOSPIE event tree using the Large Event Tree Methodology options by highlighting the L-LOSPIE event
 tree, right click and select Link.

The report should look like that shown below.

 79

SAPHIRE Advanced Workbook Idaho National Laboratory

15. The sequence “cut sets” may be quantified (but not solved) since they exist following the linking process. To

quantify these sequences, highlight the L-LOSPIE event tree, right click and select Solve. Uncheck the “Solve for
Cut Sets” box and make sure the “Quantify Cut Sets“ box is checked.

16. To view the cut sets, highlight the event tree, right click, and select the View Cut Sets option. (The report shown

below is from the Publish → Event Tree Reports → Detailed Cut Sets (by Sequence).)

 80

SAPHIRE Advanced Workbook Idaho National Laboratory

 81

SAPHIRE Advanced Workbook Idaho National Laboratory

 82

	1047
	SAPHIRE 8 Advanced 2016 Manual
	Advanced SAPHIRE 8
	Modeling Methods for Probabilistic Risk Assessment via the Systems Analysis
	Program for Hands-On Integrated Reliability Evaluations (SAPHIRE) Software
	Curtis Smith
	Idaho National Laboratory
	February 2016
	SAPHIRE – The “Big Picture”
	NOTICE
	CONTENTS
	| 1 | INTRODUCTION
	1.1. Overview of the Advanced SAPHIRE Material
	1.2. SAPHIRE - What Is It and What Can It Do?
	1.3. The Class Workbook
	1.4. Installation of SAPHIRE

	| 2 | DATABASE CONCEPTS
	2.1 SAPHIRE Projects
	2.1. Nominal Case versus Analysis Case Data
	2.3. Change Sets
	2.3.1. Rules for Creating and Using Change Sets
	2.3.2. Class Changes
	2.3.3. Singles Changes

	2.4. Flag Sets
	2.4.1. Making a Flag Set
	2.4.2. Using the Flag Set

	2.5. Dynamic Flag Sets
	2.6. Hierarchical Flag Sets

	Project (Definition) -
	| 3 | BASIC EVENT INFORMATION
	3.1. Modify Basic Events
	3.2. Compound Events
	3.3. Common-Cause Failure Compound Events
	3.3.1. Beta Factor Model
	3.3.2. Multiple Greek Letter (MGL) Model
	3.3.3. Alpha Factor Model
	3.3.4. R- calc Common-Cause Failure Module
	3.3.4.1. Entering CCF Data into R-calc
	3.3.4.2. Viewing RASP Result Details
	3.3.4.3. RASP CCF Calculator Tool
	3.3.4.4. RASP CCF Equivalent Fault Tree Logic

	3.3.5. IE Common Cause Failure (Q)
	3.3.5.1. Entering CCF Data into the Q-failure model
	3.3.5.2. Viewing IE CCF Result Details

	3.4. Human Error Event
	3.5. Convolution Basic Events
	3.6. Base Units used in Data
	3.7. Reference

	| 4 | EVENT TREE LINKAGE RULES EDITOR
	4.1. Linking Event Trees
	4.1.1. Linking
	4.1.2. Menus and Options for Linking Event Tree Sequences

	4.2. Introduction to the "Edit Linkage Rules" Rule Editor
	4.2.1. “Link Event Trees" Rules Nomenclature and Structure
	4.2.2. Link Event Trees Rules Examples
	"Macro" Structures
	Macros can streamline the development of complex rules. A macro is simply a statement to define a search criterion and assign a name to that search criterion. Examples are provided below.

	4.3. Changing Transfers Trees using Link Rules
	4.3.1. Using Eventree() option
	4.3.2. Using SeqTransfer() option

	4.4. Rules for Binary and Multiple-Split Branches
	4.5. Event Tree Linking Rule Keywords and Nomenclature
	4.6. “Edit Linkage Rules” Event Tree Editor
	4.7. “Project Linkage Rules” Editor
	4.8. “Top Event Substitution” Event Tree Graphic

	| 5 | POST PROCESSING RULES
	5.1. Post Processing Rules Editor Introduction
	5.2. Post Processing Rules Nomenclature and Structure
	5.2.1. Post Processing Rules Examples

	5.3. End Section Post Processing Rule Keyword
	5.4. Convolution Post Processing Rule Keyword
	5.5. Post Processing Rule Keywords and Nomenclature
	5.6. Fault Tree Post Processing Rules
	5.7. Event Tree Sequence Post Processing Rules
	5.8. A “Complicated” Post Processing Rule Example

	| 6 | END STATE ANALYSIS
	6.1. End State Analysis Approaches
	6.2. End States by Specifying Sequence End States
	6.2.1. Gather End State Cut Sets
	6.2.2. Options to Gather End States Cut Sets
	6.2.3. Description of End States list menu options

	6.3. End States via Partition Rules
	6.3.1. End State Partitioning Rules Nomenclature and Structure
	6.3.2. End State Partitioning Rules Examples

	6.4. Partition Rule Keywords and Nomenclature
	6.5. Partition Rule Example
	6.5.1. Applying the Partitioning Rules
	6.5.2. Using End State Analysis to Gather the Partitioned Cut Sets

	6.6. Reporting End State Results
	6.7. Resetting or Deleting Partition Rule End States
	6.8. Explore Origin from End States

	| 7 | SOLVING FAULT TREE CUT SETS
	Examples of Fault Tree Solve Options
	7.1. Fault Tree Cut Sets With No Truncation
	7.2. Fault Tree Cut Sets With Probability Truncations
	7.3. Fault Tree Specific Probability Truncation
	7.4. Fault Tree Cut Sets with Size Truncation
	7.5. Analyzing Fault Tree "Gate Level"
	7.6. Analyzing Fault Tree "Sub-trees"
	7.7. Treating a Fault Tree Gate as a Basic Event
	7.8. Treating a Fault Tree Gate as a Basic Event with an Appropriate Probability
	7.9. Treating a Fault Tree Gate as Failed
	7.10. Treating a Fault Tree Gate as Working
	7.11. Ignoring a Fault Tree Gate
	7.12. Using Flag Sets during Fault Tree Cut Set Solving
	7.12.1. To make a Flag Set
	7.12.2. To use a Flag Set

	7.13. Steps Performed During Fault Tree Solving

	| 8 | QUANTIFYING FAULT TREE CUT SETS
	8.1. Cut Set Quantification Approaches
	8.2. The Min/Max Approach to Quantifying Cut Sets
	8.2.1. Example Quantification Options
	8.2.2. Using the Min/Max Quantification Option

	| 9 | SOLVING EVENT TREE CUT SETS
	9.1. Solving Sequence Cut Sets
	Selecting Event Trees to Solve
	Selecting Individual Sequences to Solve
	Solve Sequence Cut Sets Dialogue

	9.2. Process Flags and Sequence Cut Set Generation
	9.3. Process Flag Example
	9.4. Flag Sets and Sequence Cut Set Generation
	 To make a Flag Set:

	9.5. “Dynamic” Flag Sets and Sequence Cut Set Generation
	9.5.1. "Dynamic Flag Set" Rule Nomenclature and Structure

	9.6. Dynamic Flag Set Keywords and Nomenclature
	9.6.1. To make a Dynamic Flag Set

	9.7. Hierarchical Flag Set Applications
	9.8. Other Rule Based Flag Set Applications
	9.9. Steps Used by SAPHIRE to Solve Sequences
	9.10. Example of Sequence and Fault Tree Flag Sets for Cut Set Solving

	NOTES
	| 10 | EDITING CUT SETS
	10.1. The Edit Cut Sets Option
	10.1.1. The Modify Cut Set Options

	| 11 | GENERAL ANALYSIS FOR SENSITIVITY STUDIES
	11.1. General Analysis Example

	| 12 | MUTUALLY EXCLUSIVE EVENTS
	12.1. Mutually Exclusive Events Introduction
	12.1.1. Mutually Exclusive Event Example
	12.1.1.1. Logic modification method

	12.2. Mutually Exclusive Event Removal via Post-processing Rules

	| 13 | USING MODEL TYPES
	13.1. User Defined Model Type
	13.1.1. Logic Models
	13.1.1. Basic Event Modifications

	13.2. Solve Logic Models Using New Model Type
	13.2.1. Fault Trees
	13.2.2. Event Trees

	13.3. FIRE and FLOOD Model Types
	13.4. SEISMIC Model Type

	| 14 | THE LARGE EVENT TREE METHODOLOGY
	14.1. Large Event Tree Methodology Introduction
	14.2. Large Event Trees (i.e., Initiating Event Trees, Support System Event Trees, and Plant Response Event Trees)
	14.2.1. The Support System Tree
	14.2.2. The Plant Response Tree

	14.3. Top Event Split-Fraction Probability Assignment
	14.3.1. Assign the split-fraction probabilities directly
	14.3.2. Assign probabilities using “S” calculation

	14.4. Using "Link Event Tree" Rules to Assign Split-Fractions
	14.4.1. Assigning the Support System Split-Fractions
	14.4.2. Assigning the Plant Response Split-Fractions

	14.5. Truncating Sequences during Event Tree Linking
	14.5.1. Generating the Sequence “Cut Sets” During Event Tree Linking
	Appendix A – Link, Post Processing & Partition Rule Keyword List

	SAPHIRE 8 Advanced 2016 Workshop
	SAPHIRE 8 Advanced
	Workbook
	Curtis Smith
	Idaho National Laboratory
	February 2016
	SAPHIRE – The “Big Picture”
	NOTICE
	CONTENTS
	| 1 | INTRODUCTION
	| 2 | Database Concepts
	| 3 | Basic Event Information
	| 4 | Linking Event Trees
	| 5 | Post Processing Rules
	| 6 | End State Analysis
	| 7 | Solving Fault Tree Cut Sets
	| 8 | Quantifying Fault Tree Cut Sets
	| 9 | Solving Event Tree Cut Sets
	| 10 | Editing Cut Sets
	| 11 | General Analysis for Sensitivity
	| 12 | Mutually Exclusive Events
	| 13 | User-Defined Model Types
	| 14 | The Large Event Tree Methodology

