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Abstract

This article probes the reasons for the presence of high frequency components, which are not a 
part of the input, in the output of nonlinear site response analysis. The nonlinear site response 
analysis of a single soil element, under a single frequency sinusoidal displacement, is conducted 
to demonstrate the presence of frequencies higher than the input frequency in the soil element's 
shear stress and the free surface acceleration. The parameters of this one element problem are 
chosen carefully to minimize numerical errors. The shape of the stress-strain hysteresis loop is 
found to be the main cause for the presence of these higher frequencies. A quasi-static problem 
similar to the direct shear test is then considered to analyze the effect of different hysteresis 
shapes. Through this analysis, it is numerically and analytically shown that any deviation of the 
stress-strain hysteresis shape from a perfect ellipse results in output frequencies higher than the 
input frequency and the number of higher frequencies produced depends on whether the 
hysteresis shape is smooth or pointed.

Highlights
 Causes for high frequency content in nonlinear soil response is explored.
 Insufficient spatial and temporal numerical discretization is a known cause.
 Numerical errors are minimized and an analytical response of the soil is obtained.
 Strong connection between stress-strain shape and high frequency is demonstrated.
 Any deviations from an elliptical hysteresis shape cause high frequency overtones.
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1. Introduction

Nonlinear stress-strain behavior of soils in a controlled laboratory setting have been calculated in 
numerous experimental studies conducted on a wide range of soils subjected to varying strain 
levels [29]. Additionally, field observations of recorded earthquake ground motions show that 
peak accelerations are well into the nonlinear range during shaking [4,9,10,18]. These 
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experimental and field observations led to development of numerical models that approximate 
the nonlinear behavior of soils.

These numerical models can be divided into two major categories: (a) equivalent linear models 
and (b) fully nonlinear models. A brief description of these numerical models is provided in 
Section 1.1. Nonlinear soil models produce high frequency response due to multiple factors: the 
shape of the hysteresis loop, the pointed end of the hysteresis loop, and improper time/space 
discretization or other similar numerical discretization or integration issues. High frequency 
response could also be due to the input motion having large amplitudes at these frequencies. 
However, this article is focused on numerically and analytically describing the high frequency 
soil response due to the shape of the hysteresis loop and the pointed end of the hysteresis loop.

1.1. Background on nonlinear soil models

As mentioned earlier, the two major categories of numerical soil models are equivalent linear 
and direct nonlinear methods. In the equivalent linear method [14,28], the soil material properties 
such as shear modulus and damping ratio are modified iteratively based on the effective strain 
experienced by the soil. Starting with the corresponding low-strain values for the shear modulus 
and damping ratio, a linear analysis is performed and a single strain measure called the “effective 
strain” is calculated from the strain time history of the soil. Using this effective strain and the 
experimentally obtained modulus reduction and damping curves, the shear modulus and damping 
ratio for the next linear analysis are calculated, and this process is continued until the soil 
properties between two subsequent iterations converge (within a pre-defined tolerance). The key 
point to note here is that the nonlinear response of the soil is approximated using a series of 
linear analyses. Since a linear analysis is at the core of this method, the frequency content of the 
input and the output are similar, i.e., if the base of the soil column is shaken by applying a 
sinusoidal displacement of a single frequency, the displacement calculated at the top of the soil 
column will have the same single frequency as the input. This method has been implemented in 
1D site response analysis tools such as SHAKE [28]. Modified versions of this method are also 
available where the shear modulus and damping ratio vary with both the frequency of excitation 
and the effective shear strain [1,33].

In the direct nonlinear site response analysis, the soil properties are updated at each time step 
based on the current strain level experienced by the soil. Therefore, the nonlinear soil model 
approximates the soil stiffness and energy dissipated at each time step. To model the nonlinear 
response of the soil in 1D, the stress-strain backbone bone curve used to numerically represent 
the soil, and the hysteresis rules, which dictate the shape of the hysteresis loops under cyclic 
excitation, are required. Many researchers have developed empirical expressions that 
approximate the experimentally observed backbone curve [8,12,16,20,25]. Extended Masing 
rules are the most commonly used hysteresis rules to model the cyclic behavior of soils [19]. 
DEEPSOIL [13], DESRA [16], DMOD [21] and Tess [24] are some of the commonly used 1D 
site response analysis tools that use these backbone curves and hysteresis rules to model the 
nonlinear response of the soil. Some finite element tools also have a material model (e.g., Mat 
Hysteretic soil in LS-DYNA [17], user hysteretic soil in ABAQUS [31], I-Soil in MASTODON 
[6]) that uses the information from this 1D stress-strain curve to model the 3D nonlinear 
behavior of the soil. These material models are based on the distributed element model 



(developed by Iwan [15] and later adapted by Chiang and Beck [3]), in which the soil element is 
modeled as a set of elastic-perfectly plastic springs. The total stress of the soil element is the sum 
of stresses from each of the individual springs. J2 or von Mises plasticity [32] is used to model 
the 3D behavior of each elastic-perfectly plastic spring. This seemingly simple material model 
automatically satisfies Masing hysteresis rules. Advanced constitutive models which incorporate 
more sophisticated yield surfaces, hardening laws, and flow rules have also been developed 
[7,22,23,26,27]. Benchmarking of the commonly used methods for direct nonlinear site response 
analysis is presented in Stewart et al. [30].

1.2. Past research on high frequency nonlinear soil response

Yu et al. [34] compared response spectra from linear and nonlinear site response analysis of soil 
columns under an impulse excitation and concluded that the soil response can be divided into 
three frequency bands (Fig. 1). In the lower frequency, the spectral amplitude remains unaffected 
by the material model. In the central band, the nonlinear soil model has lower spectral amplitude 
than the linear soil model as a result of the nonlinear hysteretic damping. However, in the high 
frequency band, the reverse is true, i.e., the nonlinear soil model has higher spectral amplitude 
than the linear soil model. Yu et al. [34] attributed this response amplification of nonlinear soils 
in higher frequencies to the sudden change in soil stiffness at reversals in the stress-strain curve. 
Other researchers have also observed these high frequency components in the comparisons 
between equivalent linear and direct nonlinear methods (e.g., Bolisetti et al. [2]).



Fig. 1 Spectral ratio at the free surface calculated as nonlinear response divided by linear 
response for an input impulse pulse with peak acceleration of 0.5 g applied at the base of the soil 
column (reprinted from Yu et al. [34]).Fig. 1

Some of the other common causes for the presence of higher frequencies in time domain analysis 
are inadequate soil element size and time step increment size (Coleman et al. [5]). Considering 
that most of the machinery and equipment are sensitive to high frequency ground motion, it is 
important to investigate all the possible causes resulting in the high frequency nonlinear response 
of soils and to separate numerical noise from the actual soil response. In this article, nonlinear 
site response analysis of a single soil element is conducted under a single frequency sinusoidal 
excitation to track down all the possible causes for the presence of frequencies higher than the 
input frequency.

2. Demonstration of high frequency nonlinear 
response
A 125 feet (ft) tall soil element is considered for this study (Fig. 2). The base of this soil element 
is excited using a sinusoidal displacement with a frequency of 1.22 Hz and the top of the soil 
element is free. The maximum amplitude of the sinusoidal displacement is gradually increased 
from 0 ft to 0.115 ft over 2 s  and then kept constant at 0.115 ft for the remainder of the 
excitation, which extends till 51 s, to ensure that the soil experiences a periodic sinusoidal 
displacement of a constant maximum amplitude after 2 s. A truncated version of the applied 
displacement is shown in Fig. 2. The gradual increase in maximum amplitude of the sinusoidal 

displacement ensures that at , the displacement, velocity and acceleration at the base of the 
soil column are zero. The density of the soil element is 118 lb/ft3 and the stress-strain behavior of 
this soil element is similar to that of alluvial soil (Fig. 3a). The element size (125 ft) and the time 
step size (0.000625 s) are chosen according to the criteria presented in Coleman et al. [5] so that 
high frequency numerical noise is avoided during the propagation of the wave.



Fig. 2 One element soil model, represented using a spring mass damper system, with a sinusoidal 
displacement applied at the base. The top of the soil element is free.Fig. 2



Fig. 3 (a) Shear stress vs shear strain backbone curve (red) and steady state hysteretic stress-
strain behavior (black) for the nonlinear soil model. (b) Acceleration time history at the base 
(dashed black curve) and top (red curve) of the soil column. Zoomed inset shows the assymetry 
in the waveform to the left and right of the peak acceleration demonstrating the deviation from a 
perfect sinusoid. (c) Shear stress time history of the soil element.Fig. 3

This soil element is similar to a spring mass damper system (Fig. 2). The total mass of the 
element (m) is split into two and the two halves are lumped into the node at the top and bottom of 
the soil element. A nonlinear spring-damper, the properties of which are given by the shear 
stress-shear strain curve in Fig. 3a, connect these two nodes. The governing equation for this 1D 
system is:

(1)

where, is the acceleration of the top node, is the velocity of the top node, and and are 

the displacements of the top and bottom nodes, respectively, and is the internal force 
generated by the nonlinear spring-damper system. This above equation along with time 
integration relations between acceleration, velocity and displacement are simultaneously solved 

to obtain , and as a function of time. Any time stepping algorithm such as Newmark-Beta 
time integration, forward Euler or Runge-Kutta methods could be used to solve the above 



nonlinear differential equation iteratively. The nonlinear stiffness (or equivalently the shear 
stress) is calculated using the distributed element method [15,3], by dividing the shear stress-
shear strain curve into 500 elastic-perfectly plastic curves, and adding the stress contribution 
from the individual elastic-perfectly curves to obtain the total shear stress of the soil element. If 

and are the shear modulus and yield stress for the elastic-perfectly plastic curve, 

for is calculated using the pseudocode in Algorithm 1. The discretization of 
the stress-strain curve into 500 elastic-perfectly plastic curves ensures that numerical error 
resulting from discretization of stress-strain curve is minimized (solution time history and 
frequency spectrum of the solution time history up to 100 Hz converges when 100 elastic-
perfectly plastic curves are considered).

Algorithm 1 Pseudocode to estimate internal force due to nonlinear spring-damper 
system at a given time step.

The acceleration time histories at the top (red curve) and base (dashed black curve) of the soil 
column are presented in Fig. 3b. The acceleration time history at the base is calculated from the 
applied displacement time history and therefore it is a perfect sinusoidal waveform with a 
frequency of 1.22 Hz. The acceleration time history at the top of the soil column is not a perfect 
sinusoidal waveform as can be seen from the peaks and troughs of the red curve in Fig. 3b. The 
shear stress time history of the soil element is presented in Fig. 3c. The Fourier transform of the 
acceleration time history at the top node and of the shear stress time history are presented in Fig. 
4a and 4b, respectively. The time window for calculating the Fourier transform is chosen such 
that the maximum amplitude of the input sinusoidal excitation is constant in this window, i.e., 
from 2 s to 51 s. These figures show that the acceleration at the top node and the shear stress are 
made up of sinusoidal waveforms of multiple frequencies even though the input at the bottom 
node has a single frequency of 1.22 Hz.



Fig. 4 Fourier amplitude of the (a) input acceleration, (b) acceleration at the top node and (c) 
shear stress of the soil element. Note that only the section of the time history after the system 
reaches steady-state, i.e., 2–51 s, is used in calculating the Fourier transform.Fig. 4

A closer look at Fig. 4a shows that majority of the frequency content is still concentrated at 
1.22 Hz. Also, the other discrete frequencies present in the Fourier spectrum are at odd multiples 
or harmonics of the input frequency, i.e., 3.66 Hz, 6.10 Hz and so on. This infinite sine series 
with odd harmonics is usually seen when a sharp point (or discontinuity in slope) is present in 
the time history such as in the case of a triangular or square waveform. This is called the Gibbs 
phenomena [11], where an infinite sum of sine/cosine waveforms, which are smooth functions, 
are required to represent a piecewise continuously differentiable waveform (i.e., waveforms with 
a discontinuity in slope). The same trend can also be seen in the Fourier spectrum of the shear 
stress (Fig. 4b).

The sharp change in slope of the top node's acceleration time history and shear stress time 
history (Fig. 3b and 3c) can be observed during acceleration reversals or stress reversals, 
respectively. These reversals correspond to the sharp point in the hysteresis loops, which results 
in a sudden change in soil stiffness as was identified by Yu et al. [34]. While this is definitely 
one of the reasons for the presence of frequencies higher than the input frequency, is this the only 
reason for the high frequency components? Could other aspects of the stress-strain curve, such as 
the shape of the hysteresis loop in the stress-strain space, result in the higher frequencies? To 
understand this better, a much simpler problem without the dynamic effects of wave propagation 
is considered in the next section. Since the Fourier spectrum of the top node's acceleration time 



history and that of the shear stress time history are similar (Fig. 4), we examine only the shear 
stress time history from this point onwards.

3. Effect of hysteresis shape

3.1. Numerical simulation

To better test the effect of different stress-strain curves, the same one-element soil column is 
considered but with a fixed base and a single frequency sinusoidal displacement applied to the 
top of the soil column (Fig. 5). Prescribing the displacement at the two ends of the soil column 
ensures that the inertial effects due to the mass of the soil do not play a role in the shear stress 
calculation. This is equivalent to a nonlinear spring-damper connecting the top and bottom of the 
soil element. The differential displacement at the two ends of the soil column results in a shear 
strain, which in turn results in a shear stress. This problem setup helps isolate the effects of the 
soil's stress-strain curve and is similar to the experimental direct shear test conducted to obtain 
the stress-strain behavior of the soil. Note that the input sinusoidal displacement considered here 
(Fig. 5) does not have gradually increasing maximum amplitude as in Fig. 2.

Fig. 5 One-element soil column with fixed base and sinusoidal displacement of frequency 
1.22 Hz applied at the top. This soil element can be compared to that of a nonlinear shear spring-
damper connecting the top and bottom of the soil column.Fig. 5



Three different backbone curves are considered for this study. The backbone curves and the 
resulting hysteresis loops are shown in Fig. 6. The first backbone curve (Fig. 6a) is similar to the 
stress-strain behavior of alluvial soil and it results in a pointed hysteresis loop as shown in Fig. 
6d. The second backbone curve (Fig. 6b) is a modification of the first backbone curve, which 
results in an elliptical hysteresis loop (Fig. 6e) without any sharp stress reversals. The third 
backbone curve (red line in Fig. 6c) is obtained by adding a sinusoidal waveform to the central 
region of the elliptical backbone curve (dashed black line in Fig. 6c). This third backbone curve 
is designed such that it smoothly converges to the elliptical backbone curve near the ends, i.e., 
near zero and maximum strain. The addition of the smooth sinusoidal waveform ensures that the 
hysteresis loop in Fig. 6f is not a perfect ellipse, but at the same time there are no sharp stress 
reversals (i.e., the slope of the stress-strain curve is continuous) as in Fig. 6d.

Fig. 6 (a) Alluvial soil, (b) elliptical and (c) smooth pseudo-elliptical backbone curve and the 
resulting (d) pointed, (d) elliptical and (e) smooth pseudo-elliptical hysteresis loops obtained 
using Masing hysteresis rules. The backbone curve in (c) (red) is obtained by adding a sinusoidal 
perturbation to the elliptical backbone curve (dashed black line) from (b).Fig. 6

The shear stress time history for each case is calculated using the distributed element method 
described in the previous section. The Fourier spectra of the steady-state shear stress time history 

, i.e, after the first sinusoidal displacement cycle or 0.205 s, for the three cases are 
presented in Fig. 7. In the case of the alluvial soil, the pointed hysteresis loop with sharp stress 
reversals results in the presence of odd multiples of the input frequency (extending to infinity) in 
the shear stress Fourier spectrum (Fig. 7a). In the case of the elliptical hysteresis loop, the shear 



stress Fourier spectrum (Fig. 7b) contains only one frequency, which is the frequency of the 
input. This seems to suggest that the pointed nature of the hysteresis loop is the reason for the 
higher frequencies. But frequencies higher than the input frequency are also present in Fig. 7c, 
which corresponds to the shear stress Fourier spectrum for the smooth pseudo-elliptical 
hysteresis loop. In particular, a finite set of odd multiples of the input frequency is present in Fig. 
7c as opposed to the infinite set of frequencies in Fig. 7a. This suggests that any deviation of the 
stress-strain hysteresis shape from a perfect ellipse results in frequencies higher than the input 
frequency.

Fig. 7 The Fourier spectrum of the steady-state shear stress time history for (a) alluvial soil, (b) 
elliptical and (c) smooth pseudo-elliptical backbone curves.Fig. 7

3.2. Analytical solution

To understand if the elliptical hysteresis shape is the only shape that results in a single frequency 
shear stress output for a single frequency displacement input, the equation for the shear stress in 
terms of shear strain is examined. The stress-strain curve in Fig. 6 is essentially a relation 

between the shear stress ( ) and shear strain ( ). Therefore, if the shear stress can be written as a 

function of shear strain, i.e., , then that equation describes the shape of the stress-strain 
hysteresis loop.



Let the sinusoidal displacement applied at the top node be , where A is the 
maximum amplitude and is the frequency of the sinusoidal waveform. The bottom node is 
fixed implying that the displacement of the bottom node is zero. If h is the height of the soil 
element, then the resulting shear strain is given by:

(2)

If the shear stress time history has the same frequency as the input displacement, then can be 
written as a linear combination of the sine and cosine waveforms with frequency :

(3)

Substituting for from Eq. (2) into Eq. (3) gives:

(4)

The above equation (Eq. (4)), which is a relation between shear stress and shear strain, is the 
equation for the hysteresis loop in the stress-strain space. This equation looks similar to the 
equation describing a general conic section, which consists of circle, ellipse, parabola and 

hyperbola. Eq. (4) is the equation of an ellipse if and only if the square of the coefficient of is 

less than four times the product of coefficients of and , i.e., 

must be less than zero. Since , 

and are positive, is negative, implying that Eq. (4) is indeed the equation of an 

ellipse. The absence of the terms and implies that the ellipse in Eq. (4) is centered at 

and , and the presence of the cross term implies that the major axis of the ellipse is not 

along the axis. These characteristics make the hysteresis loop defined by Eq. (4) look similar to 
the elliptical hysteresis loop in Fig. 6e.

This proves that if the shear stress contains a single frequency when a single frequency 
sinusoidal displacement is provided as input to the soil element, then the corresponding shear 
stress-shear strain curve has to be an ellipse. For all other hysteresis shapes, the shear stress 
would have frequencies higher than the input frequency.



4. Conclusion
In this article, detailed investigations of nonlinear site response analysis are conducted to 
understand all the possible causes for the presence of high frequency response in numerical 
analysis. As a first step, the presence of these high frequency components is demonstrated using 
a single element soil column that is subjected to a single frequency sinusoidal displacement. 
Time, soil element and nonlinear stress-strain curve discretization have been handled carefully to 
minimize numerical errors. This analysis reinforces the conclusions from Yu et al. [34] that for 
soils with pointed hysteresis shapes in the stress-strain space, one of the causes for high 
frequency content in the site response is the sharp stress reversals or the pointed nature of the 
hysteresis loop.

To understand the other causes for the presence of higher frequencies, a quasi-static problem 
similar to the direct shear test with displacements prescribed at both ends of the soil column is 
considered. In this problem, the direct effect of the hysteresis shape is probed by considering 
three different hysteresis shapes – pointed hysteresis loop, elliptical hysteresis loop and smooth 
pseudo-elliptical hysteresis loop. The numerical and the analytical solutions presented above 
show that apart from the sharp stress reversal, any deviation of the hysteresis shape from a 
perfect ellipse also introduces frequencies higher than the input frequency in the shear stress. 
While the pointed hysteresis loop results in the presence of odd multiples of the input frequency 
extending to infinity, any deviation from the elliptical shape, but with a smooth stress reversal, 
introduces a finite number of odd multiples of the input frequency.

The results presented in this article prove that high frequency components in nonlinear analysis 
are directly connected to the shape of the hysteresis loops in the stress-strain space. If pointed 
hysteresis loops or non-elliptical hysteresis loops are a reality, then so are the high frequency 
components.
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