
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/CON-24-76870-Revision-0

Techno-economic assessment
of electricity market
potential for co-located
hydro-floating PV systems

May 2024

Mucun Sun, Tyler Bennett Phillips, Tanveer Hussain, Juan Felipe Gallego
Calderon



DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.



INL/CON-24-76870-Revision-0

Techno-economic assessment of electricity market
potential for co-located hydro-floating PV systems

Mucun Sun, Tyler Bennett Phillips, Tanveer Hussain, Juan Felipe Gallego
Calderon

May 2024

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



Techno-economic assessment of electricity market
potential for co-located hydro-floating PV systems

Mucun Sun, Tyler B. Phillips, Tanveer Hussain, and Juan Gallego-Calderon
Idaho National Laboratory

Idaho Falls, ID, USA
{Mucun.Sun, tyler.phillips, tanveer.hussain, juan.gallegocalderon}@inl.gov

Abstract—Harnessing renewable energy from diverse sources
is paramount for sustainable power systems. Recently, co-located
floating PV (FPV) systems present an intriguing prospect in this
context. These hybrid systems, blending hydro and solar power,
may offer a more consistent electricity output and potential
economic advantages. Yet, assessing their actual potential re-
quires a comprehensive techno-economic assessment. In addition,
probabilistic price forecasting has recently gained attention in
electricity market because decisions based on such predictions
can yield significantly higher profits than those made with point
forecasts alone. To this end, this paper embarks on a journey to
elucidate the electricity market potential of co-located hydro-FPV
systems in a probabilistic fashion to investigate the technological
merits and economic viability of co-located hydro-FPV under
different market structures. Our preliminary findings suggest
that LCOE and payback metrics are sensitive not only to different
markets but also to different solar incentives. Concurrently, we
also observe that the payback period is generally faster with
a production tax credit (PTC) than an investment tax credit
(ITC). This assessment serves as a cornerstone for understanding
the future prospects of co-located hydro-FPV systems in modern
electricity markets.

Index Terms—floating photovoltaic, hydropower, electricity
price forecasting, techno-economic analysis, sustainability.

I. INTRODUCTION

Floating photovoltaic (FPV) systems, also known as floating
solar or floating solar panels, involve installing solar panels
on bodies of water such as lakes, reservoirs, ponds, and even
the sea. FPVs have seen a significant increase in installation
capacity, soaring from 132 MW in 2016 to 1.1 GW in 2018,
with projections estimating a rise to approximately 13 GW by
2022 [1]. This growth indicates a rising global interest, with
Asia leading the FPV deployment, closely followed by Europe
and the US.

From the standpoint of energy generation technologies, FPV
can be categorized into stand-alone FPV system and hybrid
FPV system [2]. Stand-alone FPV systems are those that
are operated independently and not connected or operated in
hybridization with other energy generation source. Conversely,
hybrid FPV systems have same FPV configuration but are cou-
pled with other energy generation technologies. The interest
in the benefits of hybrid systems, including the hybridization
of FPV and hydro power has surged in recent years. Farfan et
al. [3] estimated the global potential for FPV systems paired
with hydropower installations to be between 4,400 and 5,700
GW, which corresponds to an annual generation capacity of

6,270 to 8,039 TWh for installations on reservoirs dedicated
to hydropower and multipurpose reservoirs, respectively. The
U.S. is actively exploring such FPV-hydropower projects,
recognizing their potential for enhanced energy generation.
The hybridization of FPV and hydropower helps to offset
the intermittent nature of FPV power generation [4], offers
additional energy storage opportunities [5], and enhances the
utilization of transmission networks [6]. Furthermore, it can
reduce PV curtailment [7] and reduce the costs associated with
transmission system interconnections [8]. Beyond benefits for
enhanced power generation, FPV-hydropower systems can also
help with water management by reducing evaporation and
improving water quality [9].

Beyond the potential benefits brought from FPV-
hydropower system, questions remain about the actual
potential for FPV-hydro systems. This includes technical
potential for FPV-hydropower system deployment at different
scales, and economic potential at different locations.
Researchers have conducted various studies on the techno-
economic assessment of standalone FPV systems as seen in
the works of [10], [11]. Some researchers have broadened their
scope to hybrid FPV systems with other energy sources, such
as wind in [12] and hydro in [1]. Yet, there’s still a notable
gap in the literature regarding techno-economic assessment of
hybrid FPV-hydropower system, particularly their economic
performance across various location and electricity market
structures in the U.S. Furthermore, the majority of current
techno-economic models are deterministic, falling short
in accurately representing the inherent uncertainties in
electricity market behavior, particularly over the expected
life of the system (20-30 years). Probabilistic forecasting
has recently gained more attention in strategic planning for
power systems due to its ability to quantify uncertainty [13].
Probabilistic forecasts usually take the form of prediction
intervals, quantiles, or scenarios. Generally, probabilistic
forecasting methods can be classified into parametric and
non-parametric approaches [14], [15]. Parametric approaches
require low computational cost since a prior assumption
of the predictive distribution shape is made before the
parameter estimation. Non-parametric approaches are
distribution free, and their predictive distributions are inferred
through observations or scenarios [16]. In this paper, we
aim to bridge these gaps by performing techno-economic
assessment of co-located hydro-FPV systems based on
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different electricity markets. By leveraging probabilistic
electricity price forecasting, the techno-economic model can
provide refined perspective, with uncertainty bounds, on the
viability of FPV-hydropower system under varying market
conditions. The main contributions of this paper are twofold:

1) explore the techno-economic potential of hybrid FPV-
hydropower systems in U.S. reservoirs, and

2) quantify long-term market uncertainty through proba-
bilistic electricity price forecasting

The rest of the paper is organized as follows. Section II
describes the proposed techno-economic assessment frame-
work, which consists of hydro power generation modeling,
FPV generation modeling, long-term probabilistic electricity
price forecasting, and techno-economic assessment. Section III
applies the developed framework to four different electricity
markets. Concluding remarks and future work are discussed
in Section IV.

II. METHODOLOGY

There are three types of hybrid FPV-hydropower systems
in the existing literature: i) Co-located hybrid systems, ii)
Virtual hybrid systems, and iii) Full hybrid systems [17]. It
should be noted that this work focuses on the co-located
hybrid FPV-hydropower system, where FPV and hydropower
are sited together to achieve cost savings, but operations
are separately optimized, as showed in Fig. 1. The overall

Fig. 1: Schematic plot of the co-located FPV-hydropower
system

framework of the proposed FPV-hydropower techno-economic
assessment tool is illustrated in Fig. 2. It consists of three
major steps: (1) Co-located hydro-FPV generation modeling,
(2) long-term probabilistic electricity price forecasting, and (3)
techno-economic assessment and sensitivity analysis.

A. Hydropower generation modeling

To determine the hydropower generation time-series, we use
the open-source Python tool code HydroGenerate V2.0 [18].

In general, the hydropower potential can be calculated based
on flow and hydraulic head data, which can be expressed as:

P = η × ρ×Q×H (1)

where P denotes the hydropower potential, η denotes overall
system efficiency, ρ denotes the water density, Q denotes flow,
and H denotes net hydraulic head, respectively.

B. Floating PV power generation modeling

To model the FPV power generation, pvlib-python [19],
an open-source python-based tool for modeling solar energy
systems, is adopted. One of the major advantages of FPV is
the increased efficiency due to improved thermal performance
of the modules because of the indirect effect of presence
of water bodies on the local ambient temperature or wind
conditions [20]. The water temperature can be downloaded
from the USGS databases. The cell temperature Tcell of the
PV module is estimated using the Faiman equation [20].

Tcell = Twater +
POA ∗ ϱ ∗ (1− ζ)

U
(2)

where, Twater is the ambient temperature of the water, POA
is the plane of array, ζ is the module efficiency (set to 0.214),
ϱ denotes the absorption coefficient of solar irradiation (set to
0.9), and U is the constant heat loss coefficient (set to 36). The
DC power output of the PV system is obtained using pvlib-
python’s inbuilt single-diode model. Finally, AC power output
is obtained using the DC to AC ratio of the inverters.

C. Long-term probabilistic electricity price forecasting

To approximate future electricity market information in the
next 20-30 years, we adopt probabilistic electricity price fore-
casting, which measures the market uncertainty and therefore
directly impact the techno-economic assessment. A two-step
probabilistic method is adopted in this paper [14]. In the first
step, the deterministic electricity price forecasts are produced
by a machine learning method (i.e., support vector regression
(SVR)) [14]. Specifically, a SVR model with linear kernel is
adopted and the parameters of SVR are set to be δ = 0.001,
ϵ = 0.001 and C = 1, where δ, ϵ, and C are free parameter,
insensitive parameter, and penalty weight, respectively. Then,
the uncertainty is added to the deterministic forecasts by an
optimal uncertainty indicator in the second step. The procedure
of probabilistic electricity price forecasting is described as
follows:

1) Obtaining long-term electricity price drivers such as
temperature, electricity demand, and electricity genera-
tion. In this paper, only long-term temperature forecasts
data from [21] is used since temperature is by nature
the driver of electricity demand and price [22]. Details
about temperature data and demand data are described in
III-A. Once the electricity price drivers are determined,
the long-term electricity price forecasts can be generated
by the trained SVR model.

2) Parameterizing the uncertainty of the electricity price
in terms of µ and σ, where µ is assumed to be the
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Fig. 2: Overall flowchart of the proposed method

electricity price forecast itself. Then, the quantile, q,
and its corresponding pinball loss Lq , are derived and
expressed by q and σ:

Ft(yp,t|µt, σt) = Ft(σt) (3)

Qt(p) = F−1
t (p) = F−1

t (p, σt) (4)

Lq,t(q, σt) = q −H(yt −Qt(q))yt −Qt(q) (5)

where t is a time index, which means the predictive
distribution differs at different forecasting step; F (·) and
F−1(·) are a cumulative distribution function (CDF) and
its corresponding inverse function, respectively; Q(·)
is the quantile function; p and q are probability and
a quantile, respectivlery; H(·) is the Heaviside step
function. Next, the electricity price uncertainty indicator,
σ (the only unknown parameter), at each forecasting
time step is optimized by minimizing the averaged
pinball loss of all quantiles with a genetic algorithm
(GA):

3) A SVR surrogate model, Φ, is constructed to fit the
actual electricity price and σ∗ set yp, σ

∗ in the train-
ing stage, which is used to generate unknown pseudo
standard deviations, ˆsigma

∗
, in the forecasting stage.

The SVR model is empirically selected based on experience
in [14]. Note the focus of this paper is to perform techno-
economic assessment rather than building the most accurate
probabilistic forecasting model.

D. Techno-economic Assessment
Once the probabilistic electricity price forecasts are gen-

erated, a large number of electricity price scenarios can be
obtained through inverse sampling from the CDF of predictive
distribution, which are used for the uncertainty quantification
of the techno-economic assessment. The techno-economic
framework is built to assess the financial performance of
FPV-hydropower systems using a suite of metrics that matter
to industry (e.g., levelized cost of energy (LCOE), payback
period, etc).

LCOE is a metric used to calculate the average total cost
to build and operate a power generation system per unit of
total electricity generated over its assumed lifetime. LCOE is
defined as the ratio between the total costs of a project over its
lifetime, including capital expenditures (CAPEX), operational
and maintenance expenditures (OPEX), and the incentives (I),
to the expected energy production of the system during its
operational life. The formula to calculate LCOE is given as
follows:

LCOE =

N∑
n=0

OPEX(n) + CAPEX(n)− I(n)

(1 + r)n

N∑
n=0

P (n)

(1 + r)n

(6)

where r is the discount rate, n is the year, ranging from 0 to
N , N represents the project’s lifetime, P (n) is the electricity
production in year n.

The payback period, denoted as Pγ , is a financial metric
calculated as the ratio of the total installation and operational
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costs of a FPV-hydropower system to the revenue it generates
over time.

III. CASE STUDY AND RESULTS

We investigate how different locational marginal pricing
(LMP) profiles from across the U.S. impact the techno-
economic metrics of the co-located hydro-FPV system. To
capture regional electricity market trends, we consider four
regions: the Electric Reliability Council of Texas (ERCOT),
the California Independent System Operator (CAISO), the
DUKE Energy Transmission (DUKE), and the Pennsylvania-
New Jersey-Maryland Interconnection (PJM). These locations
were chosen to represent diverse market with unique potential
of co-located hydro-FPV resource.

A. Data summary

We adopt the day-ahead (DA) electricity price collected
from aforementioned locations for the year 2021. These DA
electricity prices represent wholesale prices. The flow data are
processed as discharge data obtained from the United States
Geological Survey (USGS) National Water Database [23]. The
forecasted temperature data are collected from PNNL’s climate
research portal [21].

Meteorological solar irradiance data for FPV power simu-
lation is collected from the National Solar Radiation Database
(NSRDB). The solar location selected for each region are
Sana Rosa, CA (CAISO), Austin, TX (ERCOT), Charlotte, NC
(DUKE), and New York, NY (PJM). Each location is assumed
to have a 1 MW solar installation, have an inverter efficiency
of 90%, an annual discount rate of 5%, and a life expectancy
of 30 years.

The incentives considered are the investment tax credit
(ITC) and production tax credit (PTC) listed by the department
of energy1. We assume a ITC of 30% and a PTC of 2.75 cents
per kWh for a period of 10 years.

The baseline cost associated with construction and operation
of the FPV is considered to be a CAPEX of $1.18 million per
MW and a yearly OPEX of $7,900 per MW. These prices are
assumed to be the same in each market.

B. Result and discussion

By thoroughly examining key performance metrics, such
as LCOE and payback period under various electricity price
scenarios, this study reveals crucial insights into the system’s
overall performance, economic viability, and the impact of
including the ITC and PTC incentives.

The LCOE results for a discount rate of 5% are depicted
in Fig. 4. Here it can be seen that the LCOE, which has
the same CAPEX/OPEX cost across the markets, and doesn’t
depend on electricity pricing, is still different in each market.
This is due to the amount of solar generation at each location,
i.e. there is more solar production in CAISO than the other
markets. These results show an increment of approximately
16% in LCOE when compared to a land-based solar system
of the same size. This difference is increased by considering

1https://www.energy.gov/eere/solar/federal-solar-tax-credits-businesses
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Fig. 3: Long-term electricity price scenarios at CAISO. Figure
is Representative all all markets.

Fig. 4: The LCOE sensitivity for different markets and when
consideging the ITC, PTC, and no incentives. A discount rate
of 5% was considered with a life expectancy of 30 years.

higher discount rates (which could happen if kept in pace of
the nation’s interest rates) of up to 8.5%. If this is the case, the
LCOE across every market will increase approximately 25%.

The payback period in years for each market with ITC, PTC,
and no incentives is shown in Fig. 5. Here, we use 100 different
pricing scenarios as illustrated in Fig. 3 for each market and
therefore have a range of potential payback periods, which
depends mainly in the uncertainty in the electricity price
forecast. It can be seen that CAISO has the shortest payback
period due to it’s larger solar generation, and the higher cost
of electricity in this market. Furthermore, it can be seen that
the ITC and PTC have overlap in the payback period, however,
the PTC tends to have a shorter payback period and therefore
would be considered financially more attractive.
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Fig. 5: The payback period sensitivity using 100 pricing
scenarios for each market and ITC, PTC, and no incentives.

IV. CONCLUSION

In this research, we conducted a comprehensive techno-
economic assessment of electricity market potential for co-
located hydro-FPV systems with different incentive considera-
tions. It was demonstrated that LCOE and payback metrics are
sensitive not only to different markets but also to the selection
of solar incentives. A key takeaway is that the payback period
is generally faster with a PTC over an ITC incentive.

Potential future work will include techno-economic assess-
ment for full hybrid FPV systems with wind, hydro, and
battery. Also, both cost and power generation improvements
will be explored through co-optimized planning and operation.

V. ACKNOWLEDGEMENT

This manuscript has been authored by Battelle Energy
Alliance, LLC under Contract No. DE-AC07-05ID14517 with
the U.S. Department of Energy. Work supported through
the U.S. Department of Energy Solar Energy Technology
Office. We would like to thank Dan Berger and Dana Onlson
from DNV for their support providing technical and financial
information about FPV systems. DNV is an independent
assurance and risk management provider, operating in more
than 100 countries. Through its broad experience and deep
expertise DNV advances safety and sustainable performance,
sets industry standards, and inspires and invents solutions.

REFERENCES

[1] N. Lee, U. Grunwald, E. Rosenlieb, H. Mirletz, A. Aznar, R. Spencer,
and S. Cox, “Hybrid floating solar photovoltaics-hydropower systems:
Benefits and global assessment of technical potential,” Renewable En-
ergy, vol. 162, pp. 1415–1427, 2020.

[2] S. Gadzanku, H. Mirletz, N. Lee, J. Daw, and A. Warren, “Benefits and
critical knowledge gaps in determining the role of floating photovoltaics
in the energy-water-food nexus,” Sustainability, vol. 13, no. 8, p. 4317,
2021.

[3] J. Farfan and C. Breyer, “Combining floating solar photovoltaic power
plants and hydropower reservoirs: a virtual battery of great global
potential,” Energy procedia, vol. 155, pp. 403–411, 2018.

[4] Z. Dobrotkova, “Hydro-connected solar solutions for developing coun-
tries,” 2019.

[5] L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, and R. Wennersten, “Evaluating
the benefits of integrating floating photovoltaic and pumped storage
power system,” Energy Conversion and Management, vol. 194, pp. 173–
185, 2019.

[6] S. Balser, S. Sankar, R. Miller, A. Rawlins, M. Israel, T. Curry,
and T. Mason, “Effective grid utilization: A technical assessment and
application guide; april 2011-september 2012,” National Renewable
Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2012.

[7] M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M. S. Javed, and A. Kies,
“Optimal hybrid pumped hydro-battery storage scheme for off-grid
renewable energy systems,” Energy Conversion and Management, vol.
199, p. 112046, 2019.

[8] L. E. Teixeira, J. Caux, A. Beluco, I. Bertoldo, J. A. S. Louzada, and
R. Eifler, “Feasibility study of a hydro pv hybrid system operating at a
dam for water supply in southern brazil,” Journal of Power and Energy
Engineering. Irvine, CA. Vol. 3, n. 9 (Sept. 2015), p. 70-83, 2015.

[9] W. Liber, C. Bartle, R. Spencer, M. Jordan, A. Cagle, and T. Lewis,
“Statewide potential study for the implementation of floating solar
photovoltaic arrays,” Colorado Energy Office: Denver, CO, USA, 2019.

[10] S. Oliveira-Pinto and J. Stokkermans, “Assessment of the potential of
different floating solar technologies–overview and analysis of different
case studies,” Energy Conversion and Management, vol. 211, p. 112747,
2020.

[11] D. Keiner, O. Salcedo-Puerto, E. Immonen, W. G. van Sark, Y. Nizam,
F. Shadiya, J. Duval, T. Delahaye, A. Gulagi, and C. Breyer, “Powering
an island energy system by offshore floating technologies towards 100%
renewables: A case for the maldives,” Applied Energy, vol. 308, p.
118360, 2022.

[12] C. Bi and A. W.-K. Law, “Co-locating offshore wind and floating
solar farms–effect of high wind and wave conditions on solar power
performance,” Energy, vol. 266, p. 126437, 2023.

[13] M. Sun, C. Feng, and J. Zhang, “Conditional aggregated probabilistic
wind power forecasting based on spatio-temporal correlation,” Applied
Energy, vol. 256, p. 113842, 2019.

[14] M. Sun, C. Feng, E. K. Chartan, B.-M. Hodge, and J. Zhang, “A
two-step short-term probabilistic wind forecasting methodology based
on predictive distribution optimization,” Applied Energy, vol. 238, pp.
1497–1505, 2019.

[15] D. W. Van der Meer, J. Widén, and J. Munkhammar, “Review on
probabilistic forecasting of photovoltaic power production and electricity
consumption,” Renewable and Sustainable Energy Reviews, vol. 81, pp.
1484–1512, 2018.

[16] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J.
Hyndman, “Probabilistic energy forecasting: Global energy forecasting
competition 2014 and beyond,” International Journal of Forecasting,
vol. 32, no. 3, pp. 896–913, 2016.

[17] C. Murphy, D. Harrison-Atlas, N. Grue, T. Mosier, J. Gallego-Calderon,
and S. Elliott, “Complementarity of renewable energy-based hybrid
systems,” National Renewable Energy Lab.(NREL), Golden, CO (United
States), Tech. Rep., 2023.

[18] B. Mitra, J. F. Gallego-Calderon, S. N. Elliott, T. M. Mosier,
C. J. Bastidas Pacheco, U. O. of Energy Efficiency, and R. Energy,
“Hydrogenerate: Open Source Python Tool To Estimate Hydropower
Generation Time-series,” Oct. 2021. [Online]. Available: https:
//github.com/IdahoLabResearch/HydroGenerate

[19] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “pvlib python: a
python package for modeling solar energy systems,” Journal of Open
Source Software, vol. 3, no. 29, p. 884, 2018. [Online]. Available:
https://doi.org/10.21105/joss.00884

[20] L. Micheli, “Energy and economic assessment of floating photovoltaics
in spanish reservoirs: cost competitiveness and the role of temperature,”
Solar Energy, vol. 227, pp. 625–634, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0038092X21007222

[21] C. Burleyson, T. Thurber, and C. Vernon, “Projections of hourly me-
teorology by balancing authority based on the im3/hyperfacets ther-
modynamic global warming (tgw) simulations,” MultiSector Dynamics-
Living, Intuitive, Value-adding, Environment, Tech. Rep., 2023.
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