

Overview on ART-GCR DoE program experiments and software validation efforts

June 2024

Paolo Balestra

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Overview on ART-GCR DoE program experiments and software validation efforts

Paolo Balestra

June 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

June 20, 2024

Overview on ART-GCR DoE program experiments and software validation efforts

Paolo Balestra

ART-GCR Methods Lead at Idaho National Laboratory

Experimental Testing and Validation for Design and Safety Analysis Computer Codes for Small Modular Reactors

Interregional Workshop

June 18-21, 2024

Content

- ART-GCR DoE Program Overview
- NSTF Facility Overview
- NSTF M&S and Validation Efforts
- HTTF Facility Overview
- HTTF Benchmark

DOE ART-GCR Program

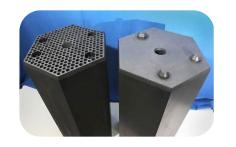
Fuel development and qualification

- Establish a domestic commercial TRISO fuel fabrication capability.
- Generate UCO TRISO fuel performance data to support fuel qualification.

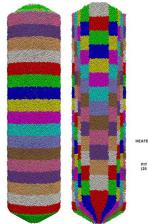
Graphite qualification

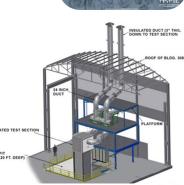
- Select, irradiate, and characterize existing nuclear grades.
- Qualify nuclear grade graphite and establish design rules for use in HTGR core.

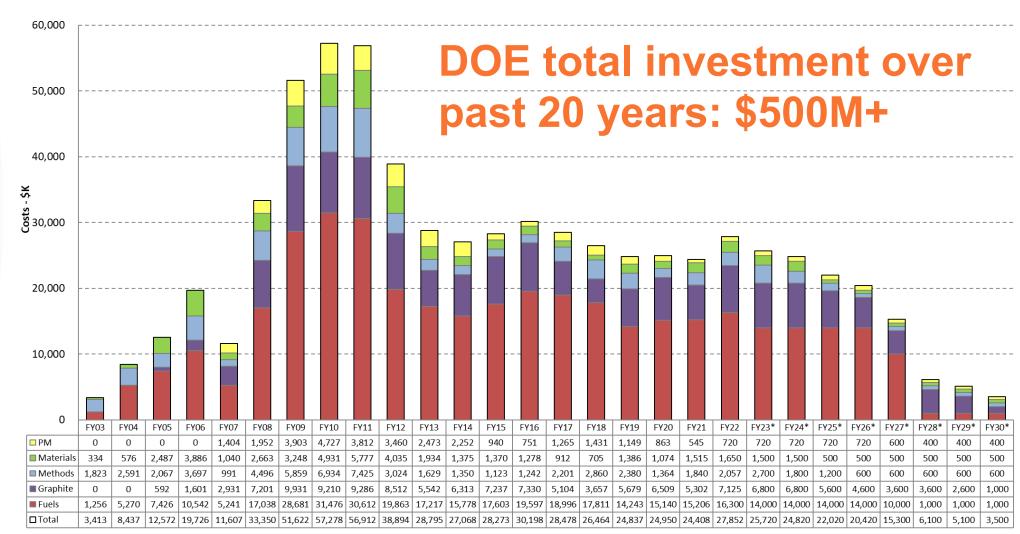
Advanced materials codification


 Achieve ASME codification of alloys and design methods for high-temperature duty pressure vessel, heat exchanger, and other primary circuit components.

Design, methods and validation


- Develop prismatic and pebble bed HTGR core analysis methods
- Validate codes via experiments, code-to-code benchmarks, and uncertainty analyses.





ART-GCR Historical Costs and Projected Funding

Design, Methods and Validation

Methods Experimental Validation:

Support experiments such as HTTF tests, NSTF campaign and HTGR related NEUPs to fill the gaps of the validation matrix for High Temperature Gas Cooled reactors M&S tools.

Reactor analysis:

Development/assessment of methodologies for HTGRs modeling to improve fidelity or simplify the analyst workflow. An example of that are the testing on the engineering scale of start-up, run-in and equilibrium core calculation capabilities.

International collaborations:

Leveraging international collaborations to exchange data for validation of HTGRs M&S tools. Operational reactor data such as the HTTR LOFC tests and HTR-PM startup or data from integral effect test facilities are extremely rare but invaluable to prove the validity of the codes.

VHTR - Computational Methods, Validation & Benchmarks

- 5 Work Packages
 - WP1: PIRT
 - WP2: CFD
 - WP3: Reactor physics
 - WP4: Chemistry and Transport
 - WP5: Reactor and Plant Dynamics

CMVB PA	EU O	JP •	CN ★3	KR	US	UK	CA ∳	AU ≱⊭ ∵ *
	Р	Р	Р	Р	Р	0	0	0
Date		Event						
2018.10.05	The Pr	roject Plan ha	as been appro	oved by all SS	C.			
End of 2020		• The confirmation of CMVB PA has been received from each signatory, comments have been received from the signatories: EU, Japan, China, Korea, and US.					ive been	
2021.05.14	• The SS	The SSC members approved the updated project plan concerning the subject of signatories						
2021.09.01-02	_	 Signatory from KAERI (05/21/2021), JAEA (06/17/2021), JRC (07/15/2021), and INET (08/31/2021). 						
2022.09.19-20		 At the 25th CMVB PMB Meeting Canada joined as observer and signatory from the DoE was announced by the end of the 2022. 					DoE was	
2023.03.20-21	 Signatory completed KAERI (05/21/2021), JAEA (06/17/2021), JRC (07/15/2021), INET (08/31/2021), <u>US (11/30/2022)</u>. Canada and UK expressed interest in becoming participant members, Frederik Reitsma is the new representative for EU and the new technical secretariat Franco Michel-Sendis joined the group. 							
2023.10.10-11	 Australia Joined the VHTR-CMVB as an Observer, OKITA <u>Shoichiro</u> is the new representative for Japan. 						entative for	
2024.04.15-18	Dr. Minh Tran is the new observer for Australia							

Nuclear Energy University Program (NEUP) Thermal-Fluid Experiments for HTGRs.

• From FY2009 to FY2023, there are in total 35 DOE NEUP projects focusing on the thermal-fluid experiments related with High-Temperature Gas-cooled Reactor (HTGR), producing a large amount of high-quality validation data.

					SCENARIOS			
	FINISHED NEUP PROJECT # in RED ONGOING NEUP PROJECTS # in BLUE		NORMAL OPERATION	PRESSURIZED LOSS OF FLOW	DEPRESSURIZED LOSS OF FLOW	LOAD CHANGE (TRANSIENT)	STEAM GENERATOR TUBE BREAK	
	ING	LOWER PLENUM	12-3582 15-8627	16-10244	16-10244			
	PLENUM MIXING / JET IMPINGEMENT	UPPER PLENUM	12-3759	18-15058	18-15058			
	PLE /JET	PLENUM TO PLENUM	13-4953 16-10509 23-29598	20-20074	20-20074	23-29598		
	INGRESS	AIR INGRESS		15-8205 20-19896	09-784 15-8205 13-4884 17-13115 14-6435 20-19896		14-6786 19-17183	
A		STEAM/WATER INGRESS		18-15058	18-15058 21-24111		14-6786	
PHENOMENA	CONJUGATE HEAT TRANSFER (CORE)	FORCED CONVECTION	09-771 21-24104 11-3081 21-24287 16-10509	11-3218 21-24104 21-24287	11-3218 21-24156			
PH		NATURAL CONVECTION	14-6794 16-10509	14-6794	14-6435 21-24156			
	RCCS PERFORMANCE		09-781 09-817 11-3079 11-3079	20-19896	20-19896	09-781 11-3079 09-817 13-5000	• .,	10 m
	CORE BYPASS FLOW		09-830 15-8627 20-19968	15-8205	09-840 15-8205			
	FLUID STRATIFICATION				14-6435			
	MULTI-PHYSICS (FISSION PRODUCT, SAFETY ANALYSIS, THERMAL-MECHANICAL, ETC.)		20-19896 22-26607	20-19896	19-17037 21-24111 20-19896 21-24156	22-26607		

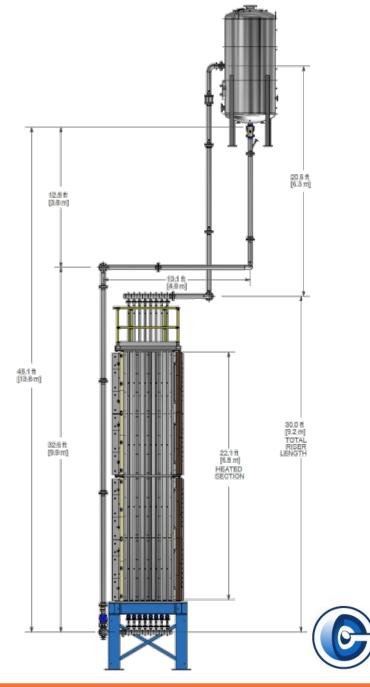
Content

- ART-GCR DoE Program Overview
- NSTF Facility Overview
- NSTF M&S and Validation Efforts
- HTTF Facility Overview
- HTTF Benchmark

NSTF

Natural Convection Shutdown Heat Removal Test Facility (NSTF) was initiated in support of DOE programs: NGNP, SMR, and ART


- Air-based testing program (completed, FY13 FY16)
- Water-based testing program (on-going, FY18 to present)
- Top level objectives of NSTF program at Argonne:
 - passive safety and decay heat removal for advanced concepts
 - generate NQA-1 qualified licensing data for industry
 - provide benchmark data for code V&V
- Concurrent with a broader scope and multiple collaborators
 - Experimental facilities at scales (½, ¼, etc.) for both air and water
 - Complimenting CFD modeling and 1D system level analysis
 - Collaborating towards development of a central data bank



Water facility overview

- Natural circulation boiling water test loop
 - Operating modes of natural or forced
- 4,260 liter water storage tank
 - H/D ratio of 2.0, rated to 2 bar over pressure
- Heat transfer panel:
 - Eight riser tubes and nine heat transfer panels
 - 316L stainless tubes, 1018 carbon fins
 - Full penetration HLAW weld to risers
- Network piping: 4.0" Sch. 40, 316L stainless
- ½ axial scale
 - Total height of 18 m (59-ft)
 - Heated length of 6.7 m (22-ft)

Program Quality Assurance

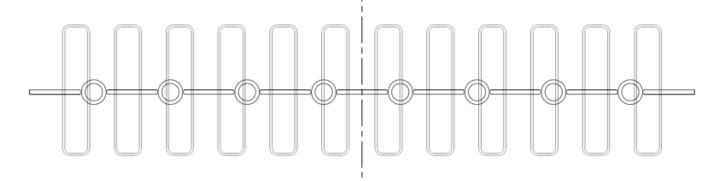
- Regular audits, or assessments, maintain compliance to NQA-1
 - Following requirements of ASME NQA-1 2008 with 2009 addendum
 - Small team of dedicated individuals with strong management support
 - Primary purpose is generating and packaging high-quality data

<u>Date</u>		Audit Type	<u>e</u>	<u>Lead Auditor</u>
Spring 2014, 03/18 – 20/2014	□MA	☐ Internal	✓ External	Kirk Bailey (INL)
Winter 2014, 02/16 – 18/2015	☑ MA	☐ Internal	☐ External	Roberta Riel (ANL)
Summer 2015, 07/20 – 23/2015	□MA	✓ Internal	☐ External	Roberta Riel (ANL)
Fall 2015, 11/3 – 5/2015	□MA	☐ Internal	✓ External	Alan Trost (INL)
Winter 2016, 01/21/2016	☑ MA	□ Internal	☐ External	Roberta Riel (ANL)
Summer 2016, 06/29 – 30/2016	□MA	✓ Internal	☐ External	Roberta Riel (ANL)
Fall 2016, 11/29 – 30/2016	☑ MA	□ Internal	☐ External	Roberta Riel (ANL)
Fall 2017, 11/07 – 09/2017	□MA	✓ Internal	☐ External	Roberta Riel (ANL)
Spring 2018, 02/06 – 08/2018	□MA	☐ Internal	☑ External	Michelle Sharp (INL)
Summer 2018, 05/30/2018	☑ MA	□ Internal	☐ External	Roberta Riel (ANL)
Winter 2019, 01/29 – 30/2019	□ MA	✓ Internal	☐ External	Roberta Riel (ANL)
Winter 2020, 02/18 – 19/2020	☑ MA	☐ Internal	☐ External	Roberta Riel (ANL)
Spring 2020, 03/17 – 19/2020	□MA	☐ Internal	☑ External	R. Dieter (Kairos)
Fall 2020, 08/25 – 27/2020	□MA	✓ Internal	☐ External	Roberta Riel (ANL)
Summer 2021, 09/07 – 09/2021	□MA	✓ Internal	☐ External	Roberta Riel (ANL)
Spring 2022, 4/25 – 28/2022	☑ MA	☐ Internal	☐ External	Roberta Riel (ANL)
Spring 2023, 02/21 – 23/2023	□MA	□ Internal	✓ External	Michelle Sharp (INL)

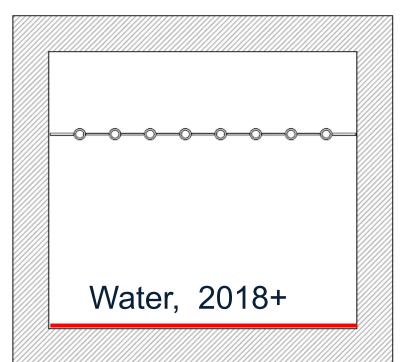
Water-based Accomplishments todate

- Since June 2018, logged 1,092-hr of active heated operation over 49 test cases
 - 32 data-quality matrix cases (22 Accepted); 17 Scoping/misc.
- Published 20 technical reports, conference proceedings, and journal papers
- Formal industry support with Kairos via CRADA; Framatome via ARPA-E, Boston Atomics/MIT via ARC-20; provided JAEA with validation data; advised Westinghouse on LFR DHR

Testing Summary


	<u>Water</u>	<u>Air</u>
Duration	54-month	33-month
Active Hours	1,092-hr	2,250-hr
Data-Quality	32	27
Accepted	22	16
Trending	7	7
Failed	3	4
Total Runs	49	40
·	<u> </u>	

Publication Summary

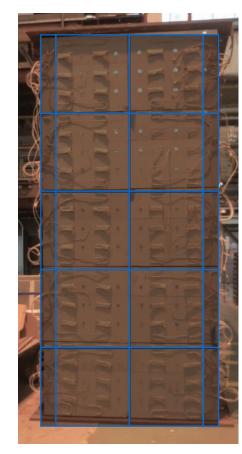

	<u>Water</u>	<u>Air</u>
Technical reports	8	9
Conference proceedings	10	12
Journal papers	2	5
Patents	0	1

Air/water comparison

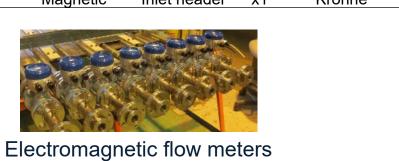
Air, 2010 - 2016

NSTF Components

Primary tank installed 10.5-m above grade


New ceramic heater plate assembly (1 of 20)

Bead blasted cooling panel surface


Panel hoisted vertical prior to install

One half of cavity completed with TC and heater assemblies

Water Instrumentation

Measurement	Sensor	Location	Qty.	Mfg.	Model	Range
Flowrate	Magnetic	Inlet header	x1	Krohne	Optiflux 4000	±5kg/s
Flowrate	Magnetic	Inlet riser	x8	Krohne	Optiflux 4000	±1kg/s
Static head	Strain	Inlet header	x1	Rosemount	3051S	0 - 10bar
Steam pressure	Strain	Gas space	x1	Rosemount	3051S	0 - 2bar _{abs}
ΔΡ	Strain	Chimney	x2	Rosemount	3051S	±6kPa
ΔΡ	Strain	Risers	х3	Rosemount	3051S	±62kPa
Liquid level	Strain	Tank	x1	Rosemount	3051S	0 - 3m
Void fraction	Optical	Chimney	x2	RBI	Twin-tip	0 - 100%
Void fraction	γ-Density	Chimney	x1	ThermoFisher	DensityPRO	0 - 100%
Temperature	RTD	Fluid	x4	Omega	UP1/10DIN	0 - 250°C
Temperature	T-type TC	Fluid	x128	ARi	T-31N	0 - 400°C
Temperature	K-type TC	Test section	x24	ARi	T-31N	0 - 600°C
Temperature	K-type TC	Strain	x286	ARi	Silica20AWG	0 - 600°C
Temperature	DTS	Test section	x20	LUNA	ODiSI-A	0 - 300°C
Water pH	pH meter	Inlet header	x1	Emerson	RBI547	0 - 14pH
$TrDOO_2$	Amperometric	Inlet header	x1	Emerson	499A	0.1ppb-20ppm
Conductivity	Magnetic	Inlet header	x1	Krohne	Optiflux 4000	1 – 6000µS/cm

Legend

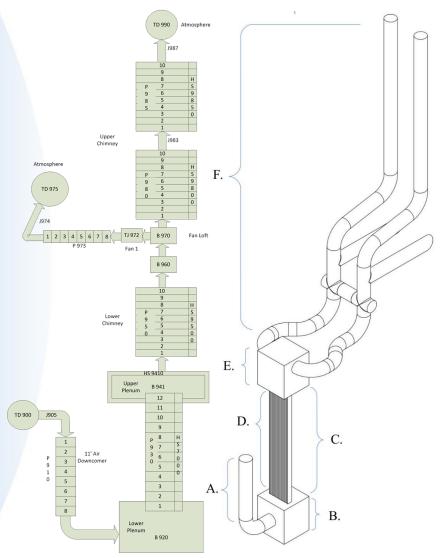
Flow meter

Static pressure

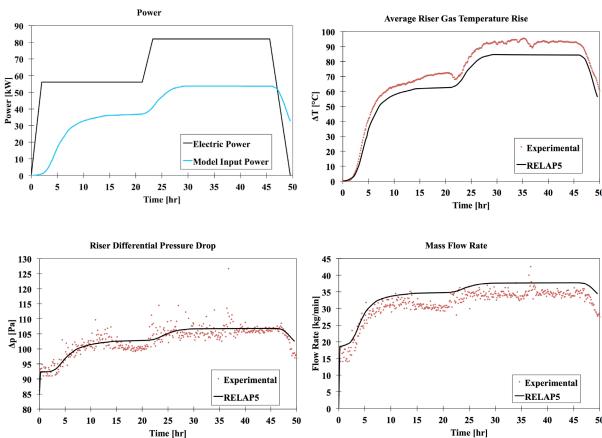
Flow meter

Thermocouple (pt.)

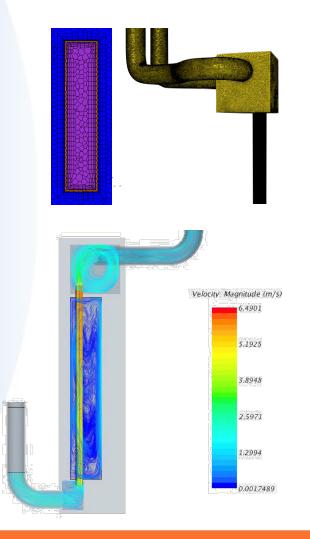
Thermocouple (rake)


® Water Chemistry
Void RBI
Voensometer
Steam Quality
Sight Glass
Control Valve
Heated Core
Pump
W 3-way valve

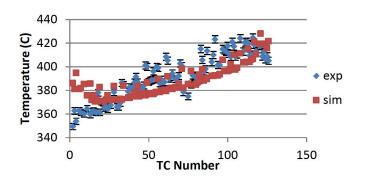
Content


- ART-GCR DoE Program Overview
- NSTF Facility Overview
- NSTF M&S and Validation Efforts
- HTTF Facility Overview
- HTTF Benchmark

RELAP5 Simulation of Air- NSTF Run011 Bucknor, M., Hu, R., Lisowski, D., & Kraus, A. (2016). Co



Bucknor, M., Hu, R., Lisowski, D., & Kraus, A. (2016). Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility. Argonne National Lab.(ANL), Argonne, IL (United States).



STARCCM+ Simulation of Air- NSTF Run011 (56kW)

Kraus, A. R., Hu, R., Lisowski, D. D., & Bucknor, M. (2016, June). Simulation of Buoyancy-Driven Flow for Various Power Levels at the NSTF. In International Conference on Nuclear Engineering (Vol. 50046, p. V004T10A022). American Society of Mechanical Engineers.

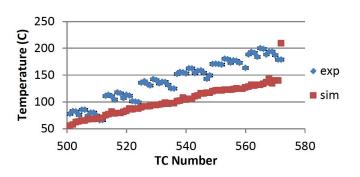
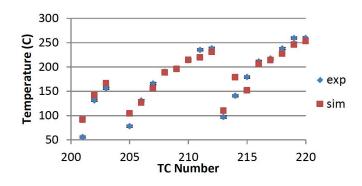



FIG. 4. Temperatures for the heated surface (top) and west wall (bottom) for the base forced-flow case.

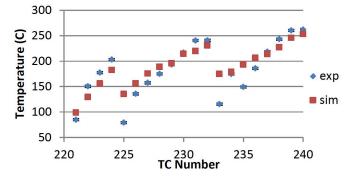
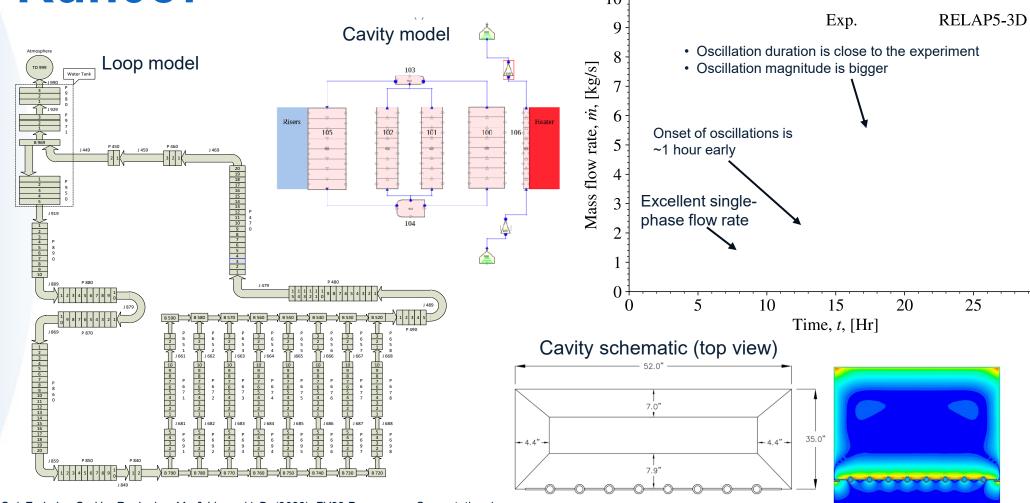



FIG. 5. Temperatures for the north (top) and south (bottom) cavity walls for the base forced-flow case.

RELAP5-3D Simulation of Water-NSTF Run057

30

STARCCM+ Simulation of Water-NSTF

Run052 (51.6 kW)

Lv, Q., Kraus, A., Ooi, Z. J., Hu, R., & Lisowski, D. (2021). Progress on Computational Modeling of Water-Based NSTF (FY2021) (No. ANL-ART-235). Argonne National Lab.(ANL), Argonne, IL (United States).

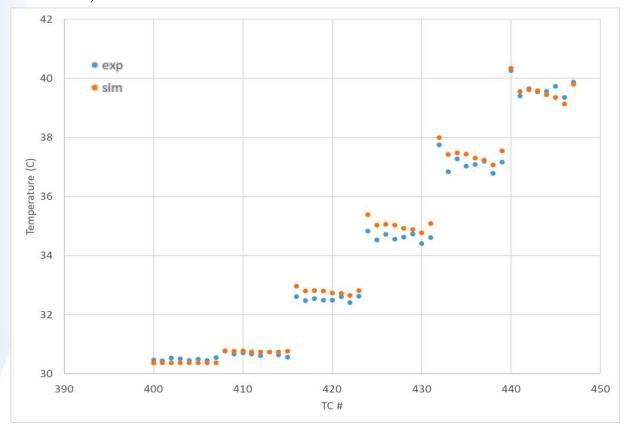
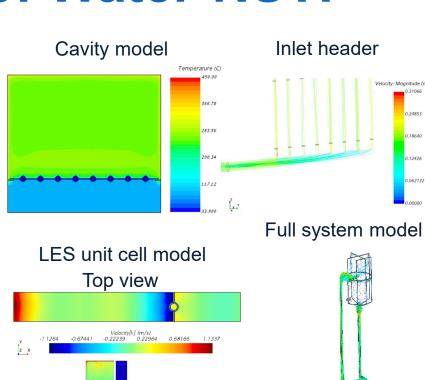
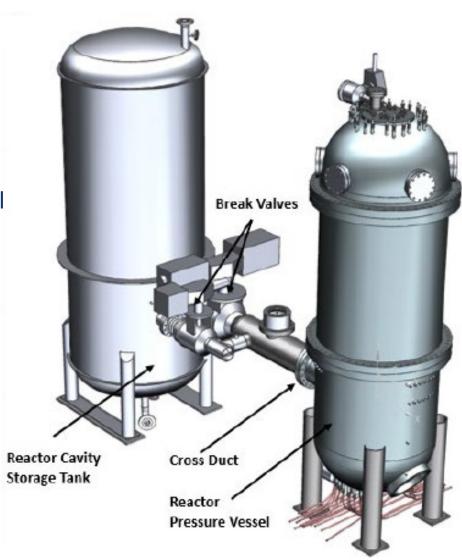
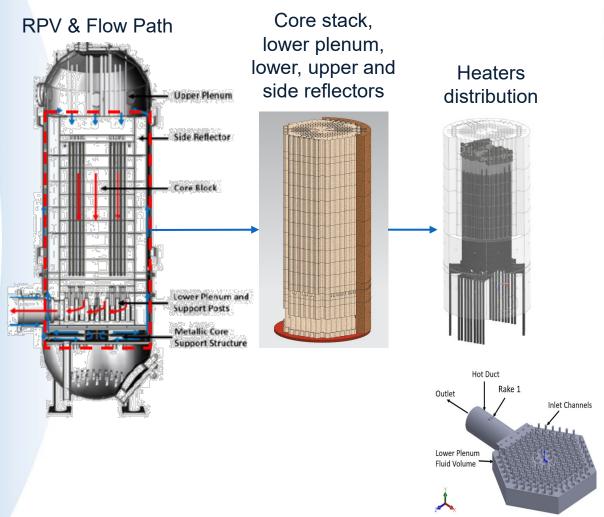



Figure 3-16. Riser liquid temperatures for the case with headers modeled.


Content

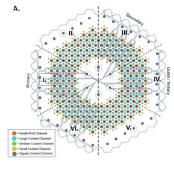
- ART-GCR DoE Program Overview
- NSTF Facility Overview
- NSTF M&S and Validation Efforts
- HTTF Facility Overview
- HTTF Benchmark

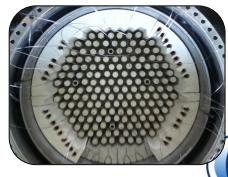


OSU High Temperature Test Facility

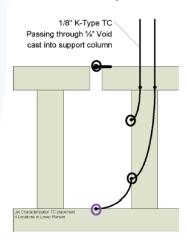
- Integral test facility
- Provides data for system code validation
- Primarily designed to model the DCC transient
 - Variety of break size and location
 - Four distinct phases
 - Reactor Cavity Cooling System as boundary condition
- Other scenarios can be examined: PCC and Normal operation
 - Working fluids: Helium and Nitrogen
- Reference design: MHTGR
- Facility Scaling
 - 1/4 length scale
 - 1/4 diameter scale
 - 1/8 pressure scale (0.8 MPa)
 - Prototypical temperatures (Tmax =1400°C, Tin=259°C, Tout=687°C)
 - Electrically Heated, Power ~2.2 MW
- Operates under NQA-1 program

OSU HTTF

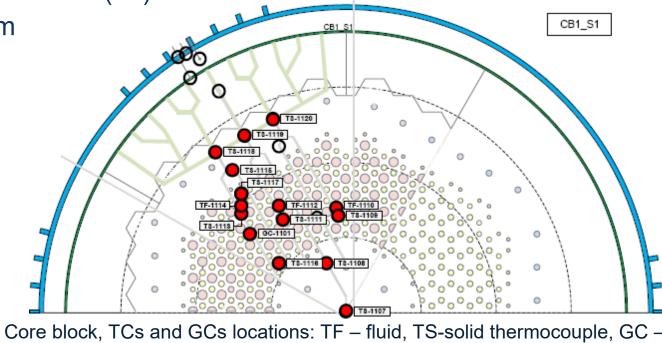

Upper Plenum


Core Block

Lower Plenum



HTTF RPV Internals


- HTTF has ~429 sensors that can be used for matrix testing
- Type K, R thermocouples (340)
- Pressure Transmitters, Voltage Taps, Mass flow meters

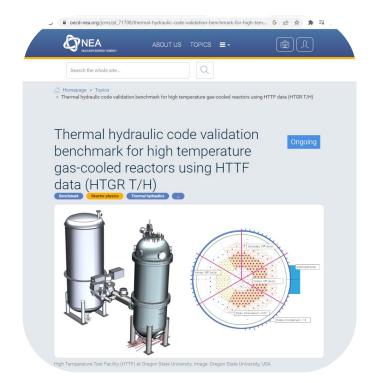
Gas Concentration Instruments (47)

Data Acquisition System

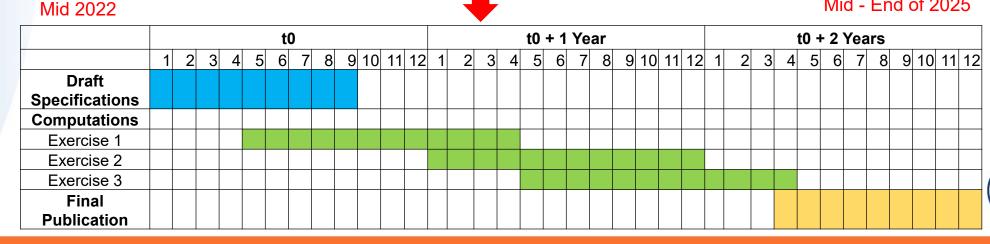
LP, instrumented post TCs locations

HTTF – Tests Performed

Test #	Procedure		
	#	Test title	Phenomena
1	PG-01	Pre-Operation	Characterization
2	PG-02	Circulator and System Form Loss Characterization	Characterization
3	PG-06	Facility Gas Conditioning	Characterization
4	PG-07A	Primary Loop and RCST Volume Determination	Characterization
5	PG-08	Break Valve Characterization	Characterization
6	PG-09	Steam Generator Secondary Side Volume Determination	Characterization
7	PG-21	Lock Exchange Flow and Diffusion Test with 500°C average Gas Temp	DCC
8	PG-22	Lock Exchange Flow and Diffusion Test with 125°C average Gas Temp	DCC
9	PG-23	Lock Exchange Flow and Diffusion Test with 375°C average Gas Temp	DCC
10	PG-24	Lock Exchange Flow and Diffusion Test with 250°C average Gas Temp	DCC
11	PG-26	Low Power (<350kW) Double Ended Inlet-Outlet Crossover Duct Break, 2 Heaters	DCC
12	PG-27	Low Power (<350kW) Complete Loss of Flow, 2 Heaters	PCC
13	PG-28	Low Power (<350kW) Lower Plenum Mixing	Mixing
14	PG-29	Low Power (<350kW) Double Ended Inlet-Outlet Crossover Duct Break, Hybrid Heater	DCC
15	PG-30	Low Power (<350kW) Lower Plenum Mixing, Constant Temperature	Mixing
16	PG-31	Low Power (<350kW) Pressure Vessel Bottom Break with Restored Forced Convection	
		Cooling	DCC
17	PG-32	Low Power (<350kW) Asymmetric Core Heatup	Heatup
18	PG-33	Zero Power Long Term Cooldown	Cooldown
19	PG-34	Low Power (<350kW) Asymmetric Core Heatup Full Hybrid Heater	Heatup
20	PG-35	Low Power (<350kW) Zero Power Crossover Duct Exchange Flow and Diffusion	DCC

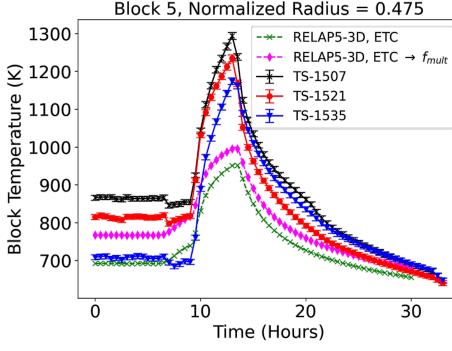

Content

- Program Overview
- NSTF Facility Overview
- NSTF M&S and Validation Efforts
- HTTF Facility Overview
- HTTF Benchmark



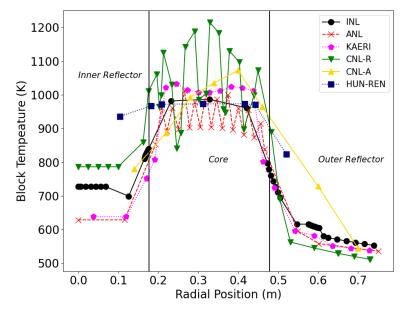
Benchmark Information

- https://www.oecd-nea.org/jcms/pl 71708/thermal-hydraulic-code-validation-benchmark-for-high-temperature-gas-cooled-reactors-using-httf-datahtar-t/h
- Code-to-code and code-to-data thermal-hydraulics code validation benchmark using available HTTF data
- Three exercises
 - Each exercise will include three problems
 - Three different code types, system codes (SYS), CFD codes, and system-to-CFD code couplings (COU)


Mid - End of 2025

PG-27 transient modeling

- Used conditions at 60 hours as t=0
- Transient temperature rise is always under-predicted
 - Under-predicted by 28-48%
- Peak temperatures are too low, even in locations where initial temperatures were too high
- Uncertainty in the heat capacity of the blocks is relatively low, so heat capacity is not the driving factor
- Temperature drop from 5-10 hours is likely due to increase in coolant flow rate in that time period. We do not model that flow increase



Measured|Standalone ETC|ETC + friction calibration temperature rise

	Inner Ring	Middle Ring	Outer Ring
Block 7	480 305 327	552 324 232	505 300 272
Block 5	487 297 317	504 306 317	453 263 232
Block 3	424 284 304	426 286 295	322 232 202

Benchmark results help understand code performance for gas-cooled reactors

- Code-to-code comparison: comparable predictions of behavior in the core but significantly different temperatures in the inner reflector
- international collaboration: United States, Canada, South Korea, and Hungary

Comparison of core ceramic block temperatures at the core midplane in HTTF during a full-power steady state as calculated by several institutions

Conclusions

- The NSTF (Natural Convection Shutdown Heat Removal Test Facility) and HTTF (High Temperature Test Facility) play crucial roles in validating software for high temperature gas cooled SMRs.
 - NQA-1 qualified licensing data for industry.
 - 38 accepted tests for NSTF and 20 for HTTF.
 - Initial validation efforts for CFD and system codes.
- More data are available trough the NEUP program and the other branches of the ART-GCR program.
- Synergies between the GIF VHTR-CMVB NEXSHARE and NEA Benchmarks.

Acknowledgments

• INL

 Gerhard Strydom, Ryan H. Stewart, Zachary M. Prince, Vincent M. Laboure, Javier Ortensi, Sebastian Schunert, Aaron S. Epiney, Sunming Qin, Cody J Perman, Joshua Hanopy, Ishita Trivedi, Robert Kile, Mustafa K. Jaradat, Jacob A. Hirschhorn, Ryan T. Sweet, Yifeng Che, Joshua J. Cogliati

• ANL

 Darius D. Lisowski, Qiuping Lv, Matt Jasica, Mitch Farmer, Art Vik, John Woodford, Ooi, Zhiee Jhia, Jun Fang, Emily Shemon.

ADVANCED REACTOR
TECHNOLOGIES PROGRAM

Thank you for your attention, Questions?

Paolo Balestra

paolo.balestra@inl.gov / +1 208-526-4532

