

Current TRISO Fuel Performance Capabilities and Considerations for Expanded Operational Envelopes

July 2024

Paul A Demkowicz

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Current TRISO Fuel Performance Capabilities and Considerations for Expanded Operational Envelopes

Paul A Demkowicz

July 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

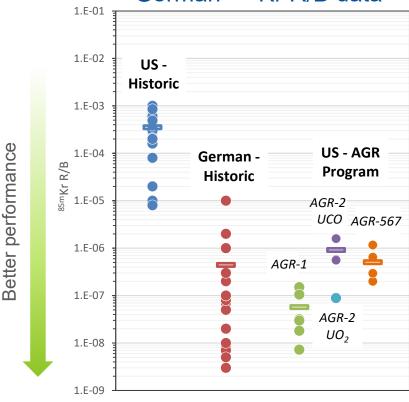
http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 July 9, 2024

Paul Demkowicz, Ph.D.

Current TRISO Fuel Performance Capabilities and Considerations for Expanded Operational Envelopes

7th Workshop on Material Properties of TRISO Fuels, Manchester, UK

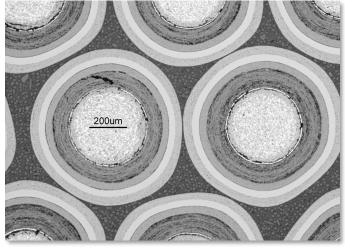


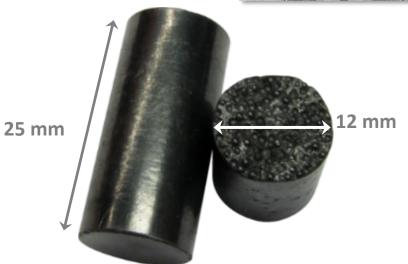
US-DOE TRISO Fuel Development

- Advanced Gas Reactor (AGR) Fuel Development and Qualification Program started in 2002 to address historically poor US TRISO fuel performance relative to German fuel
- Focus on LEU UCO TRISO fuel to enable higher in-pile temperatures and higher burnup compared to UO₂ TRISO
- Four irradiation campaigns
 - Demonstrate fuel performance under normal and accident conditions
 - Demonstrate scale-up of fuel fabrication processes while maintaining acceptable fuel quality
 - Evaluate fission product transport behavior to support reactor safety analyses

Major components of fuel qualification

Comparison of US and German ^{85m}Kr R/B data

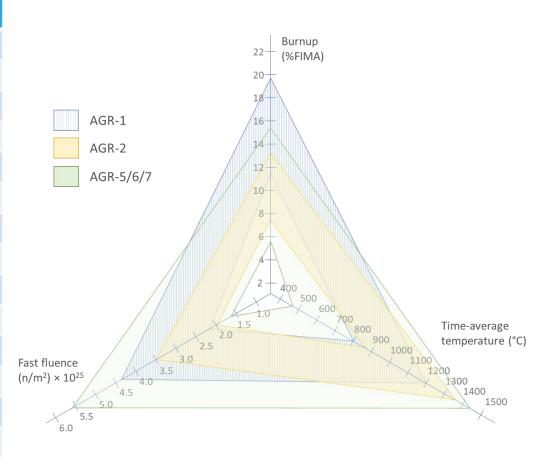

R/B is the fission gas release-rate-to-birth-rate ratio


AGR-2 R/B values are through the first ~1/4 of the irradiation (149 EFPD)

AGR-567 R/B values are through the first ~1/2 of the irradiation (174 EFPD)

AGR Fuel Design and Performance Requirements

- 425 μm UCO kernels
- German-like TRISO coatings
- Cylindrical compacts
- Graphite and binder resin


- NGNP Program preliminary reference reactor design¹:
 - 600 MW_{th} prismatic core
 - 750 °C outlet
 - 1250 °C peak time-average fuel temperature
 - Burnup up to 20% FIMA
- Preliminary fuel quality and performance requirements

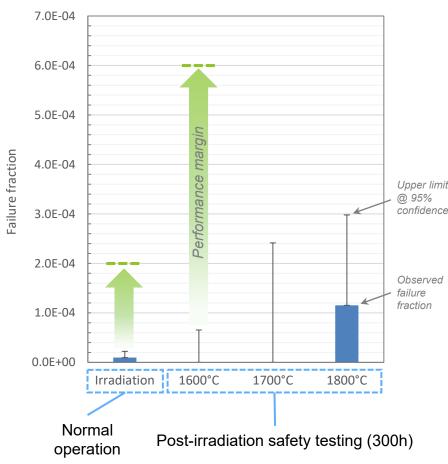
Heavy metal contamination	≤2×10 ⁻⁵
In-service failures (normal operation)	≤2×10 ⁻⁴
In-service failures (accidents)	≤6×10 ⁻⁴

¹ Fuel performance requirements basis provided in: D. Hansen, Technical Basis for NGNP Fuel Performance and Quality Requirements, GA-911168 (2009)

AGR Program Fuel Irradiations

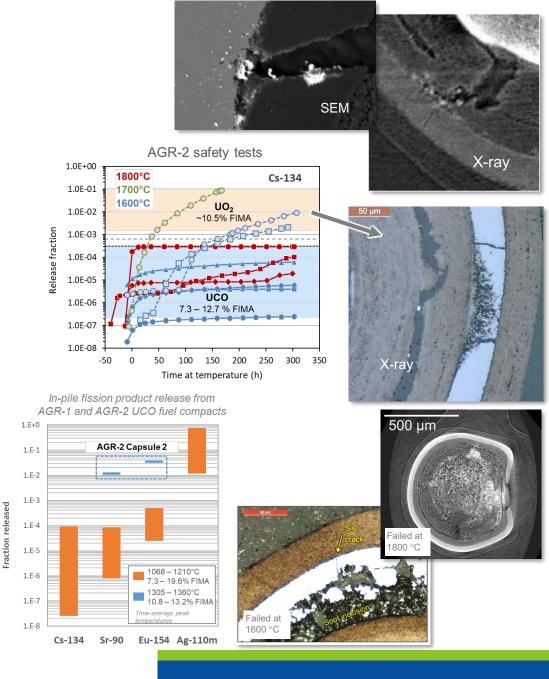
	AGR-1	AGR-2	AGR-5/6/7
# Compacts	72	48	194
# Particles	298,000	132,500	570,000
Start	24 Dec 2006	22 Jun 2010	16 Feb 2018
End	6 Nov 2009	16 Oct 2013	22 Jul 2020
EFPD ¹	620	559	361
Duration (d)	1048	1212	887
Burnup (% FIMA)	11.3 – 19.6	7.3 - 13.2	5.7 – 15.3
Fast Fluence (n/m ² x 10 ²⁵) ²	2.2 - 4.3	1.9 - 3.5	1.6 - 5.6
TA temperature (°C) ³	800 – 1197	868 – 1360	467 – 1432
Fabrication			
Kernels	BWXT	BWXT	BWXT
Coatings	ORNL	BWXT	BWXT
Compacts	ORNL	ORNL	BWXT

¹ Effective full power days


² E > 0.18 MeV

³ Time-average temperature

UCO Fuel Performance Evaluation Results


- AGR Program has irradiated ~1,000,000 particles in Advanced Test Reactor
- Demonstrated low in-pile particle failure fractions (≤ 1/50,000 particles¹)
- Fuel can withstand hundreds of hours at 1600 °C without significant particle failures (≤ 1/15,000 particles¹)
- Fuel effectively retains fission products within the coated particles

Experimental TRISO failure fractions for AGR-1 + AGR-2

Performance Limiting Phenomena

- Pd corrosion is source of infrequent SiC failure observed in UCO fuel
 - Exacerbated by IPyC failure?
- CO(g) corrosion is source of SiC degradation and Cs release in UO₂ fuel
- FP release through intact coatings at higher temperatures
- Silver release (maintenance hazard?)
- Kernel migration possibly observed even in UCO at very high temperature
- Particle defects (increasing failure probability with increasing severity of operating conditions)
 - Asphericity/faceting
 - Coating inclusions
- Layer failures often observed only on postirradiation heating to 1600 – 1800 °C

Coated-Particle-Fueled Reactor Concepts and Fuel Designs

Significant industry interest in coated particle fuel for HTGRs and beyond

Developer	Description	Fuel design	
X-energy	Xe-100 200 MWt PB HTGR	UCO TRISO pebbles, graphitic matrix	
	Xe-Mobile 1 – 5 MWe microreactor	UCO TRISO	
Kairos Power	KP-FHR 140 MWe salt-cooled SMR	UCO TRISO pebbles, graphitic matrix	
Naii 05 Powei	Hermes 35 MWt test reactor	UCO TRISO pebbles, graphitic matrix	
BWXT	BANR 50 MWt microreactor	UN TRISO in SiC matrix	
DVVXI	Pele 1 – 5 MWe transportable microreactor	TRISO	
Ultrasafe Nuclear	MMR 15 MWt microreactor	UCO TRISO in SiC matrix ("FCM")	
Westinghouse	eVinci 7-12 MWt microreactor	UCO TRISO compacts, graphitic matrix	
Radiant Nuclear	Kaleidos >1 MWe transportable microreactor	UCO TRISO compacts, graphitic matrix	
NASA	Nuclear thermal propulsion (NTP), nuclear	Various	
NAOA	electric propulsion (NEP)		
Framatome	SC-HTGR 625 MWt	UCO TRISO compacts, graphitic matrix	
StarCore Power	10 MWe HTGR	TRISO	
HolosGen	22 MWt scalable microreactor	TRISO fuel compacts	

- Microreactor designs
- Alternative coolants (e.g., molten salt)
- Space propulsion
- Unique coated particle fuel designs

Useful references:

- Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition, IAEA (https://aris.iaea.org/Publications/SMR Book 2020.pdf)
- https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx (updated Jan 2023)

Expanded Fuel Performance Envelope

- Extended irradiation durations
 - mHTGR core life ~3 years
 - Fuel qualification test irradiations ~1 to 2 years
- Higher fuel temperatures
 - Higher operating temperatures
 - Higher peak core temperatures in accidents (≥1600°C)
- Higher burnup (UO₂)
- Varying accident conditions
 - Oxidant ingress
 - More severe transients relative to mHTGRs
- Designs driving expanded operational envelope could also have different fuel performance requirements

Accelerated Fuel Qualification

- Challenges with accelerated irradiation testing
 - Increased particle power and thermal gradients in particle
 - How to account for time-at-temperature effects?
 - Prototypical balance of thermomechanical phenomena (e.g., PyC irradiation strain and thermal creep)
- Use of M&S
 - Evaluate/screen fuel concepts
 - Suggest performance-limiting phenomena under specific operating conditions
- Separate effects testing
 - Improve material properties database → improve fuel performance models
- Small-scale, rapid irradiation experiments to evaluate/screen fuel concepts
 - Assess separate effects (e.g., FP chemistry in new kernel compositions)
 - Assess gross fuel performance concerns
 - Statistics limit ability to assess failure fractions of promising designs

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.