Assessing the Impurities in Neptunium Metal

Luiza Gimenes Rodrigues Albuquerque, Beau J Barker

May 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Assessing the Impurities in Neptunium Metal

Luiza Gimenes Rodrigues Albuquerque, Beau J Barker

May 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07- 051D14517

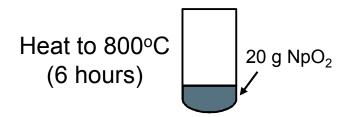
Dr. Luiza G. R. Albuquerque

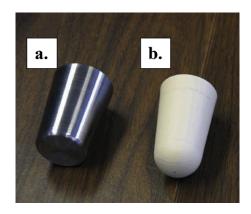
Dr. Beau J. Barker

Dr. Leah N. Squires

Jeffrey F. Berg

Introduction


- Transmutation research was the motivation for isolating neptunium, as this element can be used as an additive to experimental fuels
- Ultra high-purity Np metal is required to accurately measure its fundamental physical properties
- A process of producing Np metal from NpO₂ was recently developed at MFC¹
- A 99.999% pure Np metal is the goal of this research
- Very little Np is available in its metal form and the purity is unknown
- Purity of the Np metal produced by this process needs to be evaluated

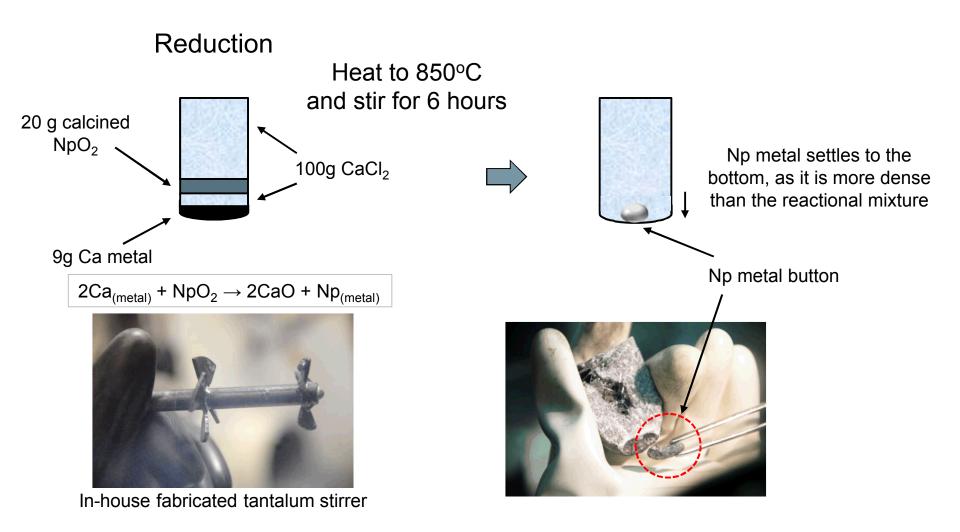


Casting process – direct oxide reduction

- Work is performed using the Hot Uniaxial Press (HUP) furnace in the Casting Laboratory
 Glovebox located in the Analytical Laboratory.
- Glovebox is maintained under argon atmosphere, with oxygen concentration <50 ppm.

Calcining

a. Stainless steel crucible


b. MgO₂ crucible

HUP apparatus

Casting process – direct oxide reduction

Purity assessment

1st approach: measure the Np content in the sample

- 0.001% precision is required in the AL, the lowest uncertainties can be obtained by ID-MC-ICP-MS, with uncertainty levels around \pm 0.3%.
- Most accurate analytical techniques: controlled-potential coulometry^[1,2] or high precision redox titration^[3], with uncertainty levels around \pm 0.2%.

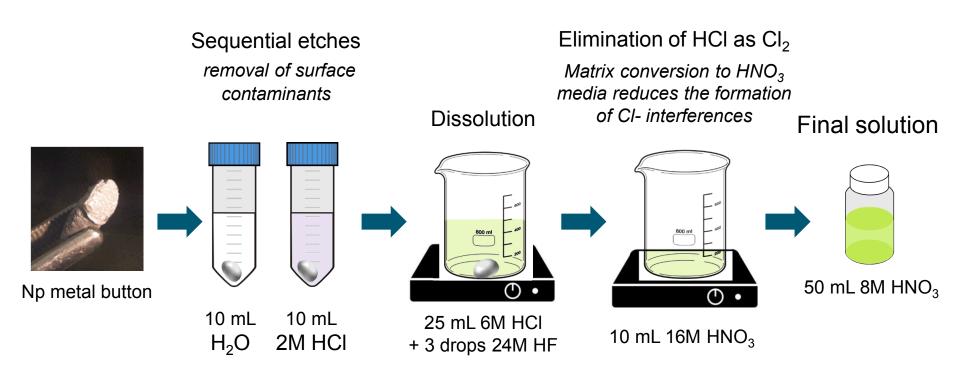
2nd approach: Measure the impurities in the metal

- Assuming: <u>Purity of the material (%) = 100% Np Impurities (%)</u> (most used around the globe, recent publications)^[4,5]
- For a 99.999% purity level of Np metal, total mass of impurities in the solid should be less than 0.001%, or 10 μ g g⁻¹ of sample
- There are no "ZERO" values for any elemental impurity, the lowest achievable results are "less than the method limits of detection"

Analytical challenges: Identify impurities and lower our current detection limits

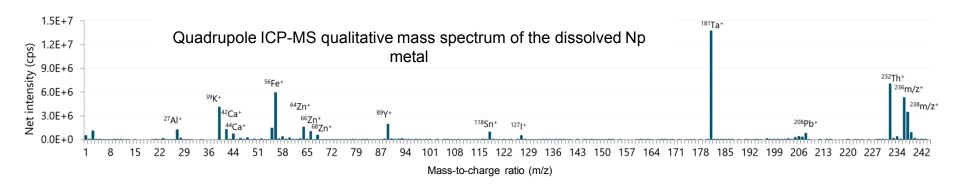
^[1] Stromatt, R. W. and Scott, F. A., 1960. Talanta, 6, pp. 197.

^[2] Xu, N. et al., 2013. Journal of Radioanalytical and Nuclear Chemistry, 296, 1, pp. 245.


^[3] Godbole, A. G. and Patil, S. K. 1979. *Talanta*, 26, 4, pp. 330-332.

^[4] Richter, S. et al., 2013. Journal of Analytical Atomic Spectrometry, 28, 10, pp. 1540-1543.

^[5] Becker, J. S. and Dietze, H. 2003. International Journal of Mass Spectrometry, 228, 2-3, pp. 127-150.



Purity assessment - sample preparation

Purity assessment - Qualitative mass spectrum

- Subtracted spectra from dissolution blank
- Analysis performed for samples diluted by 1:1000 factor

Potential contaminants

Fe, Ta (materials used in the casting process)
Actinides (NpO₂ feedstock)
Zn, Sn (environmental contamination)

Because of the potential for spectral interferences, HR-ICP-MS was used to obtain quantitative concentrations

Purity assessment - Interferences evaluation

Spectral interferences

- Overlap of the interferant m/z with analyte m/z;
- Isobaric: monoatomic species with the same m/z (⁴⁰Ar⁺ and ⁴⁰Ca⁺);
- Double charged: monoatomic species with double charge, with the same m/z (²³²U⁺⁺ and ¹¹⁶Sn⁺);
- Polyatomic: molecular species with the same m/z as the analyte (40Ar16O+ and 56Fe+).

Plasma gas/air

Ar-, O-, N-, C- species

↑ Background ↑ MQL

Overestimated concentrations, false positives

Sample prep.

O-, N-, Cl-, S- species

↑ Blank

↑ MQL

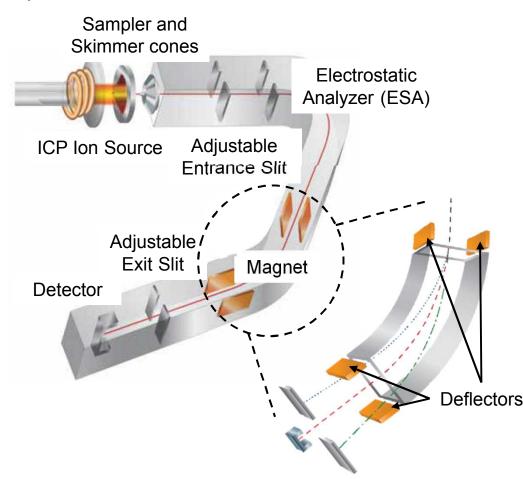
Overestimated concentrations, false positives

Matrix components

Np-, Ta-, Th- species

Overestimated concentrations, false positives

High Resolution ICP-MS (HR-ICP-MS)


Nu Instruments Attom ES HR-ICP-MS – attached to a radiological hood

- Double focusing HR-ICP-MS
- Enhanced sensitivity interface optimized for dry sample introduction
- High performance ion optics
- Flexible resolutions from 300 to 10000 RP
- Combination of detectors gives a wide dynamic range

High Resolution ICP-MS (HR-ICP-MS)

- Double-focusing instrument ESA focus the energy of the ions coming from the entrance slit, and magnet focus the ions related to their m/z onto the exit slit
- Mass resolution is adjusted by selecting different entrance and exit slits widths
- Deflectors voltage can be changed for each "parked mass" of the magnet – faster analysis over a wide mass range
- The higher the resolution, the narrower the slits used → sensitivity loss

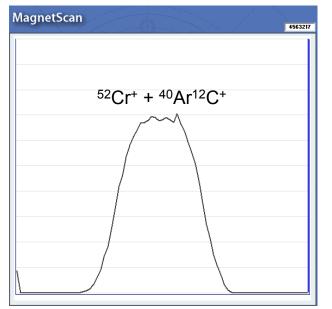
Method development should aim not only on interferences separation, but also on achievable quantifications limits

- From the qualitative mass spectrum, Ti, Nb, I, Au, TI, Na, AI, Sn, Ni, Zn, Y, Cr, Pb, K, Fe, Ca, Ta, Th, V, U and Pu were selected to be analyzed.
- Analysis performed for samples diluted by 1:1000 factor
- 6 different sets, accordingly to its expected concentration in the sample and/or possible isobaric interferences
- Internal standards used: Sc, In, Ho an Bi (in order to account for sample introduction and instrumental drifts during the analysis)
- Samples were run both on 300 RP and 4000 RP

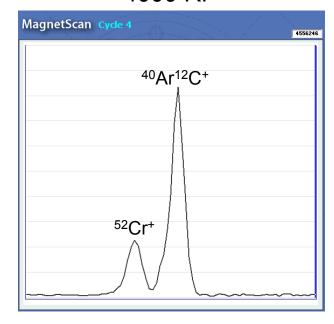
Analytes	Calibration range (ng g ⁻¹)	Internal standard concentration (ng g ⁻¹)
Ti, Nb, I, Au, Tl	0.01 - 0.075	0.05
V	0.01 - 0.075	0.05
Na, Al, Cr, Ni, Zn, Y, Sn, Pb	0.1 – 0.7	0.5
Pu	0.15 - 0.75	0.5
U	0.5 - 5	1
K, Fe, Ca, Ta and Th	0.5 - 5	1

For each isotope, several items were evaluated:

- Raw signal for 5% HNO₃ (rinse) and sample preparation blanks
- Determination coefficient and sensitivity of calibration curves
- Possibility of interferences
- Comparison of results obtained using 300 RP and 4000 RP

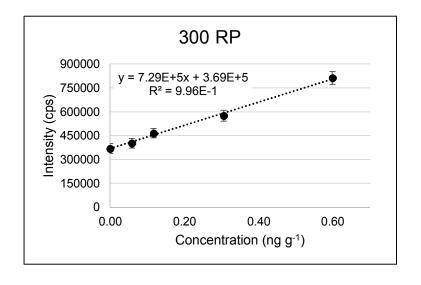


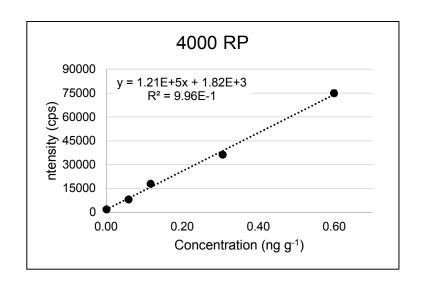
	300 RP	4000 RP	
5% HNO ₃ (blank) signal intensity	369118 cps	1820 cps	—


signal reduction of more than 2 orders of magnitude interference from the plasma gas resolved

Mass spectrum of a 0.2 ng g⁻¹ Cr solution

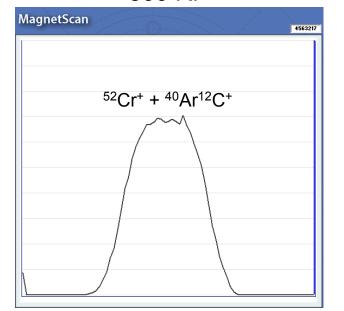
300 RP

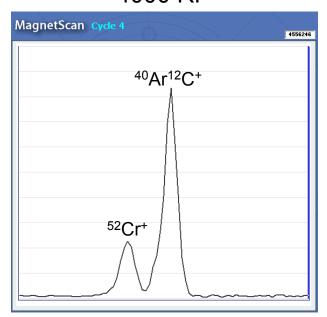

4000 RP



	300 RP	4000 RP
5% HNO ₃ (blank) signal intensity	369118 cps	1820 cps
Calibration slope	728542 cps g μg ⁻¹	120756 cps g μg ⁻¹
Calibration r ²	0.9957	0.9964
Quantification limit	40 μg g ⁻¹	0.3 μg g ⁻¹ 🖊

 $Limit\ of\ detection = 3x\ \frac{Standard\ deviation\ of\ 10\ measurements\ of\ the\ blank}{Slope}$

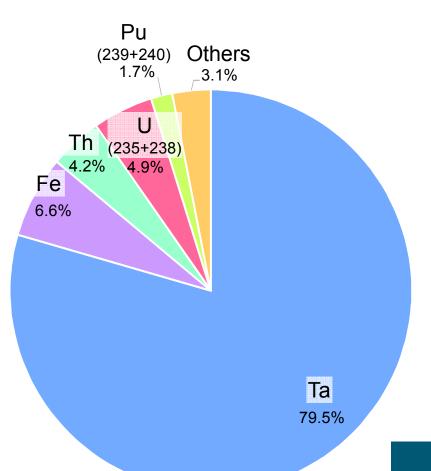



	300 RP	4000 RP
5% HNO ₃ (blank) signal intensity	369118 cps	1820 cps
Calibration slope	728542	120756
Calibration r ²	0.9957	0.9964
Quantification limit	40 μg/g	0.3 µg/g
Measurement RSD	5 – 20%	1 – 15%
⁵² Cr ⁺ concentration in samples	<40 μg g ⁻¹	34.3 ± 1% μg g ⁻¹

Results could be quantified after the separation of the interference

300 RP

4000 RP



		300RP		4000 RP			
Analyte	Interferences	Concentration (µg g ⁻¹)	RSD (%)	MQL* (µg g ⁻¹)	Concentration (µg g ⁻¹)	RSD (%)	MQL* (µg g ⁻¹)
⁵⁰ Cr ⁺	⁵⁰ Ti+, ⁵⁰ V+, ³⁶ Ar ¹⁴ N+, ³⁸ Ar ¹² C+	1.81	±4%	0.09	1.99	±5%	0.6
51 V +	¹⁴ N ³⁷ CI+	1.81	±4%	0.06	1.67	±6%	0.02
⁵² Cr ⁺	³⁶ Ar ¹⁶ O+, ³⁸ Ar ¹⁴ N+, ⁴⁰ Ar ¹² C+	<40	N/A	40	34.3	±1%	0.3
⁵⁷ Fe ⁺	+	<7	N/A	7	3.38	±9%	2
⁵⁸ Ni+	⁴⁰ Ar ¹⁸ O+	16.8	±10%	3	13.4	±2%	2
⁶⁰ Ni+	⁴⁴ Ca ¹⁶ O ⁺	5.14	±7%	0.2	4.98	±9%	2
89 Y +	-	10.8	±1%	0.005	10.8	±0.4%	0.05
⁹³ Nb+	-	1.55	±4%	0.003	-	-	-
¹¹⁶ Sn+	²³² Th++	4.02	±2%	0.1	<0.3	N/A	0.3
¹¹⁸ Sn+	-	<0.2	N/A	0.2	< 0.3	N/A	0.3
¹²⁰ Sn+	-	<0.3	N/A	0.3	<0.7	N/A	0.7
¹⁸¹ Ta+	-	1920	±2%	0.1	1990	±2%	2
203 T +	-	<0.001	N/A	0.001	-	-	-
²⁰⁵ TI+	+	<0.003	N/A	0.003	-	-	-
²⁰⁶ Pb ⁺	-	<0.05	N/A	0.05	<0.4	N/A	0.4
²⁰⁸ Pb ⁺	-	<0.1	N/A	0.1	<0.7	N/A	0.7
²³² Th+	-	103.0	±0.1%	0.006	111.0	±0.8%	0.06
235U+	-	2.74	±1%	0.001	-	-	-
238⋃+	-	115	±1%	0.01	<u>-</u>	-	-
²³⁹ Pu ⁺	+	35.6	±1%	0.002	-	-	-
²⁴⁰ Pu ⁺	-	6.05	±1%	0.002	-	-	-

*MQL: Method Quantification Limit

Bold: values used for total concentration calculation

Element	Conc. (µg g ⁻¹)	MQL* (µq q ⁻¹)	RP
Cr	41.0 ± 1%	0.4	4000
V	1.68 ± 6%	0.02	4000
Fe	160 ± 9%	94	4000
Ni	19.6 ± 7%	8.0	300
Y	10.8 ± 1%	0.01	300
Nb	1.55 ± 4%	0.003	300
Sn	<mql< th=""><th>8.0</th><th>4000</th></mql<>	8.0	4000
Та	1920 ± 2%	0.1	300
TI	<mql< th=""><th>0.003</th><th>300</th></mql<>	0.003	300
Pb	<mql< th=""><th>0.2</th><th>300</th></mql<>	0.2	300
Th	102.5 ± 0.2%	0.01	300
²³⁵ U	2.74 ± 1%	0.001	300
²³⁸ U	115 ± 1%	0.01	300
²³⁹ Pu	35.6 ± 1%	0.002	300
²⁴⁰ Pu	6.05 ± 1%	0.002	300

Total Np purity: 99.758% Maximum achievable purity (Σ MQL): 99.990%

Purity assessment – Conclusions and next steps

- ❖ Np metal that was produced did not achieve the desired purity: 99.999%
 - It was possible to identify the main sources of impurities, with great precision and accuracy
 - The casting process will be modified accordingly to the results obtained for the main contaminants
- Using the current detection limits, we could determine up to 99.990% of purity
 - Detection limits should be improved using of lower RP (2500) and separating the Np from the solution (so a lower dilution factor can be used)
- Other analytes still need to be determined for a complete characterization of the Np metal
 - K, Na, Al, Ca and Zn will be determined by ICP OES
 - C, N and O will be determined by Light Elements Analysis

Acknowledgements

Dr. Vivian M. de O. Carioni HR-ICP-MS Instrument Scientist

Cortney M. Pincock
Q-ICP-MS Instrument Scientist

Scott R. Wilde Np Metal Reduction

This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities project

