

AGR-3/4 Fuel Compact Fission Product Concentration Profiles

July 2024

Lu Cai

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

AGR-3/4 Fuel Compact Fission Product Concentration Profiles

Lu Cai

July 2024

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

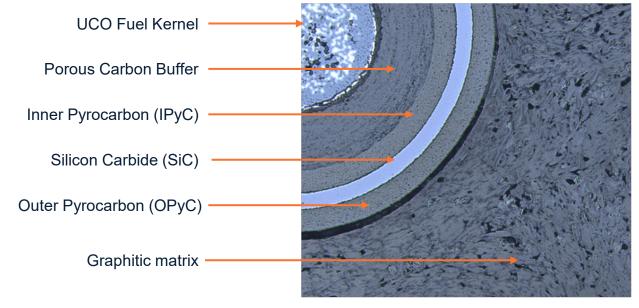
AGR-3/4 Fuel Compact Fission Product Concentration Profiles

Lu Cai, PhD

Nuclear Engineer

Outline

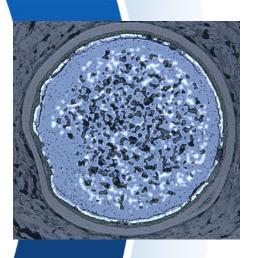
- Introduction
 - AGR-3/4 goals and design
- Experiment
 - Method and Sample Selections
 - Challenges
- Results
 - As-irradiated RDLBL
 - As-irradiated vs. FACS-tested
- Summary and Conclusion


Introduction

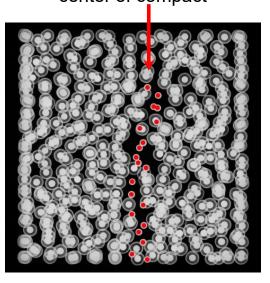
AGR-3/4

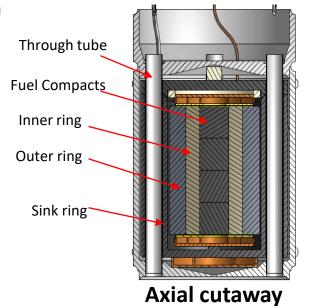
TRISO Fuels Fission Product Source Term

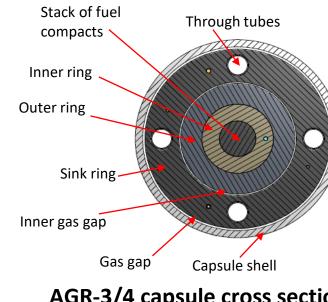
Each material in TRISO fuel retains or attenuates fission products


AGR-3/4 Goals

- Improve reactor source term predictions
- Provide some data for validation of source term calculations




AGR-3/4 Designed to Observe Fission Product Transport from Fuel through Graphite

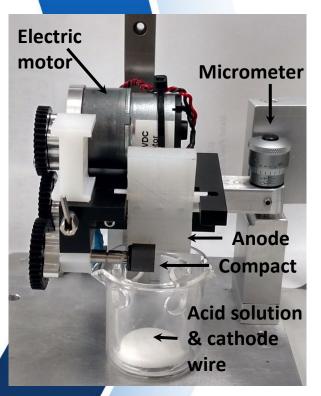

Designed-to-fail (DTF) Particle

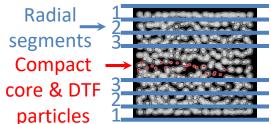
X-ray showing 20 DTF particles in center of compact

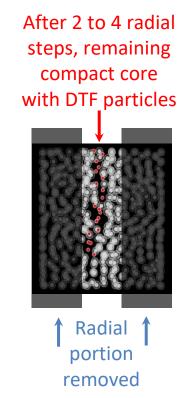
of an AGR-3/4 capsule

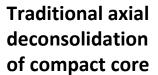
AGR-3/4 capsule cross section

- Observing metallic fission product (e.g., Ag, Cs, Eu, and Sr) transport within graphitic matrix and nuclear grade graphites (IG-110 and PCEA)
- Measuring fission product inventories and spatial distributions within fuel compacts and graphite
- Determinizing diffusion coefficients of metallic fission products within graphitic materials

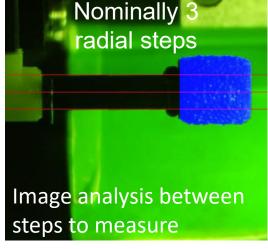

Experimental


Methods, Sample Selection and Challenges




Radial Deconsolidation Method

Measure fission product radial concentration profiles in the compacts



Sample Selections

		Burnup (% FIMA)	Neutron Fluence (10 ²⁵ n/m², E>0.18 MeV)	TAVA Temp (°C)	TA Min Temp (°C)	TA Peak Temp (°C)	FACS Temperature (°C)	References
	3-3	12.73	4.28	1205	1170	1242		Stempien and Cai 2024
	5-3	14.92	5.22	1050	1001	1102		
	5-4	14.98	5.23	989	858	1084		
	7-3	15.00	5.27	1376	1335	1418		
	8-3	14.54	5.07	1213	1171	1257		
As irrediated	10-3	11.75	3.89	1210	1174	1248	NI/A	
As-irradiated	12-1	5.87	1.8	849	802	883	- N/A - - -	
	12-3	5.17	1.41	864	844	884		
	1-4	6.85	2.10	929	866	972		Hunn et al. 2020
	7-4	14.90	5.24	1319	1206	1397		Helmreich et al. 2021
	8-4	14.43	5.02	1169	1068	1242		
	1-3	6.37	1.87	959	942	978		Helmreich et al. 2022
FACS Tested	3-2	12.49	4.17	1196	1154	1240	1600 1700ª	Report in preparation
	8-2	14.58	5.11	1213	1171	1257	1400	
	10-2	11.96	4.01	1213	1179	1249	1200	Helmreich et al. 2022
	10-4	11.43	3.75	1168	1079	1231	1400	Helmreich et al. 2022
NRAD Reirradiated and FACS- Tested	1-2	5.91	1.66	941	910	971	1400	Report in preparation
	3-1	12.16	4.04	1138	1041	1214	1600	
	8-1	14.51	5.13	1165	1063	1242	1200 ^b	
	4-3	14.29	4.89	1035	992	1084	1000	
	10-1	12.08	4.12	1172	1080	1238	1400	Helmreich et al. 2022

a. After the initial isothermal hold at 1600°C for 300 h, the temperature was raised to 1700°C for 48 h.

b. Temperature held at 1200°C for about 300 h. Then three cycles between temperatures <200°C and 1200°C.

R-DLBL - Challenges

The measured actinides and fission products include those that

- (a) migrated out of the DTF particles into the surrounding compact matrix,
- (b) were retained in the DTF kernels that were leached during DLBL,
- (c) migrated through the intact SiC layer into the compact matrix,
- (d) were related to uranium contamination present in the compact matrix and/or OPyC at the time the compact was fabricated, negligible
- (e) were externally introduced by contamination from sources present in the hot cell, Monitored, negligible
- (f) were from TRISO-coated particles with damaged SiC (or TRISO layers)
 - in-pile failure
 - as-fabrication defects

accidentally damaged by the RDLBL process

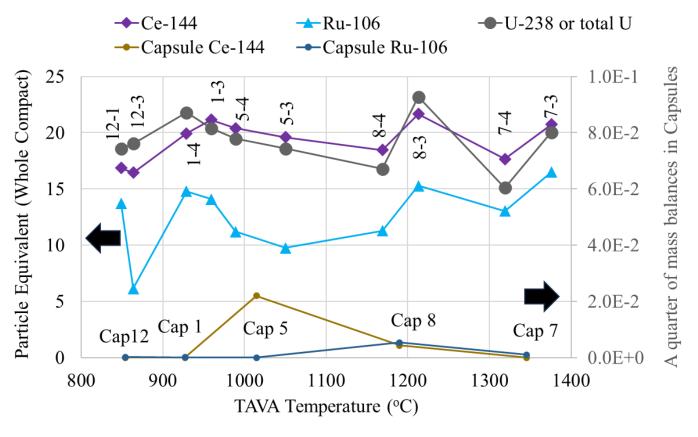
Needs correction

R-DLBL - Correction

	Compact	Damage				
	3-3	Up to ~14 particles at various stages of Segment 1 and Core				
	5-3	Segment 1, post-burn leach 1: 1 particle				
	5-4	None				
	7-3	Segment 1, post-burn leach 2: 1 particle				
	8-3	Segment 2, pre-burn leach 2: 1 particle				
	10-3	Segments 1, 2, 3 and core: 10-20 particles				
As-irradiated	12-1	Segment 1 decon: 2 particles. Segments 2 and 3 decons, Segment 2 post-burn				
	12-1	leach 1: 1 particle each				
	12-3	None				
	1-4	Segment 1, post-burn leach 1: 1 particle				
	7-4	Segment 1, deconsolidation: 1 particle				
	8-4	None				
	1-3	None				
FACS Tested	3-2	Segment 3, post-burn leach 1: 1 particle				
	8-2	Segment 3, post-burn leach 1: 2 particles				
Reirradiated	3-1	Segment 1, decon: 1 particle. Segment 1 post-burn leach 1: ~6 particles				
FACS-Tested	8-1	None				

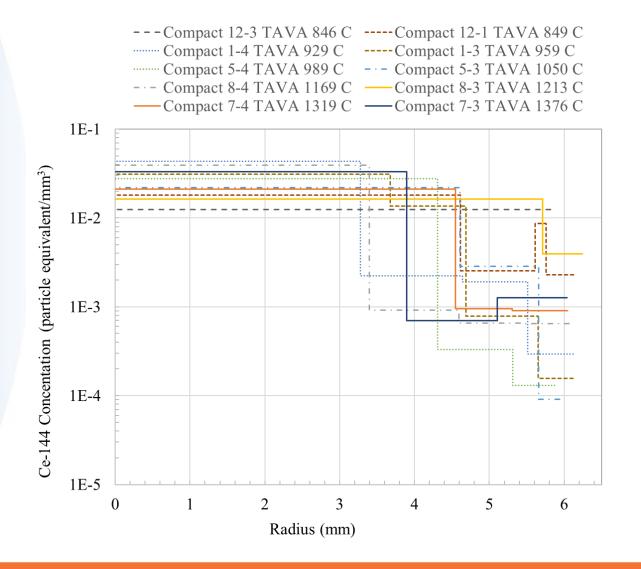
Compacts 3-3 and 10-3 had numerous damaged particles, which could not be reasonably corrected.

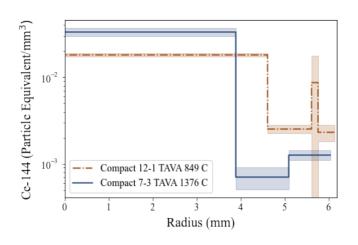
The Segment 1 of Comact 3-1 was discarded from further discussion.



Results

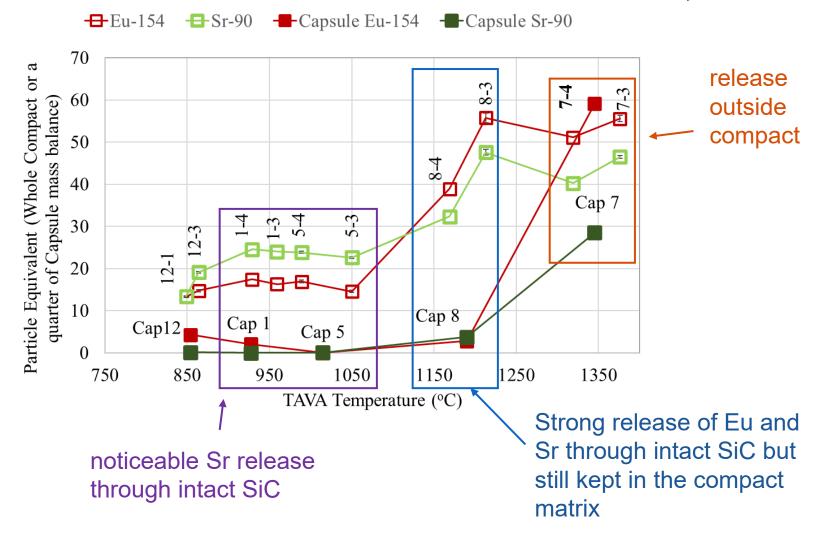
As-irradiated RDLBL


As-irradiated R-DLBL – U, Ce, Ru

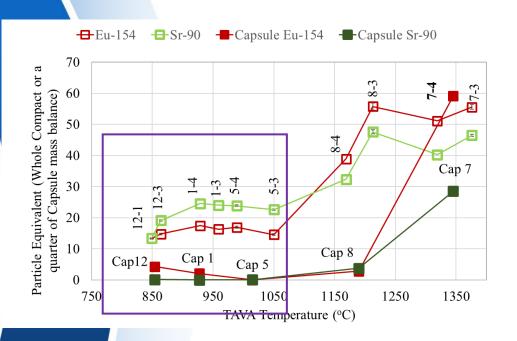


- The Ce-144 and U inventories match well with each other and tend to cluster around 20 particle equivalents, the number of DTF particles per compact.
- There is no strong trend in the RDLBL inventories of Ce, Ru, or U vs. TAVA temperature.
- These nuclides were retained in the fuel compact.

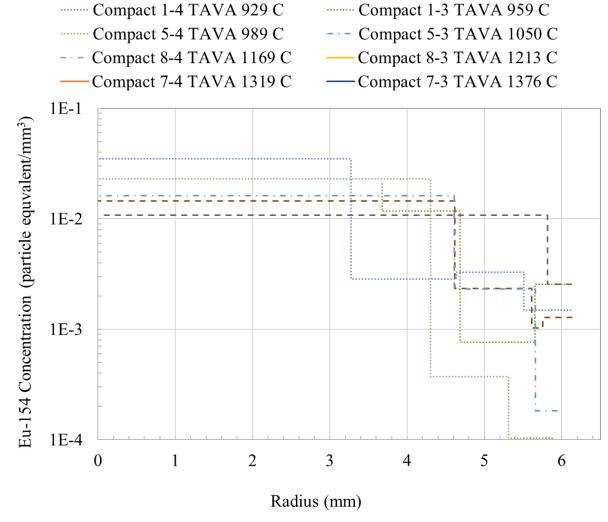
As-irradiated R-DLBL – Ce-144 profile



 The concentrations of Ce 144 generally decreased with increasing radius.

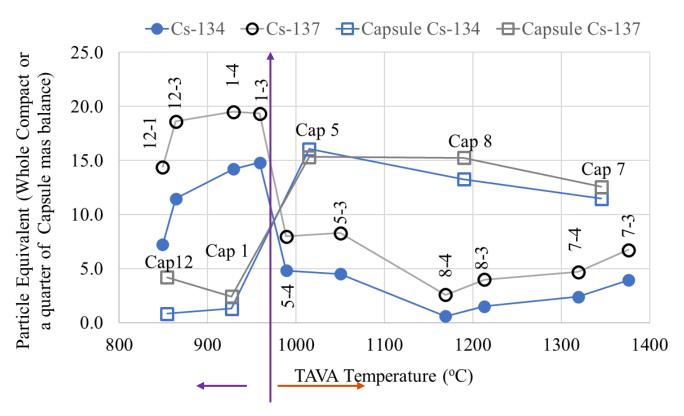


As-irradiated R-DLBL – Eu-154, Sr-90



As-irradiated R-DLBL - Eu-154

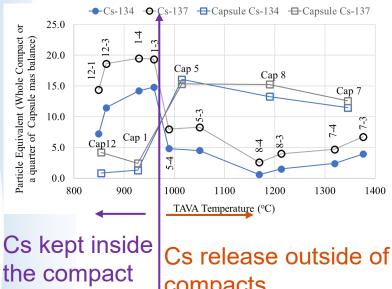
- The Eu-154 concentration of compacts with TAVA below or at 1050°C decrease with increasing radius.
- The compacts with higher TAVA have flatter Eu-154 concentration.



---compact 12-1 TAVA 849 C

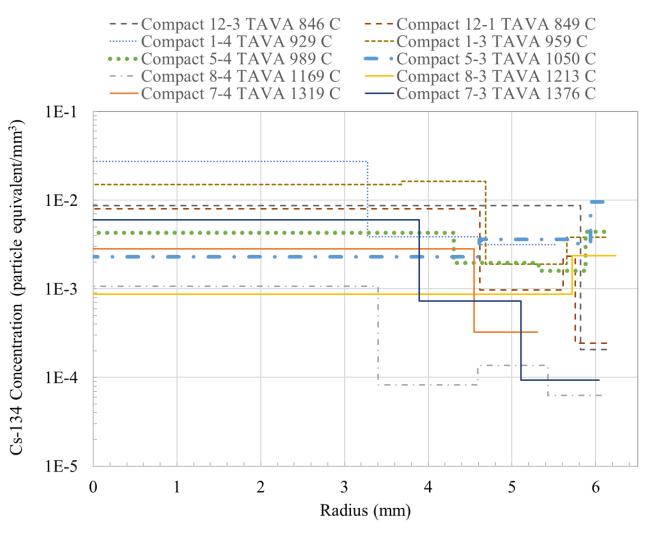
--- Compact 12-3 TAVA 846 C

As-irradiated R-DLBL – Cs



Cs from DTF particles kept inside the compact matrix

Cs release outside of compacts

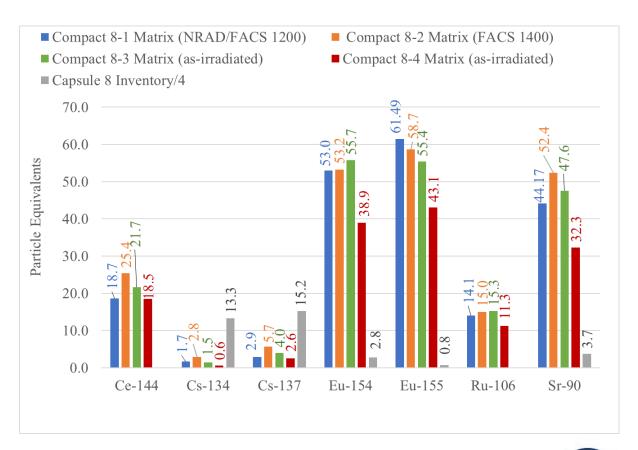


As-irradiated R-DLBL – Cs-134

compacts matrix

- For compacts with low TAVA, the Cs-134 concentration generally decreased with increasing radius.
- Compacts 5-3 and 5-4 have lower core concentration and flatter profile.
- Compact 8-3 and 8-4 have even lower core concentration.

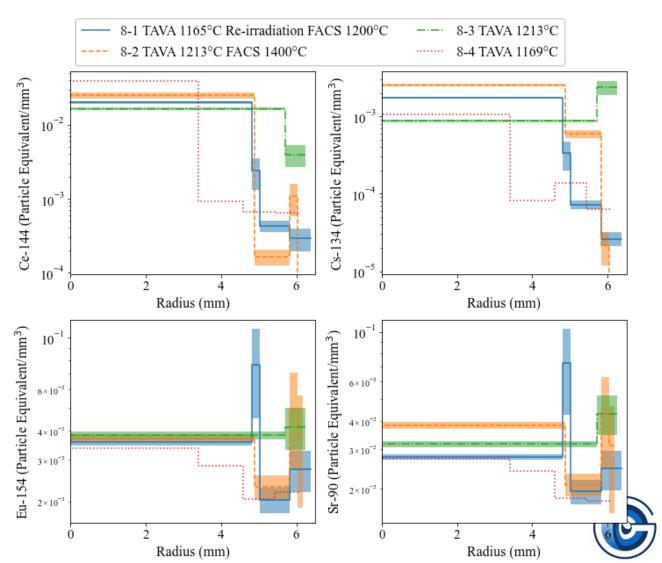
Results


As-irradiated RDLBL vs. FACS tested

Capsule 8: As-irradiated vs. FACS-tested

- Eu, Sr, Cs released ≤ 0.3 particle equivalent during safety testing for Compacts 8-1 and 8-2
- Compact 8-4 matrix has lowest Eu and Sr than the rest of compacts.
- It is unclear if Cs was under recovered from RDLBL or the mass balance (the capsule shell was not measured)

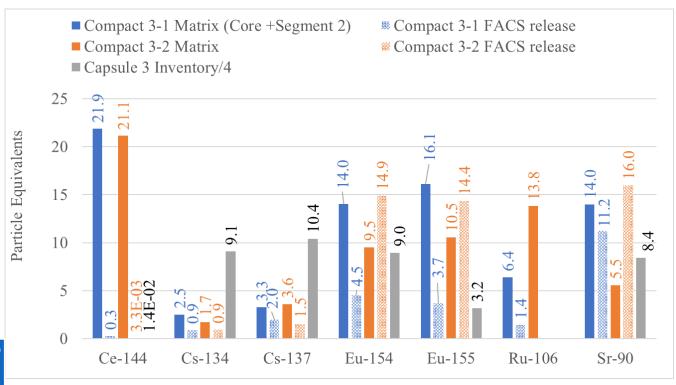
Compact	Burnup (% FIMA)	Neutron Fluence (10 ²⁵ n/m², E>0.18 MeV)	TAVA Temperature (°C)	FACS Temp (°C)
8-1*	14.5	5.13	1165	1200**
8-2	14.6	5.11	1213	1400
8-3	14.5	5.07	1213	N/A
8-4	14.4	5.02	1169	N/A



^{* -} NRAD reirradiation

^{** - 300} h at 1200°C, then three rounds of temperature cycling

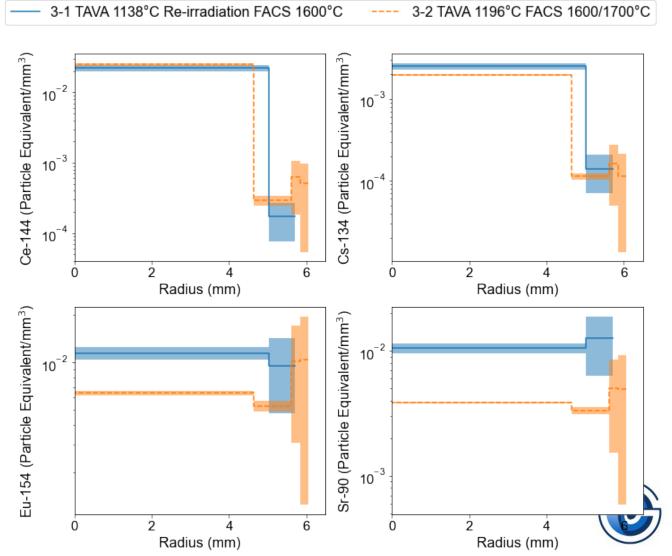
Capsule 8: As-irradiated vs. FACS-tested


- The Ce-144 concentrations outside of the core are lowest for the FACStested compacts, suggesting some small FACS release occurred.
- The concentration of Cs-134 was similar except at the outermost segments, which are the lowest for the FACS-tested compacts.
- The core concentration of Eu-154
 was similar among the four
 compacts. Compact 8-1 has higher
 concentration than 8-4, indicating
 some releases through intact SiC.
- The general trend of Sr-90 profile followed closely as that of Eu-154.

Capsule 3: As-irradiated vs. FACS-tested

- Cs release is similar between two FACS tests. Cs release is from matrix/OpyC inventory that remained from the DTF particles are irradiation.
- It is unclear if Cs was under recovered from RDLBL or the mass balance (the capsule shell was not measured)
- More Eu and Sr released for 1600/1700°C safety test.

Compact	Burnup (% FIMA)	Neutron Fluence (10 ²⁵ n/m², E>0.18 MeV)	Temperature	FACS Temp (°C)
3-1*	12.16	4.04	1138	1600
3-2	12.49	4.17	1196	1600/1700**



^{* -} NRAD reirradiation

^{** -} After the initial isothermal hold at 1600°C for 300 h, the temperature was raised to 1700°C for 48 h.

Capsule 3: As-irradiated vs. FACS-tested

- Segment 1 of Compact 3-1 were discarded due to multiple particles damaged from RDLBL.
- The concentration profiles of Ce-144 and Cs-134 were similar.
- The lower core concentration of Eu-154 and Sr-90 of Compact 3-1 compared to 3-2 indicated that Eu and Sr diffused from the core to the outer segment to release outside the compact at higher safety testing temperature.

Summary and Conclusion

Summary and Conclusion

- The RDLBL technique proved challenging to implement and employ in a hot-cell environment.
- Irradiation temperature was found to affect the inventories and radial distributions of fission products in the AGR-3/4 compacts.
 - Ce-144 and Ru-106:
 - Not significantly impact the total inventories but may affect radial concentration profiles.
 - Eu and Sr:
 - TAVA 846 1050°C, no discernable temperature dependence and very limited radial transport;
 - TAVA 1050 1169°C, significant release through intact driver particles with retention within the compact. Radial concentration decreasing with increasing radius;
 - TAVA 1213 1376°C, increased diffusive release through intact coatings and the release from the compact. Radial concentration flat or even increasing with increasing radius.
 - Cs:
 - TAVA 959-989°C and above, Cs being driven out compacts.
 - TAVA < 959°C, significant Cs (up to ~70%) from the DTF particles may be retained in the compact
- The data collected here will be used in comparisons to a detailed fission-product transport model of the AGR-3/4 experiment

Summary and Conclusion

Tasks to Completion of AGR-3/4

- Wrap up the safety test results for as-irradiated compacts
- Understanding reirradiation results, especially the I and Xe results (Re-irradiated safety tests)
- Wrap up RDLBL results for safety-tested and re-irradiated compacts
- Refine fission-product transport model (as-irradiated and safety-test)

ADVANCED REACTOR
TECHNOLOGIES PROGRAM

ART.INL.GOV

Thank you

Lu Cai

Lu.cai@inl.gov

The DOE-ART Graphite R&D program is the primary nuclear graphite research program for the USA. This program focuses on research and development activities necessary to qualify and license graphite components for use within nuclear applications, specifically within advanced reactor designs such as High Temperature Reactor designs. The data generated within the ART Graphite program is intended to be used in conjunction with other publicly available nuclear graphite data such as is contained within the IAEA Nuclear Graphite Knowledge Base. The ART Graphite program is divided into 5 primary research areas providing a combination of data, analysis reports, and pertinent references to describe and explain the trends within the data.