PNNL-77150

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Fluence Capsules for the SAM-2 Experiment MPO# 00239221/SOW-17494, Rev. 0

	. 1 10		
Analyst:			9-22-20
Technical Reviewer:	IR Greenward	_Date:_	9-22-20
Quality Engineer:	Samuel A. Adams	_Date:_	09/23/2020
September 2020			
Acceptance by Rece	iving Organization:		
Accepted by:		_Date:_	

Proudly Operated by Battelle Since 1965

Proudly Operated by Battelle Since 1965

Tel: (509) 375-5301 Fax: (509) 375-5322

MSIN: P7-22

Larry.greenwood@pnnl.gov

September 22, 2020

BEA, Idaho National Laboratory 1765 North Yellowstone Highway Attention: MPO No. 00230949 (Douglas Stacey) Idaho Falls, ID 83415

Subject: Fabrication of Neutron Fluence Monitors on MPO #00239221 /SOW-17494- Rev. 0

<u>– PNNL Project #: 77150</u>

Dear Mr. Anderson,

Fabrication of the neutron fluence monitors has been completed and the capsules are included with this letter along with the documentation in accordance with your subject contract. There were no significant problems during the manufacture of the monitors and all monitors meet the specifications in your contract. The documentation of the capsules is described below.

- 1. Summary sheet listing all capsules with ID codes and wire weights
- 2. Certificate of conformance
- 3. Certificates for each type of material used to fabricate the capsules.
- 4. Calibration of the balance and digital calipers used for the capsule measurements.
- 5. Results of the helium leak testing and certificate for the helium leak standard.
- Quality Assurance Project Plan–77150, Rev. 0, Quality Assurance Project Plan for Fluence Capsules for the SAM-2 Experiment
- 8. Test Instruction, TI-PREP-77150, Rev. 0, Test Instruction for Preparation of Fluence Wire Capsules Project 77150
- 9. Test Instruction, TI-FAB-75643, Rev. 0, Tests and Inspections for Reactor Dosimetry Capsules Project 77150

The capsule ID codes are stamped on the bottom of each monitor and can be seen using a low power microscope. If you have any questions regarding the monitors or documentation, please let me know. We will look forward to receiving notice of your acceptance of the capsules. We would like to discuss any needs that you may have for capsule fabrication or analysis in the future.

Sincerely,

Larry Greenwood, Ph. D.

Enc – Monitors and documents as described above

Summary of Neutron Fluence Monitors with ID Codes and Wire Weights

The fluence capsules are nominally 0.39" long with an O.D. of 0.05"

Capsule ID (Stamped on bottom)	Fe Weight (mg)	Ti Weight (mg)	Nb Weight (mg)	0.116% Co-Al Weight (mg)	Final Capsule Weight After Sealing (mg)
1F	2.516	1.195	2.165	0.695	49.619
97	2.613	1.264	1.863	0.830	48.352
9J	2.610	1.191	2.281	0.863	48.197
A5	2.247	1.349	2.053	0.709	50.630
5U	2.599	1.246	2.252	0.736	51.054
1I	2.144	1.187	1.928	0.708	50.863
77	1.918	1.168	2.514	0.675	51.485
7F	1.866	1.085	2.388	0.637	48.429

Note: The final capsule weights are listed after sealing. These weights include the fluence wires and vanadium capsule, a vanadium wire added for electron beam welding and a small loss of weight during welding. The capsules met all size requirements in the SOW, as documented in the attached tests and inspections.

Items: Neutron Fluence Capsules as specified on MPO #00239221 /SOW-17494- Rev. 0

Certificate of Conformance

We certify that all materials used for the preparation of the neutron fluence monitors conform to the requirements in the referenced purchase specifications.

The quality requirements for the subject work are documented in the Memorandum Purchase Order (MPO) 00239221 and SOW 17494, Rev. 0 as prepared by the INL client.

We further certify that all work on the neutron fluence capsules was performed according to the approved technical procedures and test instructions in accordance with the referenced purchase specifications in MPO00239221. The fabrication of the monitors is fully documented in this report.

L. P. Darnell

Analyst

L. R. Greenwood PhD

Project Manager

S. A. Adams

Quality Engineer

Pacific Northwest National Laboratory Radiochemical Processing Laboratory 902 Battelle Boulevard Richland, WA 99352

MATERIALS RESEARCH CORPORATION

Orangeburg, New York 10962 · 914 359-4200 · "Cable MATRESCO"

MATERIALS CERTIFICATION PLEASE FORWARD WITH MATERIAL

Customer Order No.	Y2Y-444-07448	Our Order No. 27799	_
1. Material 99.999%	Iron Wire		
2. Form and Condition	0.020" dia.		
3. Processing Description	99.999% - Material c	cold swaged and drawn to size,	
	annealed and spooled	after cleaning.	
4. Analyses —	Mg - 3 Cu - 2 Mn - 2		
	All others less than	n <l by="" emission="" spec.<="" td=""><td></td></l>	
5. Inspection			
		######################################	

		e best of my knowledge and belief.	
		MATERIALS RESEARCH CORPORATION	7
2/15/7	'2	Phalmas a	
		Ву	

REACTOR EXPERIMENTS, INC.

963 TERMINAL WAY

SAN CARLOS, CALIFORNIA 94070

MATERIAL DATA SHEET

Material:

Titanium

Thickness: ___

Purity: 99.917%

Catalog No.:

614

Diameter: .020"

Lot No:

139W

CHEMICAL ANALYSIS

Impurity	Maximum Percent	Impurity	Maximum Percent	Impurity	Maximum Percent	Impurity	Maximum Percent
Cu Cr Fe Mn Mg Si V	.0001 .001 .003 .008 .02 .001 .005 .005 .005						

EUROPEAN COMMISSION

JOINT RESEARCH CENTRE
Institute for Reference Materials and Measurements

CERTIFIED REFERENCE MATERIAL IRMM-526

CERTIFICATE OF ANALYSIS

NIOBIUM					
	Mass fr	action			
	Certified value 1) [mg/kg]	Uncertainty ²⁾ [mg/kg]			
Та	0.30	0.09			

¹⁾ The certified value is the unweighted mean of the means of 6 accepted sets of data, each set being obtained in a different laboratory and/or with a different method of determination. The value is traceable to the International System of Units (SI).

This certificate is valid for five years after purchase.

Sales date:

The minimum amount of sample to be used is 100 mg.

DESCRIPTION OF THE SAMPLE

IRMM-526 consists of niobium metal with a nominal purity of > 99.994 %. Tantalum, present as impurity and causing spectral interference during application, is certified. The material is available as:

- IRMM-526A: 0.02 mm thick foil (20 cm² units)
- IRMM-526B: 0.1 mm thick foil (20 cm² units).
- IRMM-526C: 0.5 mm diameter wire (1 m units)

Brussels, May 1997 Latest revision: May 2007

Signed:

Prof. Dr. Hendrik Emons Unit for Reference Materials EC-JRC-IRMM Retieseweg 111 2440 Geel, Belgium

²⁾ The uncertainty is a 95 %/95 % tolerance interval.

A. V. Astin Director

Certificate of Analysis

Standard Reference Material 953 Neutron Density Monitor Wire a

(Cobalt in Aluminum)

The standard is provided as a reference source of a cobalt in aluminum alloy to serve as a neutron density monitor wire standard. Accurate determination of thermal neutron densities is essential for irradiation tests in order to obtain a basis for comparison of densities among reactors, to apply the data in the design of reactors, to understand the mechanisms of radiation damage and to use in neutron activation analysis.

SRM No.	Description	Cobalt, percent by weight
953	Neutron Density Wire	$0.116^{\mathrm{b}} \pm 0.002^{\mathrm{c}}$
	(Co in Al)	

- ^a The neutron density monitor material is in the form of wire 0.5 mm in diameter and is available in one meter lengths, (approx. 0.6 g), or in multiples thereof (continuous length).
- ^b The reported value is the average of the results of three analytical methods.
- ^c The uncertainty limit reported is the sum of the following (in weight percent): 1. 0.0009, the estimated limit of the systematic error in the average; 2. 0.0010, the estimated limit of the inhomogeneity at the 95% confidence level, for samples ≥4 mg; and, 3. 0.0004, the estimated limit of the random error in the average at the 95% confidence level.

Fourteen 10-meter lengths of wire equally spaced over the entire lot of selected material were analyzed. The methods used, the weight (w) of samples taken from each of the fourteen lengths, the standard deviation (S_x) of a single measurement due to imprecision of the analytical method, the number of determinations (N) made by each method, and the average obtained (\overline{X}) are given below.

Method	w (mg)	$S_{\mathbf{x}}$	$\mathbf N$	$\overline{\mathbf{X}}$
1	50-60	0.0013	14	0.1161
2	4-5	$0.0007,0.0005^{a}$	5 sets of 6	.1158
3	20	0.0015	41	.1173

^a The standard deviation was 0.0007 within a set and 0.0005 between sets.

The analytical methods used were:

Methods 1 and 2: Two variations of a spectrophotometric method using 2,3-quinoxalinedithiol (E. R. Deardorff and R. W. Burke).

Method 3: Activation analysis, nondestructive, relative to cobalt metal foil and cobalt metal powder (T. E. Gills and D. A. Becker).

The use of gamma-ray spectroscopy to measure the induced radioactivity of this material is recommended. Gross counting will result in systematic errors due to the presence of 24 Na (from the n, α reaction on 27 Al) and 198 Au (from the n, γ reaction on a small amount of gold impurity present, estimated at \sim 5 ppm).

Washington, D. C. 20234 March 12, 1969 W. Wayne Meinke, Chief Office of Standard Reference Materials This standard has been established to provide a homogeneous and well-characterized neutron density monitor primarily for use in irradiation test programs on reactor materials. It will also be useful for the nuclear activation analyst in monitoring neutron densities and mapping neutron density variations in irradiation containers and in various irradiation locations within reactors. The 0.1 percent cobalt in aluminum monitor material was chosen as having (1) a well-known neutron cross section in all neutron energy ranges, (2) a suitable half life, and (3) a well-characterized energy spectrum and decay scheme.

The material for SRM 953 was prepared at the Materials Research Corporation, Orangeburg, New York, with special melting, casting and fabrication procedures designed to produce a large quantity of material of the highest possible homogeneity.

Extensive homogeneity testing was performed at the NBS laboratories in Gaithersburg, Maryland, and the material was found to be satisfactory for its intended use as a neutron density monitor.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of J. R. DeVoe.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material was coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

ANALYTICAL METHOD USED FOR CERTIFICATION

- Electrochemical separation (ECS)
- Spark source mass spectrometry (SSMS)
- Inductively coupled plasma mass spectrometry (ICP-MS)
- Neutron activation analysis (NAA)

PARTICIPANTS

- AEA Technology, Harwell (GB)
- Centre National de la Recherche Scientifique, Centre d'Etudes et de Recherches par Irradiation, Orléans, et Laboratoire d'Analyse par Activation, Pierre Sue (CEA-CNRS), Saclay (FR)
- European Commission, Joint Research Centre, Central Bureau for Nuclear Measurements (CBNM), Geel (BE)
- Forskningscenter Risø, Roskilde (DK)
- Max-Planck-Institut für Metallforschung Institut für Werkstoffwissenschaften, Dortmund (DE)
- Studiecentrum voor Kernenergie / Centre d'Etude de l'Energie Nucléaire (SCK/CEN), Mol (BE)
- Universiteit Gent Instituut voor Nucleaire Wetenschappen (INW), Gent (BE)

SAFETY INFORMATION

The usual laboratory safety precautions apply.

INSTRUCTIONS FOR USE

This Nuclear Reference Material (NRM) is intended to be used in neutron metrology to monitor fast neutron fluence rates and fluences. The reaction of interest is ⁹³Nb(n,n')^{93m}Nb. Before use it is recommended that the samples are cleaned (ultrasonically for 5 minutes) in an adequate bath, e.g. trichlorotrifluoroethane, rinsed with distilled water and dried in a dust-free atmosphere.

STORAGE

The material can be stored at room temperature.

However, the European Commission cannot be held responsible for changes that happen during storage of the material at the customer's premises, especially of opened samples.

LEGAL NOTICE

Neither IRMM, its subsidiaries, its contractors nor any person acting on their behalf,

- (a) make any warranty or representation, express or implied that the use of any information, material, apparatus, method or process disclosed in this document does not infringe any privately owned intellectual property rights; or
- (b) assume any liability with respect to, or for damages resulting from, the use of any information, material, apparatus, method or process disclosed in this document save for loss or damage arising solely and directly from the negligence of IRMM or any of its subsidiaries.

NOTE

A technical report on the production of IRMM-526 is available on the internet (http://www.irmm.jrc.be). A paper copy can be obtained from IRMM on request.

European Commission – Joint Research Centre Institute for Reference Materials and Measurements (IRMM) Retieseweg 111, 2440 Geel (Belgium) Telephone: +32-(0)14-571.722 - Telefax: +32-(0)14-590.406 OE/OU/EOUS HED LIVER LUV

W1002/002

FROM : ITLS, LLC Laboratory

PHONE NO. : 412 963 1926

Jun. 14 2002 09:30AM P1

INDUSTRIAL TESTING LABORATORY SERVICES, LLC 635 Alpha Drive - RIDC Park

Pittsburgh, PA 15238 Phone: 412.983.1900 Fax: 412.963.1926 e-mail: itlslabs@cs.com website: itls-labs.com

TEST REPORT L2603

June 13, 2002

Purchase Order No: 4500090790

To:

Westinghouse Electric Co. LLC

Drawer R

Columbia, SC 29520

Attn: Warren Mauterer

Material received: One (1) sample of Vanadium Wire

Specifications:

10CFR Part 21, 10CFR50 Appendix B apply

RESULTS

Specimen	V (wt. %)
Wire	99.89%

Industrial Testing Laboratory Services, LLC

Anthony B. Freda

Manager, Mechanical Testing & Metallurgical Services

SPECTROCHEMICAL LABORATORY BUILDING 9734, Y-12

	Request Nº _	29836
-2		10 # // 8 Sugt. 1976
	hotoelectric	Øssus.
LYSIS	MET	AL ANALYSIS
)		in)
	Cr Ni Fe Mo Co Nb Ta Mn V Ti Cu Al Mg Sn Pb Zn Bi	
ted; no	analyses mad	e in all other
		nd using a common only. Actual value
of the s	sample with st	andards similarly

CHARGE NO. REQUEST AND REPORT OF SPECTROGRAPHIC ANALYSIS 3675 BUILDING NO 3037 BUILDING NO COMPOSITION OF SAMPLE IF KNOWN TYPE OF ANALYSIS DESIRED Qualitative, Semi-quantitative, Quantitative, ELEMENTS DESIRED GENERAL ANALYSIS RARE EARTH AN (values in Wy porn). (values in < 3 Pd Rh Idenation of Analysis: * Mg 15 INTerfered with by V
Symbols Used: P-Present; T-Trace; < - less than; > - greater than; nd-not deter Explanation of Analysis: cases. Qualitative Analysis - Estimate only as follows: M-major; m-minor; t-trace. Semi-Quantitative Analysis - The values reported are visual estimates taken fr graphite matrix. These values are to be interpret should be within the range times $\frac{1}{2}$ to times 2. Quantitative Analysis - The values reported are obtained by visual comparison prepared. Precision is about ± 50% of the amount present. Densitometric Analysis - The values reported are obtained by precise analytical spectrochemical methods. Precision of the method varies but is of the order of \pm 10% or better. Photoelectric Analysis - Rapid electronic method. Precision ________%. Log #1.1743 NALYSIS PERFORMED BY OMMENTS

QUALITY CONTROL SERVICES

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Battelle Pacific N.W. Natl. Lab 902 Battelle Blvd. Richland, WA 99354

Report Number: BATN0377843190820

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

INSTRUMENT INFORMATION

Item	Make	Model	Serial Number	Customer ID	Location	
Microbalance	Cahn	C33	77843	WD55353	RPL 514	
Units	Readability	SOP	Cal Date	Last Cal Date	Cal Due Date	
mg	0.001	QC012	8/20/19	2/14/19	8/2020	

FUNCTIONAL CHECKS

ECCENT Test Wt:	TRICITY Tol:	LINE Test Wt:	ARITY Tol:	i				
50	0.003	100x2	0.005	200	0.001	m	☑	
As-Fo	ound: Fail: 🛚	As-F Pass: ☑	ound: Fail: □	1.200.001 5.200 2.200.001 6.200	,000	Good		□ Poor
As-I Pass: ☑	∟eft: Fail: □	As- Pass: ☑	Left: Fail: □	3. 200.000 7.200 4. 200.001 8. 200	- Atesure	Tempe	rature: 25.	.0°C

Standard	As-Found	As-Left	Expanded Uncertaint
200	200.001	200.001	0.0067
150	150.002	150.002	0.0067
100	100.002	100.002	0.0034
50	50.000	50.000	0.0031
20	20.001	20.001	0.0030
10	10.000	10.000	0.0030

CALIBRATION STANDARDS

	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	2/15/19	2/2020	20182428

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Applied tolerance = 0.010 @ span of 200g.

8/19 PO #479560 As found / as left within tolerance. RH=18.4%

Report prepared/reviewed by: R.B. Date: 9-5-19 Technician: R. Hintz

Service Manager Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

QUALITY CONTROL SERVICES

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.gc-services.com

Battelle Pacific N.W. Natl. Lab 902 Battelle Blvd. Richland, WA 99354 Report Number: BATN0377843200818

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

INSTRUMENT INFORMATION

ltem	Make	Model	Serial Number	Customer ID	Location
Microbalance	Cahn	C33	77843	WD55353	RPL 514
Units	Readability	SOP	Cal Date	Last Cal Date	Cal Due Date
mg	0.001	QC012	8/18/20	8/20/19	8/2021

FUNCTIONAL CHECKS

ECCEN	TRICITY	LINE	ARITY	STANDARD DEVIATION		ENVIRONMENTAL		NTAL	
Test Wt:	Tol:	Test Wt:	Tol:	Te	est Wt:	Tol:	CO	NDITIC	NS
50	0.003	100x2	0.005		200	0.001		abla	
As-Fo	ound:	As-F	ound:	1.200.000	5.200.002	9.200.001	Good	Fair	Poor
Pass: 🗹	Fail: 🛘	Pass: ☑	Fail: 🔲	2. 199.998	6. 199.999	10.200.000			
As-l	Left:	As-	Left:	3.200.001	7.200.000	Result	Tempe	rature: 2	22.1°C
Pass: ☑	Fail: 🛘	Pass: ☑	Fail: 🛚	4.199.996	8. 200.002	0.0018			
L		I		I			1		

A2LA ACCREDITED SECTION OF REPORT Standard **As-Found** As-Left **Expanded Uncertainty** 200 199.984 200,000 0.0072 150 149.988 149.999 0.0072 100 99,989 99.998 0.0042 50 49.995 50.002 0.0040 20 19.996 20.000 0.0039 10 10.001 10.001 0.0039

[X] AcceptedRejected / Per Clause(s): 1/5	X /	Accepted	□Rejected	/ Per	Clause(s):	1/50
---	-----	----------	-----------	-------	------------	------

No indication of Out-Of-Tolerance condition(s)

AQSS & OOT Reviewer

CALIBRATION STANDARDS

Item	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	4/21/20	4/2021	20200533

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Applied tolerance = 0.020 @ span of 200g.

8/20 PO #530367 As found / as left within tolerance. RH=56.3%

Report prepared/reviewed by:

1). The 4504 Date: 8/31/20

Technician: R. Hintz

Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, INC

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

Kootenai Bldg. 34 MD 1025, PO Box 968 Richland, WA 99352-0968 Phone (509) 377-8444 FAX (509) 377-8219

Calibration Certificate

PNL-13357600:1579876223

ASSET INFORMATION

Asset Number: PNL-13357600

Manufacturer: MITUTOYO

Model: CD-6 IN CSX

Description: CALIPER Serial Number:

13357600 Release Number: NEW

Ref/PO Number: PCD-504635 Customer

PNNL.

790 6th Street

Richland, WA 99354

Location:

PNL

CALIBRATION INFORMATION

Date Received: Calibration Date: 22-Jan-2020 24-Jan-2020

Due Date:

24-Jan-2021

Limited:

Calibration Specification: ISO/IEC 17025 Accred

Procedure/Rev:

Calipers ID/OD/NIB (SLI 28-161 Rev. 3.6)

Temperature:

68 F

Humidity: Condition: 38 % PASS

As-Found:

In-Tolerance

As-Left:

In-Tolerance

STANDARDS USED

Asset No.	Due	Manufacturer/Model	Asset No.	Due	Manufacturer/Model
43696	11/13/2020	AMP .03900440	0065272	3/1/2021	COLLINS MICRO FLAT CO. INC. 3' x 14'
0065751	1/29/2020	FLUKE 2626-S	002-41-05-001	7/12/2020	MITUTOYO 515-560
0067925	10/23/2020	STARRETT RC88AA/AC11.A			

X Accepted □ Rejected / Per Clause(s): 175b

No indication of Out-Of-Tolerance condition(s)

AQSS & OOT Reviewer

NOTES/CONDITIONS:

Energy Northwest Standards Laboratory (ENSL) is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005, (2017) General Requirements for the Competence of Testing and Calibration Laboratories. This laboratory also meets the requirements of ANSI/NCSL Z540-1-1994 and any additional program requirements in the field of calibration. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009). In addition, the standards and calibration program of the Energy Northwest Standards Laboratory complies with the applicable requirements of 10 CFR50 Appendix B and ASME NQA-1. This calibration complies with Energy Northwest Standards Laboratory Quality Manual, QM-1 Rev.11 (09 January 2019).

This calibration is traceable to the SI through the National Institute of Standards and Technology (NIST), accepted intrinsic standards, or ratio type measurements. The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2.0 sigma (k=2.0) has been applied to the standard uncertainty to express the expanded uncertainty at a 95% confidence level. The unaccredited test points, where applicable, are marked with a "^", or clearly identified. Functional tests (Pass/Fail) are not accredited. No statement of compliance with specifications is made or implied on this certificate. Uncertainties reported in base units at time of test where applicable and do not take into account transit, usage, drift over time, or other factors affecting stability. The results stated in this report relate only to item identified in the Asset Information portion of this report. This Report may not be reproduced, except in full, without the permission of the Energy Northwest Standards Laboratory.

Standards Laboratory Management

J Larson (Josh)

Certified By

ORIGINAL

Calibration Report

PNL-13357600:1579876223

STANDARDS LABORATORY

Asset Number	Manufacturer	Model	Serial No.
PNL-13357600	MITUTOYO	CD-6 IN CSX	13357600
Found/Left Data	Cal Date	Performed by	
FOUND-LEFT	24-Jan-2020	J Larson (Josh)	

Remarks: For this report where applicable: percentages are to be read as percent of reading unless noted otherwise; IV is defined as the indicated value; MV is defined as measured value; FS is defined as full scale; L is the numerical value of the nominal length of the device measured in inches; D is the diameter of the device in inches; and R is the resolution of the unit under test; GB indicates guardbanding; TAR represents test accuracy ratio and are informative and not used for decisions.

Certified to specifications listed below. Uncertainty per scope: $(20 + 7L) \mu in + (0.6 \text{ x resolution}) \mu in$

The recording of false, fictitious or fraudulant statements or entries on this document may be punishable as a felony under Federal Statutes.

Test Description	True Value	Lower Limit	Indicated Value	Upper Limit	Error (% of Tol)	TAR/ GB
Calibrated to tolerances of ±0.001i	n for					
linearity and depth, and parallelism	within 0.0005in.					
LINEARITY TEST	E .					
OUTSIDE MEASUREMENT						
1.0000 In	1.00000	0.9990	1.0000	1.0010	0	Pass
2.0000 In	2.00000	1.9990	2.0000	2.0010	0	Pass
4.0000 In	4.00000	3.9990	4.0000	4.0010	0	Pass
6.0000 In	6.00000	5.9990	6.0000	6.0010	0	Pass
LINEARITY TEST						
INSIDE MEASUREMENT						
1.0000 In	1.00000	0.9990	1.0000	1.0010	0	Pass
2.0000 In	2.00000	1.9990	2.0000	2.0010	0	Pass
4.0000 In	4.00000	3.9990	4.0000	4.0010	0	Pass
6.0000 In	6.00000	5.9990	6.0000	6.0010	0	Pass
PARALLELISM						
Back = 0.044in						
Center = 0.044in						
Front = 0.044in						
Deviation from parallel within 0.00	005"					
						Pass
DEPTH MEASUREMENT						
1.0000 In	1.00000	0.9990	1.0000	1.0010	0	Pass

END OF TEST DATA

Source: SLIC PO/Ref#: PCD-504635 Report#: PNL-13357600:1579876223

Page 2 of 2

PNL-13357600

ENERGY NORTHWEST

CALIBRATION SERVICES PNNL SALES ORDER

Energy Northwest Standards Laboratory

www.energy-northwest.com/products/calibration

Mailing Address:

PO Box 968

Shipping

Energy Northwest

Mail Drop 1025

p 1025 Address:

Standards Lab

Richland, WA 99352-0968

Attn: Colin Carson
76 North Power Plant Loop

Richland, WA 99354-0968

Phone: (509) 377-8	515 / 509-377-8	3444 Fax: (50	9) 377-8219		esOrders@en	ergy-northwest.com			
		Customer I	<mark>nformatio</mark>	n (Please Print)					
CompanyName: Address:	PNNL P.O. Box 999	DE C	E D V E	n II	able: Yes , please suppl	⊠ No y tax exempt form.			
Phone/Fax:	375.7300	UU BV	90						
Contact:	Lisa M. Stoetz	el By	Democrati						
Payment Type:	☐ Net 30 PO	⊠ Visa;	MC .	PNN	L P-Card Ord	er #: PCD-504635			
Certificate/Calibration Requirements Type of Calibration: Manufacturer (ANSI Z540-1) Customer / Limited (ANSI Z540-1) Accredited (ISO 17025) *See Note									
Energy North directed othe customer's s condition (In-	*Note: Energy Northwest Standards Laboratory Statement of Compliance: Energy Northwest Standards Laboratory (ENSL) employs a shared risk approach to statements of compliance. Unless directed otherwise, ENSL will provide ISO/IEC 17025 Accredited Calibrations testing to manufacturer's specifications, customer's specifications, or government/industry standards. The Calibration Certificate/Report will report the calibration condition (In-Tolerance, Out-Of-Tolerance, Pass/Fail) without factoring in the measurement uncertainties to determine compliance to those specifications or standards and will list those measurement uncertainties.								
	Se	e P-Card Agree	ment for Te	rms & Condition	s.				
Authorized Custome	<mark>er Name and Ti</mark>	tle (Please print):	Lisa M. Stor	etzel, Technician					
Email address:	sa.stoetzel@pn	nl.gov							
Phone: 375.7300) i			N/A		1/16/2020			
		N-	S	gnature		Date			
Lab Acceptance (Na	ame / Date):								
ENSL Sales Order I	Number / Date:	ž							
Item #	Quantity		Desc	ription 🗸		Price Each			
1	1			Model CD-6"ASX, 6 3357600 ✓ Jul		\$189.58			
2	1	Resolution 0.000	05 Inch, S/N 0	Model CD-6"CSX, 8459791 - Expedite	•	\$303.33			
3	1	Starrett Outside 0.001 inch x 1 ir		catalog No. 230RL,	Readability:	\$252.78			
		NE	W	JJ Calibratio 503.786.3005 Ce Cal 02/12/2019 Due S/N 13357600 ID# 20180016	ort 694275 02/12/2020 ————				

ENERGY NORTHWEST

CALIBRATION SERVICES PNNL SALES ORDER

Energy Northwest Standards Laboratory

Mailing Address:

PO Box 968

Mail Drop 1025

Richland, WA 99352-0968

www.energy-northwest.com/products/calibration

Shipping Address:

Fax: (509) 377-8219

Energy Northwest Standards Lab

Attn: Colin Carson

76 North Power Plant Loop Richland, WA 99354-0968

E-mail: ENSLSalesOrders@energy-northwest.com

ENSL Quote Provided By Name: Terry L. Daffe

Phone: (509) 377-8515 / 509-377-8444

Date: 1/16/2020

Asset#

PNL-13357600_01242020

<u>Barcode</u>

MEMORANDUM

Battelle The Business of Innovation

Date:

September 18, 2020

Project No.:

77150

To:

Larry Greenwood

From:

Andrew Carney Andrew M Carney

Internal Distribution:

File/LB

Subject:

Helium Leak Testing of INL

Vanadium Capsules

Larry,

The helium leak testing of 20 INL vanadium capsules has been completed. All 20 capsules were found to have an average normalized helium leak rate value of 1.46 x 10⁻⁹ atm cc/sec. The leak test was performed using a Pfeiffer HLT550 (serial number 40106410) helium leak detector and a calibrated helium leak (serial number 6627) supplied by Vacuum Technology Incorporated. Testing was performed on 9/02/2020. Helium leak testing was done following PNNL technical procedure RPL-HE-001, Rev. 0, *Dosimetry Capsule Helium Leak Testing*. A record of the analysis was recorded in LRB 61427 on page 93. Work package NG0120 has been charged for the analysis.

Helium Soak

Capsules were placed in a helium bomb chamber that was evacuated to a system pressure of 1.5 x 10^{-6} Torr. The chamber was subsequently pressurized with 2650 Torr of helium from 8/27/2020 - 09/02/2020. Chamber pressure was 2046 Torr prior to the capsules being removed from the chamber on 09/02/2020. All capsules were allowed to degas for 1 hour per procedure before leak testing.

Leak Rate Analysis

Leak rate analysis was performed by taking alternating measurements of the calibrated leak and the capsules' leak rates after establishing the detector's background leak rate. The calibrated leak rate, 2.01×10^{-8} atm cc/sec (01/29/15), for the standard (6627) corrected for a 0.1% depletion per year, 2.00×10^{-8} atm cc/sec, and the observed rate was $2.3 - 2.4 \times 10^{-8}$ atm cc/sec. The capsules' leak rates were measured as a set. An observed rate greater than 1×10^{-8} atm cc/sec was designated as the threshold for a capsule leak, and any capsule observed with this leak rate or greater was rejected.

All capsules had a leak rate \leq 1 x 10^{-8} atm cc/sec.

If you have any questions, please contact me at 509-375-6433.

MEMORANDUM

Capsules tested	Average normalized value of accepted capsules (atm cc / sec)	Capsules accepted	Capsules rejected
20 capsules (A7, T2, 41, 11, V1, X2, 77, 61, 7F, A1, 05, 1F, 50, 97, 5D, B5, 9J, A5, 9C, 5U)	1.46E-09	A7, T2, 41, 1I, V1, X2, 77, 61, 7F, A1, 05, 1F, 50, 97, 5D, B5, 9J, A5, 9C, 5U	None

Richard M Cox Digitally signed by Richard M Cox Date: 2020.09.21 11:42:33 -07'00'

September 2, 2020

Adjusted Calibrated leak rate	2.00E-08 Measured Helium leak rate (atm cc/sec)	Ratio leak standard Normalized Value	i).845 Average Normalized Value	STDEV for Normalized Value	Capsules tested ld.	Average Normalized Leak rate (atm cc / sec)	Capsules accepted	Capsules rejected
System Blank	2.9E-09 2.5E-09 2.2E-09	2.4E-09 2.1E-09 1.9E-09	2.14E-09	2.97E-10	A7, T2, 41, 11, V1, X2, 77, 61, 7F, A1, 05, 1F, 50, 97, 5D, B5, 9J, A5,	1.46E-09	20	0
Calibrated Std leak (6627)	2.3E-08 2.4E-08 2.4E-08	2.4E-08	0.845		9C, 5U			
Chamber blank	2.2E-09	1.9E-09				Calibra	tion Data	
	1.9E-09 1.5E-09	1.6E-09 1.3E-09	1.58E-09	2.97E-10	Leak Rate	2.01E-08	atm-cc/s	
INL Capsules (All)	1.9E-09 1.7E-09	1.6E-09	4.405.00	1.005.10	Depletion Rate	-0.1%	/year	
	1.6E-09	1.4E-09 1.4E-09	1.46E-09	1.29E-10	Calibration Date:	January 29, 2015		
Chamber blank	1.6E-09	1.4E-09			Years Since Cal	5.6		
	1.4E-09 1.2E-09	1.2E-09 1.0E-09	1.18E-09	1.69E-10	Adjusted Leak Rate	2.00E-08	atm-cc/s	0-140-11-1-1
Calibrated Std leak (6627)	2.4E-08 2.3E-08 2.3E-08	2.3E-08	0.857			[(De	epletion % + 1) ^ years since	Cai - Cai Leak Ra
							Calibration Leak (6627)	
System Blank	1.2E-09 1.0E-09 9.9E-10	1.0E-09 8.4E-10 8.4E-10	8.98E-10	1.00E-10		4/26/2019 2.6E-08 2.7E-08 2.6E-08	2.4E-08 2.3E-08	9/2/202 2.3E-0 2.4E-0 2.4E-0
						2.5E-08 2.5E-08 2.4E-08	3 2.2E-08	2.4E-0 2.3E-0 2.3E-0
						5/2/2019 2.3E-08 2.3E-08 2.4E-08	2.2E-08 2.2E-08	
						2.5E-08 2.4E-08 2.4E-08	3 2.3E-08	
						<u>5/3/2019</u> 2.4E-08 2.4E-08 2.4E-08	2.8E-08 2.7E-08	
						2.6E-08 2.6E-08 2.6E-08	3 2.4E-08	
ure / date	brev	Carry	9/18/2020)		5/9/2019 2.4E-08 2.4E-08 2.4E-08	2.3E-08 2.3E-08	
Richa	ard M (Cox Digitally signed Date: 2020.09.21	by Richard M Cox 11:42:53 -07'00'			2.4E-08 2.4E-08 2.4E-08	2.4E-08	

Average

2.41E-08

8/27/2020

Capsules placed in chamber and evacuated to 1.5 x 10-6 torr. Chamber pressurized to 2650 torr He at 11:30 AM 8/27/2020.

9/02/2020

Helium pressure over capsules 2046 torr. Capsules remard from chamber and allowed to degas for one hour.

- Capsules: A7, T2, 41, 1I, V1, X2, 77, 61, 7F, A1, 05, 1F, 50, 97, 50, 85, 9J, A5, 9C, 5U

System Blank: 2.9 x 10-9

2.5 × 10-9

2.2 × 10-9

System Blank: 1.2 x 10-9

1.0 × 10-9

9.9 x 10-10

Calibration Leak: 2.3 x 10-8

(6627)

2.4×10-8

2.4 × 10-8

Chamber Blank:

2.2 × 10-9

1.9 × 10-9

1.5 × 10-9

All Capsules:

1.9×10-9

1.7×10-9

1.6 × 10-9

Chamber Blank:

1.6 × 10-9

1.4x10-9

1.2 × 10-9

Calibration Leak: 2.4 x 10-8

(6627)

2.3 × 10-8

2.3 × 10 -8

Project No.	77150	Date of	Work	9/02/2020
Entered by	Andrew Carney		Date	09/02/2020
	and Understood By			
Signed 1)	Richard M Cox	Digitally signed by Richard M Cox Date: 2020.09.21 11:43:19 -07'00'	Date	
2)			Date	

CERTIFICATE OF CALIBRATION

Calibration Report Number: 6627-ACAL-COMP-1-85437

Customer: PACIFIC NORTHWEST NATIONAL LABORATORY

790 6TH Street

Richland, WA USA 99354

Customer Purchase Order Number: 250729

Order Number: 13479

MODEL NUMBER AND/OR DESCRIPTION

SERIAL NUMBER

CLP-8-He-4FVCR-110CC

6627 V

CALIBRATION RESULTS

The unit specified was calibrated using the procedure defined below and conforms to the requirements of the customer's purchase order.

METHODS AND EQUIPMENT

The unit was calibrated by a traceable comparison against a primary transfer standard on an Automated AERO VAC Mass Spectrometer System (AutoCal) using Calibration Procedure VTI-QAP-11-001, Rev E.

Procedures used are in accordance with ISO/IEC 17025:2005, ISO/IEC Guide 25, Military Standard 45662A, and ANSI/NCSL Z540-1-1994, which supersedes Military Standard 45662A.

MEASUREMENT TRACEABILITY

All measurement and test equipment (M&TE) as well as all primary transfer standards are calibrated traceable to NIST. The Calibrated Leak Lab maintains all relevant calibration records for the M&TE and primary transfer standards used. Spinning Rotor Gauges and Capacitance Manometers are calibrated traceable to NIST. Temperature measurement devices and reference volumes are traceable through accredited calibration sources. Time measurements are traceable through the U.S. Naval Observatory Master Clock.

MEASUREMENT UNCERTAINTY

The total estimated measurement uncertainty for this calibration, as reported on Page 2 of this Certificate of Calibration, reflects a coverage factor of 2 (k=2). The reported estimated measurement uncertainty is calculated in accordance with NIST Technical Note 1297, 1994 Edition, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results.

Calibration Lab Technician Rejected Per Clause(s): 188

Calibration Lab Approver

Date: 29-Jan-2015

AQSS Reviewer de Certhy 2-12-15

Page 1 of 2

** This Certificate shall not be reproduced, except in full, without prior written approval of Vacuum Technology Incorporated, 1003 Alvin Weinberg Drive, Oak Ridge, Tennessee 37830. **

CERTIFICATE OF CALIBRATION

Vacuum Technology Inc.

1003 Alvin Weinberg Drive Oak Ridge, TN 37830 Phone:(865)481-3342

Accu-Flow Calibrated Leak

Model #: CLP-8-He-4FVCR-110CC

Element: 7740 Pyrex Fill Gas: Helium

Serial #: 6627 Fill Pressure: 3177 Torr

Volume: 110cc

Calibration Data

R = 2:01 x 10⁻⁸ n = 8:30 x 10⁻¹³ Depletion Rate:

atm-cc/s mol/s 0.1% Into vac. at 23.2°C (± 6.49 %) (k=2)

Per Year

Calibration Date: Jan 29, 2015 Temp Coeff: 4.0%

per °C

Warning!!

Do not exceed 100°C during bakeout!

VTIRecalibration Service
Phone: (865)481-3342
Email:sales@vacuumtechnology.com
For permeation leaks, the isolation valve
should be left open when not in use
to prevent saturation of the glass element.

	Calibration Report Number	
£	6627-ACAL-COMP-1-85437	

Customer	Order ID
PACIFIC NORTHWEST NATIONAL LABORATORY	13479

Purchase Order	Recalibration ID
250729	
777177	

Pressure Measurement Equip.		Volume Standard	
Manufacturer		Manufacturer	-
Model#		Model#	
Serial#	-	Serial#	
Report #:		Report #:	
Cal Date :		Cal Date :	
Cal Due :		Cal Due :	

Primary Transfer Flow Standard		Temperature Measurement Equi	
Manufacturer	VTI	Manufacturer	Athena
Leak Model#	GPP-8-1P-He-4FVCR-110CC-IHS	Model#	16-C-B-B-B-30-00 w/101105
Leak Serial#	903	Serial#	1322000547
Report #:	903- Dec-2014	Report #:	1000356132
Cal Date:	December 3, 2014	Cal Date :	May 13, 2014
Cal Due :	December 3, 2015	Cal Due :	May 13, 2015
Cal Temp (°C):	24.6		
Coeff (%/°C):	4.0%		
Gas Type	-He		
Q (atm-cc/s)	2.10E-08		

^{**} This Certificate shall not be reproduced, except in full, without prior written approval of Vacuum Technology Incorporated, 1003 Alvin Weinberg Drive,
Oak Ridge, Tennessee 37830. **

ANALYTICAL REPORT

Holston Gases Inc.

545 W. Baxter Ave.

Knoxville,Tn 37921

Phone# 865-573-1917

Batch# 112114JC

Ultra High Purity Helium

Date: 11-24-2014

This gas meets the requirements of Federal Specification BB-H-1168 and AWS A5.32

Component	Nominal	<u>Actual</u>	Method
Helium	99.999%	99.999%	
02	< 1 ppm	< 1 ppm	Gow-Mac 580 Series GC
N2	< 5 ppm	< 1 ppm	Gow-Mac 580 Series GC
CO	< 0.5 ppm	"ND"	Gow-Mac 580 Series GC
ME	< 0.5 ppm	"ND"	Gow-Mac 580 Series GC
- H2O	< 2 ppm	< 1 ppm	Meeco AquaVolt

Serial Numbers in Batch:

Serial Numbers	III Battii.
4505224Y	4126589Y
4550936Y	LX-400185
N-295160	W-382298
4525210Y	4432479Y
5123176Y	300-1132
L462458	4525170Y
AF-100152	4090054Y
LX-1441	4525224Y
5123138Y	LX-420311
LX-657964	300-0819
5123140Y	WC-789295
1106304Y*	C5368018

Note: (*) Indicates cylinder tested.

Issued By: Curtis J. Briggs

PACIFIC NORTHWEST NATIONAL LABORATORY

QUALITY ASSURANCE PROJECT PLAN for

The SAM-2 EXPERIMENT

Product Line Number: 0053 - Nuclear Science and Legacy Waste

Project Number: 77150

July 2020

Approvals:			
Project Manager and	Lawrence R Greenwood	Digitally signed by Lawrence R Greenwood Date: 2020.07.20 08:11:25 -07'00'	
Primary Point of Contact:			
Contact.	Larry 1	R. Greenwood	Date
Quality Engineer:	Samuel A. Ada	Digitally signed by Samuel A. MS Adams Date: 2020.07.20 08:16:32 -07'00'	
	Sami	iel A Adams	Date

PROJECT 77150 QUALITY ASSURANCE PLAN

Title: Fluence Capsules for the SAM-2 Experiment

Product Line Number: <u>0053 - Nuclear Science and Legacy Waste</u>

Project Number: 77150

The approach for meeting the identified Quality Assurance (QA) program requirements for project 77150 is provided below. This project has a funding expiration date of 10/30/2020; delivery of Task 1 dosimeters is expected by about October 15, 2020.

Background

This statement of work (SOW) applies to the fabrication and analysis of flux wire capsules that will be used in the SAM-2 experiment. This experiment is a drop-in design slated for irradiation in the Advance Test Reactor (ATR) at Idaho National Laboratory (INL). The 8 neutron fluence capsules will be used to determine the neutron exposure that the specimens have received.

For Task 1 Pacific Northwest National Laboratory (PNNL) will prepare eight (8) neutron fluence monitors for irradiation in the ATR. Task 2 will involve analysis port-irradiation; the monitors will be returned to PNNL for analysis in FY21 after irradiation. The analysis report will include the neutron fluences and radiation damage calculations for all irradiated positions in the experiment.

Task 1

Fluence Wire Capsules

A total of ten (eight and two spares) fluence monitor capsules are required. All of the capsules will measure 0.047 to 0.054" OD x 0.420" maximum length and shall be made of pure vanadium (99.8%). All of the capsules will contain Fe, Ti, Nb and 0.1% Co-Al wires. Each capsule shall be stamped or engraved with a unique identification number, electron beam welded in a vacuum or sealed by a laser in inert gas, and helium leak tested. An acceptable helium leak test rate will be less than or equal to 1x10-7 standard cc/second.

Each fluence wire capsule described above shall contain one wire segment of each of the following four materials:

- 99.99% minimum purity iron (Fe) wire
- 99.92% minimum purity titanium (Ti) wire
- Niobium (Nb) wire Reference Material. 526C from the Institute for Reference Materials and Measurements (IRMM)
- 0.116% cobalt (Co)-aluminum (Al) wire from the National Institute of Standards and Technology (NIST)

Required supplies, measuring and test equipment, vendor calibration of M&TE and standards for user-calibrated M&TE are already in place and in routine use. No sub-contracts are necessary.

Task 2

Following irradiation of the eight fluence wire capsules in the ATR at INL, INL shall load the capsules into a shipping cask and ship them to PNNL. INL shall ship the capsules to PNNL within 90

days following disassembly of the experiment post-irradiation. PNNL shall remove the irradiated fluence wire capsules and ship the empty cask back to INL.

Work to be performed by PNNL includes:

- 1. Open the capsules and gamma count each wire to determine the activation product activities.
- 2. Dissolve the niobium wires in acid and prepare aliquots on filter paper for x-ray analysis to determine the Nb-93m activity.
- 3. Determine the saturated activation rates using irradiation history data provided by INL. The activities will be used to calculate nuclear activation rates using neutron spectral and reactor power history data provided by INL.
- 4. Calculate neutron fluences by adjusting the neutron spectrum using a least squares procedure (STAYSL and associated computer codes). Radiation damage parameters including displacements per atom (dpa) and gas production will be calculated using the adjusted neutron spectra.
- 5. Deliver a letter report summarizing the activities of the eight fluence wire capsules, the calculated neutron fluence of the flux wires, measured activity data, and damage parameters (dpa, gas production), calculated using the SPECTER computer code.

The measured neutron fluences determined by analysis of the flux wires with the appropriate neutron energy range will be used to compare with calculations from physics analyses.

All work is required to be performed according to approved procedures and following an approved Quality Assurance Plan that meets applicable NQA-1 2008/NQA-1A-2009 addenda quality standards.

Task 1 Deliverable

Each fluence wire capsule fabrication shall be documented. All documentation shall be supplied with the fluence wire capsule shipment. Documentation shall include:

- 1. Certification of Conformance for meeting all requirements of the SOW. The Certificate of Conformance will contain the following information:
 - a. Identification of the purchased material or equipment, such as by the purchase order number
 - b. Identification of the specific procurement requirements met by the purchased material or equipment, such as codes, standards, and other specifications. This may be accomplished by including a list of the specific requirements or by providing, on-site, a copy of the purchase order and the procurement specifications or drawings, together with a suitable certificate. The procurement requirements identified shall include any approved changes, waivers, or deviations applicable to the subject material or equipment.
 - c. Identification of any procurement requirements that have not been met, together with an explanation and the means for resolving the non-conformances.
 - d. Signature or otherwise authenticated by a person who is responsible for this quality assurance function and whose function and position are described in the Purchaser's or Supplier's quality assurance program.

- 2. Material certifications
- 3. Capsule dimensions
- 4. Fluence wire masses
- 5. Helium leak test results
- 6. Date that each measurement/test was performed
- 7. Calibration certificates for each measurement/test tool. Calibration certificates shall include:
 - a. Traceability to NIST
 - b. Accuracy
 - c. Date of calibration
 - d. Calibration due dates

Task 2 Deliverable

Deliver a letter report summarizing the activities of the eight fluence wire capsules, the calculated neutron fluence of the flux wires, measured activity data, and damage parameters (dpa, gas production), calculated using the SPECTER computer code.

1.0 Organization

1.1 Quality Assurance Project Plan

This Quality Assurance Project Plan (QAPP), 77150, Rev. 0, *Fluence Capsules for the SAM-2 Experiment* contains the project-level QA requirements for the administration of the PNNL QA Program for the INL project. As such, it is to be implemented by all participant project staff. This QAPP is prepared by the project Quality Engineer (QE) and approved by the project manager. Staff will be trained to this plan.

1.2 Scope

The quality requirements for this work are documented in the Memorandum Purchase Order (MPO) 00239221 (Effective Date: 7/15/2020 prepared by the INL client. The expiration/completion date for Task I is 10/30/2020. The MPO references a Statement of Work No. 17494, Revision No. 0 entitled, "Fluence Capsules for the SAM-2 Experiment," dated June 23, 2020.

Requirements

The MPO/SOW referenced quality standard is ASME NQA-1 2008 with NQA-1A-2009 addenda, except the following: Requirements 3, 9, 12, and 14.

Referenced ASTM documents included the following:

- ASTM E1297 08 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
- ASTM E261 10 Standard Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
- ASTM E526 08 Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium

QA Clauses identified in the MPO/SOW documents included:

Clause No. 241C - ASME NQA-1-2008 1a 2009 addenda: The supplier shall implement and maintain a quality system in accordance with the applicable elements of ASME-NQA-1-2008, 1a 2009 Addenda, "Quality Assurance Requirements for Nuclear Facility Applications."

Clause No. 422 - Metals/Piping - Actual Chemical and Physical Report:

- 2.1. The supplier shall provide CMTR for all material (metals and/or piping) delivered under this MPO. CMTR documentation shall include:
 - 2.1.1. Identification of actual chemical and physical test results performed on a representative sample of the material heat/melt/lot.
 - 2.1.2. Heat/melt/lot number.
 - 2.1.3. Traceability to the material and/or end item(s) delivered.
 - 2.1.4. Contractor MPO number.
 - 2.1.5. Identification of Testing and Certifying organization.
 - 2.1.6. Statement of test results certification.
 - 2.1.7. Legibility and reproducible: each page of documentation supplied shall be photographically reproducible through two additional reproductions. Any illegible or unreproducible documentation shall be returned for replacement.
 - 2.1.8. Applicable specification.
- 2.2 Physical marking/labeling of material is required to maintain CMTR traceability. As a minimum, marking shall include:
 - 2.2.1. Specification designation.
 - 2.2.2. Heat/melt/lot number.
 - 2.2.3. Manufacturer identification.
- 2.3. Unless otherwise specified, CMTR documentation shall be delivered With Shipment (WS) to the final destination.

Clause No. 437 - Certificate of Conformance: The supplier shall certify that item(s) or service(s) delivered under this MPO conform(s) in all respects to the MPO requirements. Supplier certification shall be documented utilizing Contractor Form 540.04, "Certificate of Conformance," or supplier's standard Certificate of Conformance (C of C). Certifications shall be complete, accurate, legible, and reproducible. Incomplete or inaccurate certifications will be refused. Each certification shall be issued by the designated supplier certifying authority in accordance with established supplier certification procedures. The certification must be signed (electronic signature is acceptable) by an authorized company representative. Unless otherwise authorized, the supplier's C of C shall be submitted WS, to the shipping destination.

Clause No. 723** - Inspection/Test Data:

- 4.1. Part, drawing, and specification number
- 4.2. Serial number
- 4.3. Heat/melt Identification of raw material
- 4.4. Lot identification of each item
- 4.5. Characteristic subject to inspection
- 4.6. Inspection sequence
- 4.7. Acceptance criteria and source
- 4.8. Inspection results
- 4.9. Examination method
- 4.10. Measure & Test Equipment (M&TE)
- 4.11. Inspection setup
- 4.12. Environmental conditions
- 4.13. Test personnel identification
- 4.14. Dated approval signature by supplier authorized representative.

** PNNL was provided with direction to consider clauses that do not apply as NA. INL stated that their interest is in the documentation that you use to get your work done. Any test procedure, traveler and or inspection records that are generated and are applicable to the clause are useful. All clauses cited by the MPO and SOW that are applicable will be addressed in part or in whole as necessary.

A crosswalk document between the Analytical Support Operations (ASO) QA Plan and the ASME NQA-1-2008/1a 2009 criteria addresses ASO compliance to the requirements and this has been provided to INL.

The PNNL Radiochemical Processing Laboratory (RPL) was evaluated by INL in a desk audit in July 2016, a follow-up in December 2016, another in October 2017, and most recently in March 2019. The basis of the March 2019 audit was ASO-QAP-001, Rev. 11, ASO QA Plan, associated administrative and technical procedures and various QA Project Plans supporting assigned INL work.

Interfaces

Dr. Larry Greenwood is the PNNL Project Manager. Dr. Larry Greenwood is the primary point of contact. Samuel Adams will be the assigned Quality Engineer (QE). For INL, Klint Anderson will be the primary technical point of contact.

The activities required to fabricate the capsules under Task 1 will include the following:

- 1) Prepare QA Plan and any required procedures and test instructions
- 2) Issue QA Plan and any required procedures and test instructions
- 3) Assure that training has been assigned and completed for QA Plan and any required procedures
- 4) Fabricate and inspect the fluence capsules as noted above.
- 5) The capsules will be uniquely identified, electron beam sealed in a vacuum, and helium leak tested. Documentation will consist of the capsule and wire dimensions and weights, material certifications, and helium leak testing results.
- 6) PNNL will ship the capsules and supporting documentation including a Certificate of Compliance that the package submitted meets the requirements of the PO, capsule and wire dimensions, and weights, material certifications, inspection and helium leak test results.
- 7) PNNL will prepare the supporting data package according to requirements and specifications and submit to INL.

The activities required to perform testing under Task 2 will include the following steps. There is a gap between the time of capsule fabrication and return of irradiated capsules to PNNL for analysis by INL.

- 8) Review prepared QA Plan and existing required procedures and test instructions and develop or revise any that are necessary.
- 9) If the QA plan requires revision, issue QA Plan and any required procedures and test instructions
- 10) Assure that training has been assigned and completed for QA Plan and any required procedures
- 11) Receive the samples.
- 12) Prepare the samples for analysis by extracting them from the aluminum fuel holder.
- 13) Perform gamma spectroscopy analyses of the wires to determine activities of Sc-46, Mn-54, Nb-94, and Fe-59. The Nb wires will be dissolved and thin mounts prepared for X-ray measurement of Nb-93m.
- 14) The measured activities will be used to calculate nuclear activation rates using neutron spectral and reactor power history information provided by INL.
- 15) Neutron fluences will be calculated by adjusting the neutron spectra using a least squares procedure (STAYSL PNNL and associated computer codes). Radiation damage parameters (dpa, gas production) will be calculated using the adjusted neutron spectra and the SPECTER computer code.
- 16) Prepare the data package according to requirements and specifications and submit to INL.

Applicable and excluded NQA-1 requirements for the planned scope of work transmitted to PNNL RPL from INL are the following basic requirements:

- 1.0 Organization
- 2.0 Quality Assurance Program
- 3.0 Excluded Design Control
- 4.0 Procurement Document Control
- 5.0 Instructions, Procedures and Drawings
- 6.0 Document Control
- 7.0 Control of Purchased Items and Services
- 8.0 Identification and Control of Items
- 9.0 Excluded -Control of Processes
- 10.0 Inspection
- 11.0 Test Control basic, test requirements and test records
- 12.0 Excluded -Control of Measuring and Test Equipment
- 13.0 Handling, Storage, and Shipping
- 14.0 Excluded -Inspection, Test and Operating Status
- 15.0 Control of Nonconforming Items basic, identification and segregation
- 16.0 Corrective Action
- 17.0 Quality Assurance Records, basic, generation of records and storage
- 18.0 Audits

Responsibilities and authorities of PNNL staff working in the Radiochemical and Processing Laboratory (RPL) and those staff responsible for achieving and maintaining quality are identified in this document and in technical implementing procedures. An integrated approach to management is applied at PNNL and specifically in the PNNL RPL where the work will be performed.

1.3 Roles and Responsibilities

1.3.1 Cognizant Space Manager

A Cognizant Space Manager (CSM) and a delegate CSM are assigned to each hazardous space in the RPL as part of the PNNL Integrated Operations System (IOPS). RPL CSMs play a key role in hazard mitigation in the RPL and are delegated responsibility from their line manager and the RPL Manager for the following RPL-unique CSM responsibilities: CSM responsibilities are the following:

- Authorization of day-to-day laboratory operations.
- Determination if work hazards are adequately mitigated via procedure or by other hazard
 mitigation procedure, practice, and/or permit prior to the start of work by working with the
 researcher-provided information and using the appropriate subject matter experts for assistance,
 as needed.
- Tracking and managing radioactive material inventories within their assigned locations using the Radioactive Material Tracking (RMT) system as specified in procedure, RPL-ADMIN-002, current revision, *Radioactive Material Tracking*.
- Maintain radioactive material inventory limits with the applicable control ranges and conducting periodic evaluations of radioactive material inventory holdings including completion of a certification form per procedure RPL-SA-001, current revision, *Radioactive Material Inventory Tracking* Instruction.

1.3.2 Project Manager

The Project Manager is the Single Point of Contact between the funding client and the RPL research organization. The Project Manager has responsibility to interface directly with the client, negotiate the scope of work, and meet the client's quality, cost, and schedule requirements. Specific responsibilities related to the RPL include:

- Managing projects per requirements.
- Obtaining CSM approval for work proposed in RPL laboratory spaces.
- Identifying project risk(s).
- Communicating project expectations to project staff with regards to operations and safety.
- Determining what procedures, test plans and test instructions apply to the work.
- Assigning training.
- Obtaining and documenting technical reviews.
- Monitoring project activities.

1.3.3 Assigned Quality Engineer

The Quality Engineer (QE) assigned to this project provides independent oversight and reviews project requirements with the Project Manager, prepares and revises this QA plan, and ensures that requirements that apply to the work are satisfied. The assigned QE ensures that the analysis reports meet all requirements specified in the MPO.

1.3.4 Technician/Analysis Staff

RPL staff assigned to fabricate capsules and perform helium leak testing are required to work to a test instruction that documents steps performed to assemble and inspect capsules prior to shipping. Capsules are stamped or engraved with a unique identification number and sealed using an electron beam welder.

RPL staff assigned to perform gamma and x-ray analyses for fluence capsule samples are required to follow reviewed and approved procedures to perform work as specified in work practices, by use permits, and any other applicable work permits. Staff are required to ensure that measuring and test equipment used is adequately calibrated and that the results of analyses are documented and defensible and of known quality to meet project objectives. Staff are trained to the QA Plan and procedures.

2.0 QUALITY ASSURANCE PROGRAM

- 2.1 INL requirements are defined in the document, Memorandum Purchase Order (MPO)00239221, Effective Date:07/15/2020. The expiration/completion date is 10/30/2020. The MPO references a Statement of Work No.17494, Revision No. 0 entitled, "Fluence Capsules for SAM-2 Experiment," dated June 23, 2020.
- 2.2 This project-specific QA Program for PNNL Project 77150 is being implemented for this project. PNNL's applicable policies and procedures will be followed as listed in the sections below.

The ASO QA Plan, ASO-QAP-001, Rev. 11 (or most recent revision), *Analytical Support Operations Quality Assurance Plan*) is supported by the following applicable administrative procedures:

Procedure **Procedure Title** Number PNL-ASO-052 | Balance Performance Checks PNL-ASO-058 | ASO Data Reporting PNL-ASO-062 | Standards PNL-ASO-065 | ASO Control Charting PNL-ASO-066 Pipette Performance Check – Determination of Delivery Volume PNL-ASO-070 | Sample Management: Overview PNL-ASO-071 Sample Management: Receipt and Inspection PNL-ASO-072 Sample Management: Labeling, Log-in, and Work Authorization PNL-ASO-073 Sample Management: Storage and Security Sample Management: Distribution and Transfer of Unprocessed and Processed PNL-ASO-074 Samples PNL-ASO-075 Sample Management: Disposition and Waste Disposal PNL-ASO-076 | ASO Records Management PNL-ASO-077 | ASO Document Control PNL-ASO-078 | ASO Training Plan PNL-ASO-079 | ASO Occurrences, Deficiencies and Nonconformances PNL-ASO-080 | ASO Instrument Software, Multiple- and Single-use Spreadsheets PNL-ASO-081 ASO Procedure Development, Review and Approval Process

Table 2. ASO Administrative Procedures

The following technical procedures are proposed for use, but alternative procedures may also be used and those will be clearly defined in the reported results:

Table 3. ASO Technical Procedures

Procedure Number	Procedure Title
RPG-CMC-450	Gamma Energy Analysis (GEA) and Low-Energy Photon Spectrometry (LEPS)

Procedure Number	Procedure Title
RPL-OP-001	Routine Research Operations

RPL staff expected to support this work have been identified as the following:

Table 4. Staff	ing for Project	75643 and 0	OE Organizationa	l Independence
-----------------------	-----------------	-------------	------------------	----------------

Role	Assigned Staff	Organization
Project Manager	L Greenwood	D9H63
ASO Administrator	T Trang Le	D9H63
Fabrication	L Darnell	D9H63
Technical POC, gamma spectrometry	L Greenwood	D9H63
/Technical Reviewer		
Quality Engineer	S. Adams	PQ400
Analysis Staff GEA	Michael Cantaloub/	D9H63
	B Pierson/T Trang Le	
Technical Reviewers	L Greenwood/B Pierson/	D9H63
	C Soderquist	

Technical reviewers cannot review work they performed. Staff may be analysts for one data set and not for the following set, so the pool of knowledgeable technical reviewers may vary from sample batch to sample batch. Technical reviewers must be knowledgeable of the work they are reviewing. The staffing plan is to facilitate and ensure that staff participants are trained to applicable procedures.

Project-specific training is assigned by the Project Manager. At a minimum staff will be trained to the QA plan and applicable procedures for the work being performed. Training of staff may take the form of briefings, reading assignments, on-the-job training or mentoring. The Project Manager or the project QE may issue training assignments for QA and technical implementing procedures.

3.0 DESIGN REQUIREMENTS

This basic requirement is not applicable as no designs are required.

4.0 PROCUREMENT CONTROL

4.1 This basic requirement is applicable and quality-related procurements if needed, would be anticipated to support this work. However, required measuring and test equipment, vendor calibration of M&TE and standards for user-calibrated M&TE are already in place and in routine use.

When quality-related procurement actions are necessary, procurement control at PNNL is described in the following PNNL HDI workflow: *Acquire Product or Service*.

4.2 When needed, the assigned project QE shall approve all procurements containing QA requirements which must be processed via the HDI workflow, *Acquire and Product or Service*. The Project Manager will also review and approve these procurements.

Procurement planning at PNNL involves both the Project Manager and QE to determine if there are any applicable QA requirements or specifications; this includes any planned software purchases. Procurement of items and services that do not need specified QA requirements may be

processed using a PNNL Purchasing Card (P-Card) or through the Business to Business (B2B) Program. Items and services on the P-Card Prohibited Purchases and Purchases with Exceptions list) shall be purchased by use of a purchase requisition. The B2B program is a streamlined electronic purchasing mechanism for PNNL staff to purchase commercial, off-the-shelf items at competitive prices from pre-selected suppliers.

4.3 External suppliers of balance calibration services on a PNNL-wide basis involves the use of a vendor on the PNNL Evaluated Supplier Listing as specified by the Acquisition Quality Procedure AQP-03, *Pre-Award and At Site Evaluations Surveys and At Site Evaluations*. Submittals from calibration vendors are reviewed to determine their compliance with the procurement document technical and QA requirements in accordance with implementing procedure AQP-06, *Review of Supplier/Subcontractor Submitted Documents*.

5.0 INSTRUCTIONS, PROCEDURES, AND DRAWINGS

- 5.1 Content, review and approval of RPL procedures and TIs are guided by requirements specified in the ASO procedure, PNL-ASO-081, ASO Procedure Development, Review and Approval Process. This procedure specifies the format, review and approval process and issuing for implementing procedures used for work in RPL. The review and approval process addresses technical, quality and safety reviews to assure that concerns associated with performing work in a Category 2 nuclear facility are addressed. Procedures are screened and reviewed by a Safety Evaluation Screening process. Existing procedures to perform the work have been identified above.
- 5.2 This QA Project Plan, technical procedures and any necessary test instructions provide the acceptance criteria for determining that ASO analytical prescribed requirements defined by procedures listed in Table 2 have been met and that the tests have been satisfactorily accomplished.

6.0 DOCUMENT CONTROL

Once RPL procedures and test instructions are approved, the Project Manager determines the delivery method to assure that procedures and test instructions are available to staff and that only the most current revision is available for use. Changes to procedures must meet the requirements and follow the processes specified in PNL-ASO-081, *ASO Procedure Development, Review and Approval Process.* The most current versions of ASO procedures are available on the ASO SharePoint. ASO procedures are controlled under the ASO procedure, PNL-ASO-077, *ASO Document Control*. Test instructions, when used, are prepared, reviewed and approved before use and are considered as controlled documents.

7.0 CONTROL OF PURCHASED ITEMS AND SERVICES

This requirement is addressed by PNNL processes defined by the procurement system discussed in Section 4, Procurement Document Control above.

8.0 IDENTIFICATION AND CONTROL OF ITEMS

As noted above for Task 1 RPL will fabricate capsules with a unique identification number and ship these to INL.

RPL will receive the irradiated capsules returned from INL. Incoming analysis samples will be assigned a unique RPL identification (ID) number. All received samples will be evaluated for condition upon receipt and an Analytical Service Request (ASR) form completed and submitted to ASO Lead for

authorization to perform work. Chain of Custody forms, if provided, will be completed and returned to INL. All remaining sample material will be disposed of by RPL as radioactive waste.

9.0 CONTROL OF PROCESSES

This basic requirement is not applicable to the scope of work. Capsules are sealed using an electron beam welder, but this is not a welding process per se and only requires a special skill to perform this task.

10.0 INSPECTION

Task 1

Fabricated capsules will be inspected for conformance to required dimensions, visual inspection after sealing, a helium leak test and the bubble test.

Task 2

Capsules will be shipped from INL to RPL and will be inspected by PNNL upon receipt to evaluate sample container integrity and condition. If there are any concerns identified, INL will be immediately notified via the RPL Project Manager. Chain of Custody will be maintained by recording time and date of receipt and Chain of Custody forms, if provided to RPL, will be returned to INL. The capsule samples shall be controlled to prevent damage or loss and to minimize deterioration.

11.0 TEST CONTROL

This basic requirement is addressed by following project test instructions, and the administrative and technical procedures as noted above. Acceptance criteria for calibration verification and quality control samples are defined in procedures. Data reports contain a narrative discussing quality control sample results and the data report reports the sample and quality control sample results.

Excel spreadsheets are used for data reduction and reporting. Within the ASO QA Program multiple-use spreadsheets are developed, reviewed and approved for use. Locked cells are used for algorithms and entered or transcribed data are checked by technical and QE reviewers. Single-use spreadsheets require 100% technical review. Instrument software control and spreadsheet review and approval are addressed in the procedure, RPL-ASO-080, ASO Instrument Software, Multiple- and Single-use Spreadsheets.

12.0 CONTROL OF MEASURING AND TEST EQUIPMENT

- 12.1 Measuring and test equipment (M&TE) is controlled through the PNNL property management system. PNNL's calibration control system is explained in the HDI subject area, *Calibration* and addresses both vendor- and user-calibrated M&TE. When M&TE is used, manufacturer, model and serial number are recorded, as well as calibration status. Pedigrees to calibration standards are procedurally-controlled and traceable to certified materials. As previously discussed, a qualified vendor provides annual balance calibration services documented by applying a calibration sticker to the unit specifying serial number, calibration date and calibration due date. Calibration Reports are available and will be placed in the project record. M&TE needed for the work will be selected based on the type, range, accuracy, and tolerance needed and listed in the test instruction. Only M&TE within a valid calibration period will be selected for use.
- 12.2 No M&TE software is being developed or modified as part of the scope of work. Measuring and test equipment that contains software will be recalibrated when updates affecting the calibration are made to the software.

13.0 HANDLING, STORAGE, AND SHIPPING

Task 1

PNNL will complete all work and deliver the fluence wire capsules to INL after award of the MPO. Goods will be shipped to:

Idaho National Laboratory 1765 North Yellowstone Highway Idaho Falls, Idaho 83415

Task 2

Capsules will be shipped from INL to RPL and will be inspected upon receipt to evaluate sample container integrity and condition. If there are any concerns identified, INL will be immediately notified via the RPL Project Manager. Chain of Custody will be maintained by recording time and date of receipt and Chain of Custody forms, if provided to RPL, will be returned to INL. The capsule samples shall be controlled to prevent damage or loss and to minimize deterioration.

14.0 INSPECTION, TEST, AND OPERATING STATUS

This basic requirement is applicable to the scope of work.

15.0 CONTROL OF NONCONFORMING ITEMS

Task 1

Capsules will be uniquely identified, electron beam sealed in a vacuum, visually and microscopically inspected, helium leak tested, and bubble tested. Fabricated capsules not passing any inspection attribute will be removed from the population and discarded.

The procedure PNL-ASO-079, ASO Occurrences, Deficiencies and Nonconformances will be followed. If any issues arise, an Occurrence Report form will be used to document the issue and if evaluated as a significant condition adverse to quality, elevated to a Nonconformance or Deficiency Report as appropriate and corrective and preventive actions tracked to conclusion. Refer to the Corrective Action section below.

Task 2

This basic requirement is applicable to the scope of work at the point when the capsules are delivered to RPL from INL as discussed in Section 13 above. If any issues arise, an Occurrence Report form will be used to document the issue and if evaluated as a significant condition adverse to quality, elevated to a Nonconformance or Deficiency Report as appropriate and corrective and preventive actions tracked to conclusion. Refer to the Corrective Action section below.

16.0 CORRECTIVE ACTION

The corrective action process for documenting issues of concern and determining if significant conditions adverse to quality exist will be controlled via the use of Occurrence Report forms, Deficiency Report forms and Nonconformance Report forms as applicable conclusion as per the procedure, RPL-ASO-079, ASO Occurrences, Deficiencies and Nonconformances. The Project Manager and QE will evaluate occurrences for conditions adverse to quality and to determine if the occurrence is a deficiency or nonconformance. Deficiencies and nonconformances are tracked by the project QE to closure and submitted to records. When necessary the ASO Project Manager will inform the INL POC of any concerns or conditions.

17.0 QUALITY ASSURANCE RECORDS

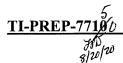
- 17.1 Analytical Support Operations (ASO) staff comply with the HDI work flows, *File and Maintain Project Records and Manage Project Records* and the ASO procedure, PNL-ASO-076, *ASO Records Management*. The Project Manager defines project records and QA records to be maintained in the File Plan which functions as an index to the record file. PNNL has a Records Management system to electronically manage project records. A project Share Drive location is used to store .pdf copies of procedures reviewed and approved test plans and instructions, as well as completed plans and instructions, data packages, and reports.
- 17.2 For Task 1 the completed TI and attachments (supporting documentation: capsule and wire dimensions, and weights, material certifications, inspection, helium leak and bubble test results and the Certification of Conformance are the records to be submitted to ASO records.
- 17.3 For Task 2 the data summary report when applicable, will reference any deficiency, nonconformance or occurrence reports, any audit and surveillance reports, the data generated by measuring instruments. Final data reports will be prepared and will have a cover page, a narrative and a data summary. This report and the system files for each analysis will be submitted to ASO records.
- 17. 4 Final data reports shall be reviewed by the Project Manager and the project QE prior to submittal to the client. This review is to verify that the records are legible and traceable to project deliverables and that project objectives have been met.

18.0 AUDITS

Surveillances will be performed as requested by the Project Manager and when work-in-progress is evaluated against procedures. When completed tests and data packages and project reports are reviewed, a QE Memorandum will be prepared.

Page 1 of 7 40 8 120 (20)

Test Instruction for Preparation of Fluence Wire Capsules - Project 77150


Revision 0

Effective Date: Upon last signature

Lawrence R

Greenwood Greenwood Date: 2020.07.20 08:43:35 -07'00' Author: Larry R. Greenwood, Project Manager Date **Technical** Reviewer: Lori P. Darnell Digitally signed by Samuel A. Adams Samuel A. Adams Quality Date: 2020.07.20 14:57:42 -07'00' Assurance Samuel A. Adams, Quality Engineer Date Reviewer:

Digitally signed by Lawrence R

Page 2 of 7 3/20/20

INTRODUCTION

Test instructions (TIs) are prepared to direct the specific dosimetry fabrication requirements required by the Idaho National Laboratory (INL) client. This TI provides the requirements for the fabrication of ten (eight for delivery with 2 spares) fluence capsules. All of the vanadium capsules contain Fe, Ti, Nb and 0.116% Co-Al wires. Each capsule has a unique identifier code. The laser-etched identification codes and the number of wires required is given on the sample loading sheets attached to this test instruction.

The following documents (current versions) are applicable to this activity:

ASO-QAP-001, Rev. 11, Analytical Support Operations (ASO) QA Plan
Quality Assurance Project Plan – 77150 (Rev. 0), Fluence Capsules for the SAM-2 Experiment
PNL-ASO-052, Rev. 3, Balance Performance Checks
RPL-OP-001, Rev. 15, Routine Research Operations
TI-FAB-77150, Rev. 0, Tests and Inspections for Reactor Dosimetry Capsules- Project 77150

PREREQUISITES

Training

Fabricators and the Technical Reviewers must be familiar with the process of inspecting capsules, acceptance testing, and all steps required by this procedure. Technicians will be trained in capsule fabrication and acceptance testing if needed through mentoring. Because this TI is completed as it is performed; no training to the TI is needed.

Data Recording Forms

Data forms will be used to record data. The data forms for this activity are attached.

No fields are to be incomplete when used. Upon completion, data forms require completeness reviews by the Fabricator, as well as technical and quality reviews. Both Fabricators and technical reviewers must sign and date forms before they can be deemed to be complete. The quality review is performed in a review of all the fabrication records for manufacturing, assembling, examination, and inspection and documented in a surveillance report.

MEASUREMENT AND TEST EQUIPMENT

Calibration

Equipment used in fabrication of dosimeter capsules is listed in Table 1. Unique IDs of capsules and calibration status of M&TE used for acceptance testing will be recorded before use. Fabrication equipment requiring prior calibration for wires includes calipers.

Only accepted materials are available to the Fabricator. Project inspectors will use calibrated measuring devices when applicable.

Fabrication staff will ensure that only the correct materials are available for use.

This TI will result in a handoff of materials to the next follow-on process for capsule sealing/closure and final tests and inspections (TI-FAB-77150, Rev. 0).

TI-PREP-77190

Page 3 of 7 HB

Required Materials

The materials specified in Table 1 are applicable to this TI:

Table1. Wires required for Project 77150

Vanadium Capsules	Quantity	Description
The capsules shall be made of pure vanadium (99.8% minimum V): Tube with an overall capsule size of outer diameter (OD) = 0.047 inches to 0.054 inches and 0.420-inch maximum length.	Quantity = At least 10 (8 for delivery + 2 spares, one of each type) to ensure that 8 are available for shipping	 99.99% minimum purity iron (Fe) wire (MRC Y2Y-444-07448) 99.92% minimum purity titanium (Ti) wire (RE 614) Niobium (Nb) wire; Reference Material 526C from the Institute for Reference Materials and Measurements (IRMM) Cobalt (Co)-Aluminum (Al) alloy wire: 0.116% Co-Al wire SRM-953 from the National Institute of Standards and Technology (NIST)
Total	10	

Additional fabrication materials include: Calibrated balances, cotton or plastic gloves and ethanol or acetone

Post-sealing inspection supplies include:

Plastic bottles/jars labeled with the type of monitor being fabricated.

Microscope with at least 15X magnification

Inspection block

Calibrated caliper or micrometer

Table 1. Measuring and Test Equipment for Fabrication

Manufacturer	Model Number	Description	Serial Number (if available)	Property Number (if available)	Location	Calibration Required?	Frequency of Required Calibration
Thermo	Orion Cahn C-31	Analytical Balance	75242	WD 24315	RPL, 55	Yes, annual by metrology and verification check with use	Annual, daily verification 200 g mass weight
Thermo	Orion Cahn C-33	Analytical Balance	77843	WD 55353	RPL, 514	Yes, annual by metrology and verification check with use	Annual, daily verification 200 g mass weight
Mitutoyo	CD-6"- ASX	Digital Slide Caliper	13357600	NA	RPL, 514	Yes, annual by metrology	Annual
Mitutoyo	CD-6"- ASX	Digital Slide Caliper	084599791	NA	RPL, 514	Yes, annual by metrology	Annual

WORK INSTRUCTIONS:

Each step will be **initialed and dated as completed**. Required forms are attached. The TI requires a completeness review by the Fabricator (Step 17), and technical and quality review when complete.

Initial	Date	
IAD"	7/27/20	1. Locate and identify all materials as specified above in order to fabricate the fluence capsules. See the requirements and specifications table above for selection of vanadium capsule lengths. Capsules containing Fe, Nb, Ti, and 0.1% Co-Al wires should be up to 0.420" in length. If there are any questions or concerns, direct these to the Project Manager.
LPD	7/27/20	2. Inspect the vanadium capsules to make sure that the capsules are free of any defects and have a unique ID stamp on the bottom or side of the capsule.
ZFD Man	7/27/20	3. Clean the capsules in acetone or ethanol using a plunger wire to make sure that the capsules do not contain any extraneous material from machining. Allow the capsules to dry before further use.
FPD Amn	7/2/20 8.11.20	4. Select vanadium capsules according to the instructions in the table above. Weigh each capsule and place the capsules into an aluminum block with numbered holes and record the unique ID number on the prepared weighing form.

	00.8101	
Initial	Date	
ISD	7/28/20	5. Cut sections of the selected fluence wire in varying lengths according to the direction of the Project Manager, ensuring that the wire lengths are at least 1/16".
SPD FIRD FIRD FIRD FIRD FIRD FIRD FIRD FIR	7/18/20 8/3/20 8/4/20 8/5/20 8/10/20 8/11/20	6. Ensure that the performance of the balance needed to weight wires in the next step has been verified by performing the daily calibration performance check as per the procedure, PNL-ASO-052, Rev. 3, <i>Balance Performance Checks</i> Was the daily balance performance check acceptable? Yes or No (Circle one)

Initial	Date	
ZP AMA	8/4/20	7. Weigh each wire and record the weight on the weighing form. Place the wire inside the vanadium capsule.
IPD.	8/5/20	8. Cut approximately 1/16" length sections of vanadium wire for all of the capsules or select prepared wire segments to plug the open end of the vanadium capsule.
FAD Amm	8/5/20	9. Weigh the vanadium wires and record the weights on the weighing form. Amm 8-11.
ZPD AMM	8/5/20 8.5.W	10. Push the vanadium wire into the top of each capsule leaving about 1/64" at the top for the sealing. The wires should fit snugly so they will stay in place for transport to the sealer. Crimp in place using small pliers.
LPD Ann	8/10/20	11. Weigh the final, loaded capsule and record the weight on the weighing sheet. Compare the final loaded weight with the sum of the weights of the individual components. If the difference is outside the expected tolerance range, unload the capsule and reweigh all the components to ensure that the weights agree.
	P	Note: If there are any questions regarding the required tolerance range(s), obtain this information before completing this step.
LPD	8/20/20	12. Once all of the capsules have been prepared, load them into the copper chill blocks leaving about 1/32" exposed for the sealing. Record the unique chill block number on the weighing sheets so that the capsule identifications will be maintained.
LPD	8/20/20	13. Notify the Project Manager that the capsules have been prepared and are ready for sealing and submit the weighing sheets and a copy of the balance log to the project manager for approval prior to sealing.
GPD FPD	9/8/20	14. After sealing, perform the tests and inspections as specified in TI-FAB-001, current revision. On completion of the tests, submit the test and inspection records to the Project Manager for review and approval.

Preparation of Fluence Wire Capsules – Project 77150 Revision 0

	ALD OLD	
<u>HN</u>	9/18/20	15. Prepare plastic pill vials and labels with the unique capsule identifications and final, sealed weights. Insert the capsules into the vials and notify the Project Manager that the capsules are ready for shipment to the client.
LPD	9/21/20	16. Review the completed TI to ensure that it is complete, legible, and that error corrections were corrected using a single line-out that was initialed and dated, and that if warranted, that an explanation for error corrections is present.
FRY	9/21/20	17. The Project Manager will perform a technical review of the data and then arrange for the Quality Engineer assigned to this project to review all project records to ensure compliance with the QA Project Plan and Memorandum Purchase Order (MPO) and Statement of Work (SOW).

Quality Control

Quality control requirements are addressed by using calibrated M&TE within the specified calibration interval and ensuring that technical and Quality Engineer reviews of data are performed and that all identified issues are resolved. Reported data must be traceable to supporting data.

Records

Records include the weighing form, a copy of the Balance Performance Check Log form for the time interval the balance was used for this work, and a copy of the balance Calibration Certificate from the supplier providing RPL balance calibration services to demonstrate that the balance was within its calibration interval.

Page 6 of 78

		Preparation and Weight Sheet for Capsules Containing Fe, Ti, and Nb wires									
	Balance SN: 7	78423 FRY					9				
	Last Calibration	on Date: 8/20/	2019		Next Calibra	tion Due: 8/20	/2020				
Capsule ID	A Vanadium	B Fe	C Ti	D Nb	E 0.116%CoAl	F Vanadium	G = Sum A to E	н	Absolute Value of H-G		
	Capsule Weight (mg) Step 4	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 9	Sum of Previous six columns (mg)	Final Load Capsule Weight (mg) Step 11	Compare Calculated Sum Weights to Final Loaded Capsule weights Agreement within tolerance? (0.1 mg) Y/N Step 11		
A7	40.824	2.302	1.207	2.252	0.722	2.977	50.284	50.253	0.031, Yes, Short Cap		
T2	39.958	2.149	1.414	1.829	0.808	3.055	49.213	49.207	0.006, Yes, Short Cap		
Y1	40.163	2.065	1.153	2.242	0.813	2.280	48.716	48.726	-0.010, Yes, Short Cap		
1F	40.297	2.516	1.195	2.165	0.695	2.848	49.680	49.718	-0.038, Yes		
5B	42.256	2.013	1.221	1.902	0.702	2.832	50.926	50.920	0.006, Yes		
97	39.420	2.613	1.264	1.863	0.830	2.533	48.523	48.492	0.031, Yes		
5D	43.558	2.136	1.299	2.069	0.830	2.854	52.746	52.720	0.026, Yes		
B5	41.147	2.406	1.253	1.801	0.712	2.680	49.999	50.003	-0.004, Yes		
9J	38.378	2.610	1.191	2.281	0.863	3.035	48.358	48.302	0.056, Yes		
A5	40.991	2.247	1.349	2.053	0.709	3.536	50.885	50.879	0.006, Yes		
9C	42.525	2.010	1.579	1.827	0.705	3.609	52.255	52.205	0.050, Yes		
5U	41.161	2.599	1.246	2.252	0.736	3.228	51.222	51.233	-0.011, Yes		
1I	41.956	2.144	1.187	1.928	0.708	3.036	50.959	50.956	0.003, Yes		
V1	41.727	2.003	1.133	1.844	0.728	2.555	49.990	49.978	0.012, Yes		
X2	41.242	2.043	1.603	2.168	0.745	2.664	50.465	50.431	0.034, Yes		

Analyst: Lou ! Dainell	Date: _7-22-20
Technical Reviewer: JR Leeweed	Date: 9-22-Z
QE Reviewer:	Date:

		Preparation and Weight Sheet for Capsules Containing Fe, Ti, and Nb wires									
	Balance SN: 7	Balance SN: 77843									
	Last Calibration	on Date: 8/20/	2019		Next Calibra	Next Calibration Due: 8/20/2020					
Capsule ID	A Vanadium	B Fe	C Ti	D Nb	E 0.116%CoAl	F Vanadium	G = Sum A to E	Н	Absolute Value of H-G		
	Capsule Weight (mg) Step 4	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 9	Sum of Previous six columns (mg)	Final Load Capsule Weight (mg) Step 11	Compare Calculated Sum Weights to Final Loaded Capsule weights Agreement within tolerance? (0.1 mg) Y/N Step 11		
77	42.284	1.918	1.168	2.514	0.675	3.004	51.563	51.587	-0.024, Yes		
61	40.169	1.878	1.099	2.477	0.651	2.559	48.833	48.787	0.046, Yes		
7F	39.888	1.866	1.085	2.388	0.637	2.760	48.624	48.645	-0.021, Yes		
A1	41.782	2.053	1.113	2.817	0.853	3.052	51.670	51.660	0.010, Yes		
O5	40.946	2.151	1.088	2.439	0.651	2.900	50.175	50.156	0.019, Yes		

Analyst: Zori P. Warnell	Date:	9-22-20
Technical Reviewer: LRYceeward	Date:	9-22-2
QE Reviewer:	Date:	

Page 7 of 7

TI-PREP-7710

	Preparation and Weight Sheet for Capsules Containing Fe, Ti, and Nb wires + Co Al 184 8/18/20										
	Balance SN: Last Calibration		20-19		Next Calibration Due: 8/20/20 -7 8/18/2024						
Capsule ID	A Vanadium	B Fe	C Ti	D Nb	E 0.116%CoAl	F Vanadium	G = Sum A to E	Н	Absolute Value of H-G		
	Capsule Weight (mg) Step 4	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 9	Sum of Previous six columns (mg)	Final Load Capsule Weight (mg) Step 11	Compare Calculated Sum Weights to Fit Loaded Capsule weights Agreement within tolerance' (0.1 mg) Y/N Step 11		
AT	40.824	2.302	1.207	2.252	0.722	2.977	50.284	50.253	.031, yes, short 60		
T2	39.958	2.149	1.414	1.829	0.808	3.055	49.213	49.207	.ook, yes, Short Co		
Y1	40.163	2.045	1.153	2.242	0.813	2.280	48.716	48.726 -	.010, yes, Short Co		
1F	40.297	2.516	1.195	2.145	0.695	2.848	49.680	49.718 -	,038 · Jus		
5B	42.256	2.013	1.221	1.902	0.702	2.832	50.926	50.920	.006 , Jus		
97	39.420	2.613	1.264	1.843	1.830	2.533	48.523	48.492	.031, ges		
50	43.558	2.136	1.299	2.069	0.830	2.854	52.746	52.720	.026, Ses		
B5	41.147	2.406	1.253	1.801	0.712	2.680	49.999	50.003 -	.004, yes		
95	38.378	2.610	1.191	2.281	0.863	3.035	48.358	48.302	.056, yes		
A5	40.991	2.247	1.349	2.053	0.709	3.536	50,885	50.879	.006, 440		
9C	42.525	2.010	1.579	1.827	0.705	3.609	52.255	52.205	.050, yes		
5U	41.161	2.599	1.246	2.252	0.736	3.228	51.222	51. 233 -	:011 , byes		
11	41.956	2.144	1.187	1.928	0.708	3.036	50.959	50.956	,003, yes		
V1	41.727	2.003	1.133	1.844	0.728	2.555	49.990	49.978	.012 Qus		
X2	41.242	2.043	1.603	2.168	0.745	2.664	50.465	50.43/	.034, Ges		

Analyst: Lori L. Dairell	Date:
Technical Reviewer	Date:
QE Reviewer:	Date:

0-375 AMM 20

Preparation of Fluence Wire Capsules – Project 77150 Revision 0 8 8 Page 7 of 7

TI-PREP-7710

			2.17	Prepara	ation and Wei	ght Sheet for	Capsules Con	taining Fe, Ti, a	nd Nb wires +C	OAL JAB 8-18-20
		Balance SN: Last Calibration		20/9-	8/18/20	Next Calibra	tion Due: 8/2	10/20 + 8,	18/21	
	Capsule ID	A Vanadium	B Fe	C Ti	D Nb	E 0.116%CoAl	F Vanadium	G = Sum A to E	Н	Absolute Value of H-G
	_	Capsule Weight (mg) Step 4	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 7	Wire Weight (mg) Step 9	Sum of Previous six columns (mg)	Final Load Capsule Weight (mg) Step 11	Compare Calculated Sum Weights to Final Loaded Capsule weights Agreement within tolerance? (0.1 mg) Y/N
lt	77	42.284	1.918	1.168	2.514	0.675	3.004	Dans Min	51-587	Step 11 - 0.024 y
1117	101	40.169	1.878	1.099	2.477	0.651	2.559	48.933	48.887	0,046 y'
69 AN A8	FF	39.888	1.866	1.189	2.388	0.637	12,760	48.624	148.64 \$ 5	-0.021
W/19 19	A1	41.782	2.053 /	1.113	2.817	0.853	3.052	51.670	51.660	0.010
20	05	46.946	2.151	1.088	2.439	6.651	2,900	50.175	50.156	0.619 Y'
Amn									1 1 5 5 1	
			\\		w 4.11.20		-		V 48787	
811.20			7	1.085	W 4.11.				48.787	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Ann 8.11.	w
									20	

Analyst: L.P. Darrell	Date: _	8-11-20
Technical Reviewer:	Date: _	
QE Reviewer:	Date:	

Tests and Inspections for Reactor Dosimetry Capsules - Project 77150

Effective Date: Upon last signature

Approvals:

Project Manager:

Lawrence R Greenwood Greenwood Date: 2020.07.20 08:42:36 -07'00'

Larry R. Greenwood Date

Technical Reviewer:

Lori P. Darnell Date

Quality Engineer:

Samuel A. Adams Digitally signed by Samuel A. Adams Date: 2020.07.20 14:59:33 -07'00'

Samuel A. Adams Date: 2020.07.20 14:59:33 -07'00'

Hazard Mitigation

The fluence capsules when fabricated are not irradiated and capsules are inspected after the sealing process is completed. Therefore, there are no hazards other than work with boiling water, which does not require special mitigation.

Work Instructions

The electron beam sealing system in the Applied Process Engineering Laboratory (APEL) or the laser sealing system in building 3410 will be used to seal fluence capsules for RPL projects. Inspection approaches to ensure that capsules pass project-specified requirements are addressed in this procedure. Attachment 1 is the example sealing request, sealing request completion, and sealing acceptance forms.

Visual Microscopic Inspections

Prior to initiation of work and following capsule sealing, all capsules are visually inspected under a microscope with at least 15X magnification. The purpose of the inspection is to (1) verify the capsule ID code stamped on the bottom, (2) ensure the absence of any visible flaws or cracks, especially after sealing, and (3) assess the general condition of the capsule seal (e.g., size, penetration).

Dimensional Checks

The length and outside diameter of each capsule is measured with a micrometer, calipers or dimensional gauge to ensure that the capsules meet the client's specifications. The measurements are conducted after final sealing since the sealing process may lead to some dimensional changes.

Weighing

The capsules are weighed on calibrated balances to at least three (3) significant figures at several points during the fabrication process including the initial empty weight, the weight with the wires loaded, and the final weight after sealing. Balance performance checks are conducted and documented prior to each weighing. The weight check must be within the tolerance specified for the assigned mass weight on the Balance Performance Check Log form. The weight sheets include the M&TE number of the balance and calibration interval (Date last calibrated / next calibration due) for traceability. Capsules that show an unusually high weight loss on sealing are rejected.

RPL balances are calibrated at least annually by Quality Control Services, Inc. (Portland, OR) a PNNL evaluated supplier. Balance calibration certificates are received and maintained as records and calibration stickers showing the valid calibration interval are placed on each unit.

Helium Leak Testing

Helium leak testing is performed using a Pfeiffer helium leak detector using procedure, RPL-HE-001, Rev. 0, Dosimetry Capsule Helium Leak Testing. Prior to measurements, the leak detector is calibrated with a helium leak standard. Prior to testing, the capsules are placed in a chamber, which is then evacuated, and backfilled with helium gas at a pressure of about 1500 Torr for at least 18 hours. [NOTE: If the capsules are sealed with a laser in a helium filled glovebox, then helium soaking is not required prior to leak testing.] The chamber is then evacuated and connected to the helium leak detector. Helium outgassing measurements are then performed and compared directly to the helium leak standard. Typical results indicate an outgassing rate for the capsules of $< 1 \times 10^{-8}$ atm-cc/second. The requirement is that the helium leak test for the capsules is not to exceed 1.0E-07 std cc/sec. A helium leak testing report is prepared to document the testing and results and must have the he leak calibration information attached.

Tests and Inspections for Reactor Dosimetry Capsules—Project 77150 TI-FAB-77150 Revision 0 Page 5 of 9

- Completed Chain of Custody and Sealing Request and Completion form
- Inspection Worksheet & Sealing Acceptance Summary Worksheet
- Inspection Worksheet Project 77150 (INL) Fluence Capsules
- He Leak Test report
- He Leak Calibration documentation

Tests and Inspections for Reactor Dosimetry Capsules—Project 77150 OS-001 Revision 0

TI-RPL-DOS-001

Page 7 of 9

	ttachment 1		Page 1 of 1
Chain of Custody for Capsule Sealing			
I. Sealing Request			
Number and list of capsules to be sealed: $\frac{20}{A7}$, $\frac{72}{12}$, $\frac{71}{17}$, $\frac{75}{17}$, $\frac{75}{17}$, $\frac{75}{17}$	T, 9J, A:	5, 9C, 5l	C, 1I, V1, K2, T7, 61, 7F,
Date 8/20/20 11:45 Lore & Darrell	Date: 20 AUS 2020	Time: //:45	Received by Def Of
Date: Time: Refinquished by: List KU 2020 10:00 Refinquished by:	Date: / /26/26	Time: 10,10	Lou P. Daine
Date: Time: Relinquished by:	Date:	Time:	Received by:
II. Sealing Request Completion			
Number of capsules sealed: 20			
The sealing was performed by Signature	All		on <u>25AU4</u> 2020 Date
Distribution: Larry Greenwood, Project Manag	rer/ Project F	ile: Proiect (DE

Attachment 2 INSPECTION WORKSHEET & SEALING ACCEPTANCE SUMMARY WORKSHEET

Capsules Inspected:

Length Specification:

Maximum of 0.420"

What method(s) was/were used?

Test	Date Performed	Analyst	Criteria	Summary of Results
Visual microscopic inspection	7/28/20	LPD FAD	Verify unique capsule ID code Verify absence of visual flaws	/00 % Pass /00 % Fail
Dimensional Checks	9/18/20	LPD	O.D. 0.047-0.054" Length: Max 0.420"	<u>/00</u> % Pass % Fail

Distribution: Larry Greenwood, Project Manager/ Project File; Project QE

Tests and Inspections for Reactor Dosimetry Capsules—Project 77150 TI-RPL-DOS-001 Revision 0

Page 9 of 10 My 9-22-20

Inspection Worksheet Project 77150 (INL) Fluence Capsules

Visua	al Micros	copic Ins	pection	Dim	ensional C	Check	1	Weight Check		Other	Tests	
	e SN: N674				rometer SN:		Balance SN: 77843			Helium Leak: ≤1.0E-7 std		
				1						cc/second		
Fluence W	ires: Fe, Ti,	Nb, and Co	o-Al	Last Calibra	tion Date: 1/2	24/2020	Last Calibration I	Date: 8/18/2020		Bubble Test: St	teady stream,	
				Next Calibra	ation Due: 1/	24/2021	Next Calibration	Due: 8/18/2021		or growing		
Capsule	Verified	Absence	General	Length	Outside	Meets	Weight with	Final Weight	Acceptable?	Helium Leak	Bubble Test	
ID Code	?	of	Obs:	Max	Diameter	Specs:	Dosimeters	after Sealing	(< 0.3 mg)	Test OK?	OK?	
and wire	Y/N	flaws? Y/N	seal size,	0.420	0.047 - 0.054	(see above) Y/N	Loaded	(mg)	Y/N	Y/N	Y/N	
type		1/19	penetration	inches	inches	1/N	(mg)		-			
Analyst	LPD	LPD	LPD	LPD	LPD	LPD	LPD	LPD	LPD	AC	LPD	
/Date:	7/28/20	7/28/20	7/28/20	9/18/20	9/18/20	9/18/20	8/18/20	9/18/20	9/18/20	9/2/20	9/8/20	
A7	Yes	Yes	Good	.3820	.0490	YES	50.253	50.108	.145 YES	YES	YES	
T2	Yes	Yes	Good	.3845	.0505	YES	49.207	49.030	.177 YES	YES	YES	
Y1	Yes	Yes	Good	.3735	.0530	YES	48.726	48.581	.145 YES	YES	YES	
1F	Yes	Yes	Good	.3890	.0570	YES	49.718	49.619	.099 YES	YES	YES	
5B	Yes	Yes	Good	.3920	.0495	YES	50.920	50.799	.121 YES	YES	YES	
97	Yes	Yes	Good	.3890	.0505	YES	48.492	48.352	.140 YES	YES	YES	
5D	Yes	Yes	Good	.3930	.0510	YES	52.720	52.472	.248 YES	YES	YES	
B5	Yes	Yes	Good	.3755	.0500	YES	50.003	49.933	.070 YES	YES	YES	
9J	Yes	Yes	Good	.3870	.0505	YES	48.302	48.197	.105 YES	YES	YES	
A5	Yes	Yes	Good	.3880	.0500	YES	50.879	50.630	.249 YES	YES	YES	
9C	Yes	Yes	Good	.3915	.0495	YES	52.205	52.120	.085 YES	YES	YES	
5U	Yes	Yes	Good	.3950	.0500	YES	51.233	51.054	.179 YES	YES	YES	
1 I	Yes	Yes	Good	.3910	.0490	YES	50.956	50.863	.093 YES	YES	YES	
V1	Yes	Yes	Good	.3945	.0500	YES	49.978	49.782	.196 YES	YES	Fail	
X2	Yes	Yes	Good	.3930	.0500	YES	50.431	50.330	.101 YES	YES	YES	

Analyst: Lori P. Dainell	Date:	9-22-20	QE Reviewer:	Date:
Technical Reviewer: Myeenend	_Date:	9-22-20		

Tests and Inspections for Reactor Dosimetry Capsules—Project 77150

TI-RPL-DOS-001

Revision 0

Page 9 of 10

Cont, 499-22-20

Inspection Worksheet Project 77150 (INL) Fluence Capsules

Visua	al Micros	copic Ins	pection	Dim	ensional C	heck	V	Veight Check		Other	Tests
Microscope	SN: N674	872		Caliper/Micrometer SN: 13357600			Balance SN: 7784	13	Helium Leak: $\leq 1.0E-7$ std		
										cc/second	
Fluence Wi	ires: Fe, Ti,	Nb, and Co	-Al	Last Calibra	tion Date: 1/2	24/2020	Last Calibration I			Bubble Test: St	eady stream,
				Next Calibration Due: 1/24/2021			Next Calibration	Due: 8/18/2021		or growing	
Capsule	Verified	Absence	General	Length	Outside	Meets	Weight with	Final Weight	Acceptable?	Helium Leak	Bubble Test
ID Code	?	of	Obs:	Max	Diameter	Specs:	Dosimeters	after Sealing	(< 0.3 mg)	Test OK?	OK?
and wire	Y/N	flaws?	seal size,	0.420	0.047 -	(see above)	Loaded	(mg)	Y/N	Y/N	Y/N
type		Y/N	penetration	inches	0.054	Y/N	(mg)				
	-, -, -, -, -, -, -, -, -, -, -, -, -, -				inches					1 1 1 1 1 W	
Analyst	LPD	LPD	LPD	LPD	LPD	LPD	AMM	LPD	LPD	AC	LPD
/Date:	7/28/20	7/28/20	7/28/20	9/18/20	9/18/20	9/18/20	8/11/20	9/18/20	9/18/20	9/2/20	9/8/20
77	Yes	Yes	Good	.3875	.0490	YES	51.587	51.485	.102 YES	YES	YES
61	Yes	Yes	Good	.3865	.0495	YES	48.787	48.654	.133 YES	YES	FAIL
7F	Yes	Yes	Good	.3840	.0495	YES	48.645	48.429	.216 YES	YES	YES
A1	Yes	Yes	Good	.3750	.0515	YES	51.660	51.604	.056 YES	YES	YES
O5	Yes	Yes	Good	.3825	.0495	YES	50.156	50.061	.095 YES	YES	YES

Analyst: Love P. Warnell Da	ate:	9-22-20	QE Reviewer:	Date:	
Technical Reviewer: Alleward Da	ate:	9-22-20			

Revision 0

Page 9 of 9

Inspection Worksheet Project 75643 (INL) Fluence Capsules

	Vien	al Micros	conic Inc			ensional C		3 (INL) Fluence	Veight Check		Other	Tests
		e SN: N674		pection		rometer SN:		Balance SN: 77			Helium Leak: cc/second	
	Fluence W	ires: Fe, Ti,	Nb, and Co	-Al	Last Calibra Next Calibra	tion Date: /-	-24-2020 -24-2021	Last Calibration D Next Calibration I			Bubble Test: Stor growing	eady stream,
	Capsule ID Code and wire	Verified ? Y/N	Absence of flaws?	General Obs: seal size,	Length Max 0.420	Outside Diameter 0.047 -	Meets Specs: (see above)	Weight with Dosimeters Loaded	Final Weight after Sealing (mg)	Acceptable? (<0.3 mg) Y/N	Helium Leak Test OK? Y/N	Bubble Test OK? Y/N
	type		Y/N	penetration	inches	0.054 inches	Y/N	(mg)	(3)		1. 0	
1:0	Analyst /Date:	1/28/20	7/28/20	1/28/20	9/18/20	9/18/20	9/18/20	AP 8/18/20	9/18/20	9/18/20	yes	9/8/20
Sung Sung	A7	y	'u'	Good	.3820	.0490	yes	50,253	50.108	.145 yes	yes	yes
2, 20 m 7 3	T2	y	Ey .	Good	.3845	,0505	yes	49.209	49.030	.177 yes	yes	gus
, (<u> 41</u>	y	ÿ	Good	,3135	.0530	yes	48 126	48, 581	,145 yes	gus	ges
_	IF	y	y	G000	,3890	-0570	yes	49.718	49.619	,099 yes	325	ges
	5B ,	y	ÿ	Good	.3920	, 8495	geo	50.920	50.799	, 12/ yrs	ges	ges
-	97	ly	y	Good	.3890	,0505	ges	48.492	48.352	, 140 yes	- Eles	Ges
	5D ·	y	y	Good	,3930	.0510	yes	52,720	52.472	. 248 yrs	ges .	yes
	B5 ·	y	y	Good	,3755	,0500	nes	50,003	49.933	,070 yes	yes	yes
-	95	y	y	Good	.3870	10505	yes	48.302	48.197	, 105 yes	ges	yes
_	A5	a a	ey .	Good	13880	.0500	ges	50.879	50.630	, 249 yes	yes	ges
	9C :	y	y	G-000	. 3915	10493	yes	52,205	52.120	.085 yes	tes	ges
_	5U	y	y	Crood	.3950	,0500	Des	51.233	51.054	.179 yes	ges	yes
_	11	y	y	Good	.3910	.0490	ges	50.956	50.863	,093 yes	yes	iges
ail X	- V1	y	Ey .	Good	,3945×	,0500×	yes *	49.978 ×	49,782 *	. 196 yes-	× yes ×	Fail *
	X2 :	l y	y	Good	,3930	,0500	geo	50.431	50.330	,101 yes	720	yes
	Analyst: _	Lou 1	Daine	cel .	Date:	9/18/20	0	QE Reviewe	er:	D	ر ate:	<i>y</i>

Tests and Inspections for Reactor Dosimetry Capsules-Project 77150

TI-RPL-DOS-001

Revision 0

Page 9 of 9

Inspection Worksheet Project 77150 (INL) Fluence Capsules

-			1113				(IIVL) Fluche				_
Visu	al Micros	copic Ins	pection	Dim	ensional C	heck		Weight Check		Other	
	e SN: N674			Caliper/Mici	rometer SN: /	13357600	Balance SN: 7	7843		Helium Leak:	\leq 1.0E-7 std
				•						cc/second	
Fluence W	ires: Fe, Ti,	Nb, and Co	-Al	Last Calibra		-24-2020		Date: 8/18/202		Bubble Test: St	eady stream,
	, ,	,		Next Calibra	ation Due: /	-24-2021	Next Calibration	Due: 8/18/202		or growing	
Capsule	Verified	Absence	General	Length	Outside	Meets	Weight with	Final Weight	Acceptable?	Helium Leak	Bubble Test
ID Code	?	of	Obs:	Max	Diameter	Specs:	Dosimeters	after Sealing	(< 0.3 mg)	Test OK?	OK?
and wire	Y/N	flaws?	seal size,	0.420	0.047 -	(see above)	Loaded	(mg)	Y/N	Y/N	Y/N
type		Y/N	penetration	inches	0.054	Y/N	(mg)				
					inches					,	. 46
Analyst	LPD	FPD	LPD	JAP,	SPD,	JAD,	8/11/20	JPD Jedan	SPD1	AC	IPD,
/Date:	7/28/20	7/28/20	7/28/20	9/18/20	9/18/20	9/18/20	Am	9/18/20	9/18/20		1/8/20
- 77	u	(4)	Good	,3875	,0490	yes	51,587	51.485	,102 yes	yes	ijes
× 61	y	July 1	Good	.3865×	0495 *	- yes *	48,787	48.654 ×	. 133 ijeox	yes x	Fail *
- 7F	u	Tu .	Good	.3840	.0495	yes	48,645	48.429	. 216 yes	yes	yes
- Al	ý	l v	Good	,3750	.0515	Ges	51.660	51.604	,056 yes	yes	yes
05	y	y	6000	.3825	.0495	yes	50.156	50.061	1095 yes	ges	yes
	0	1				V				, , , , , , , , , , , , , , , , , , ,	U
								-			
								-			
	-										
						L	L			L	

Analyst: Lou	P. Darrell	Date: _	9/18/20	QE Reviewer:	Date:
	1 0 0 1	D			

Technical Reviewer:

A Steen and Date: 9/21/20

Balance Performance Check Log VICA 20

Pacific Northwest National Laboratory

Cahn C-33

Balance Information	
Identificaiton (e.g. WD34567)	-
77843/WD55353	
Location (e.g. Building/Room)	
RPL / 514	
Calibration Due Date	
Aug-21	

Check Weight (CW) Information	#1	CW Units	#2	CW Units	#3	CW Units	#4	CW Units
CW Identification	13060 200 mg					100		
CW Assigned Mass (+Units):	200.004	mg	F	g		g		
Method for Assigning Diff/Range ^(a) :	Option 1		Option 1		Option 1	V		
CW Difference ± Mass (+Units):								
Or Range Low Mass (+Units) &:	199.992	mg		g		g		g
Range High Mass (+Units):	200.016	mg		g		g		g

(a) Enter "Option #1" or "Option #2" from Procedure TTP-7-072, Table 1. For factors >3, append factor in parentheses, e.g., Option #1 (4)

	Lab Staff	Check Weight ID/or #	Check Weight Measured	1	Meets Acceptance Criterion (Within Diff/Range)? Comments/Corrective Action
Date	Initials	ID or #	Mass (+Units)	(Y/N)	Comments/Corrective Action
8/18/2020	RG	13060 200mg	200,000		
8/18/2020	RG	13060 200 mg	200.012		
8/18/2020	RG	13060 200 mg	199.996		Weights taken to establish assigned mass
8/18/2020	RG	13060 200 mg	200.004		
8/18/2020	RG	13060 200 mg	200.010		
9-10-20	LRA	11	200,007		
9/18/20	FIN	11	200,001	yes	
•					
				ļ	
				ļ	
					
***************************************				ļ	
				<u></u>	
				<u> </u>	
				<u> </u>	
				<u> </u>	
				<u> </u>	
		1			

- > Complete all column entries.
- $> For \ corrections, \ place \ single \ line \ through \ incorrect \ entry, \ enter \ correction \ and \ initial/date.$
- > When full, forward to the TTP M&TE Custodian; replace with new Log.
- > Following recalibration, lineout/initial/date unused rows and forward to TTP M&TE Custodian; replace with new Log.
- \geq To calibrate or recalibrate a balance contact the TTP M&TE Custodian.
- > If additional check weights are used on balance, enter appropriate information on another sheet and append to this Log form.

Reviewer Signature	Date							
		BPCL 8	18	20	Cahn C-33	77843	RPL	51

Balance Performance Check Log VAN 21/19

Gc Northwest National Laboratory

Cahn C-33

Balance Information	
Identification (e.g. WD34567)	
77843/WD55353	
Location (e.g. Building/Room)	
RPL/514	
Calibration Due Date	
Aug-20	

Check Weight (CW) Information	#1	CW Units	#2	CW Units	#3	CW Units	#4	CW Units
CW Identification	13060 200 mg							
CW Assigned Mass (+Units):	200,004	mg		g		g		
Method for Assigning Diff/Range ^(a) :	Option 1		Option 1		Option 1			
CW Difference ± Mass (+Units):								
Or Range Low Mass (+Units) &:	199,992	mg		g		g		g
Range High Mass (+Units):	200.016	mg		g		g		g

(a) Enter "Option #1" or "Option #2" from Procedure TTP-7-072, Table 1. For factors >3, append factor in parentheses, e.g., Option #1 (4)

			Check Weight	I	Meets Acceptance Criterion (Within Diff/Range)?
	Lab Staff	Check Weight	Measured	Y	
Date	Initials	ID or#	Mass (+Units)	(Y/N)	Comments/Corrective Action
8/20/2019	RG	13060 200mg	200.011		
8/20/2019	RG	13060 200 mg	199,992		
8/20/2019	RG	13060 200 mg	200,014		Weights taken to establish assigned mass
8/20/2019	RG	13060 200 mg	200.002		
8/20/2019	RG	13060 200 mg	200,000		
9-17-19	SAN		2001006	У	
24 mm 19	15F	<u>, , , , , , , , , , , , , , , , , , , </u>	200.002	Y	
2dec 19	ISIV .	-	200.001	Y	
75anzo	48	11,	2.00,004	<u> </u>	
1/20/20	200	<u>"</u>	199.198	<u>y</u>	
29/20	42	n	199.178	4	
29/20	ZPV,		200.0005	g g	
3/4/20	JRH		200,001	(hy	
7/24/10	THE		194,99	RN	
1/28/10	thu	11	200.0004	4	
9 3/20	Poto	/\	200.0007	e	
814/10	FIN	11	200 0004	60	lined out 18 400 8/10/20
1					29 (unta ou) 270 0 (10/20
الساحر أ					
8/5/10	ZPD	/\	200,0001	hes	
8/10/21	LA	11	109 998	7	
2.11.70	AMM	, 4	100 045	yes.	
				/	
					Remlibrated 8/18/2020 -ra
					12020 -rg
			10	**************************************	· ·
		——————————————————————————————————————	<u> </u>		1. 200.000
					0.005.017
			/	···	2.200.012
			/		
		<u> </u>			3. 199.996
		\mathcal{W}			4. 200.004
		3'/			
	/				5, 200,010
	/				
Ø	I		1 1		

> Complete all column entries.

corrections, place single line through incorrect entry, enter correction and initial/date.

on full, forward to the TTP M&TE Custodian; replace with new Log.

> Following recalibration, lineout/ initial/date unused rows and forward to TTP M&TE Custodian; replace with new Log

> To calibrate or recalibrate a balance contact the TTP M&TE Custodian

> If additional check weights are used on balance effer appropriate information on another sheet and append to this Log form.

Reviewer Signature

BPCL 8_20_19_Cahn C-33_77843_RPL_514