Coupling RAVEN to SAPHIRE for Performing Time Dependent Probabilistic Risk Assessment

Congjian Wang, Diego Mandelli, Andrea Alfonsi, Paul W Talbot, Stephen Ted Wood, James K Knudsen, Cristian Rabiti

June 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Coupling RAVEN to SAPHIRE for Performing Time Dependent Probabilistic Risk Assessment

Congjian Wang, Diego Mandelli, Andrea Alfonsi, Paul W Talbot, Stephen Ted Wood, James K Knudsen, Cristian Rabiti

June 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

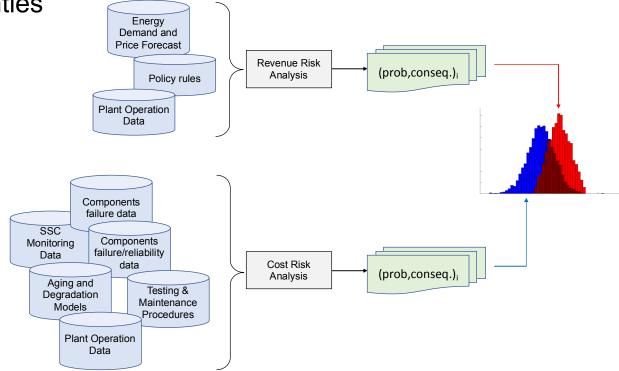
Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Coupling RAVEN to SAPHIRE for Performing Time Dependent Probabilistic Risk Assessment

Presented by Congjian Wang

Background


Cost Risk Analysis Framework (INL/EXT-19-51442)

 Safety risk analysis: Event-Tree and Fault-Trees are employed to model accident progression

Cost risk analysis: estimates of plant cost drivers

Revenue risk analysis: estimates plant revenues and associated

uncertainties

Probabilistic Risk Analysis

RAVEN

Optimization

Sensitivity

Background

RAVEN: multi-purpose framework to enable Risk Informed Safety

Margin Characterization (RISMC)

Evaluating risk (UQ)

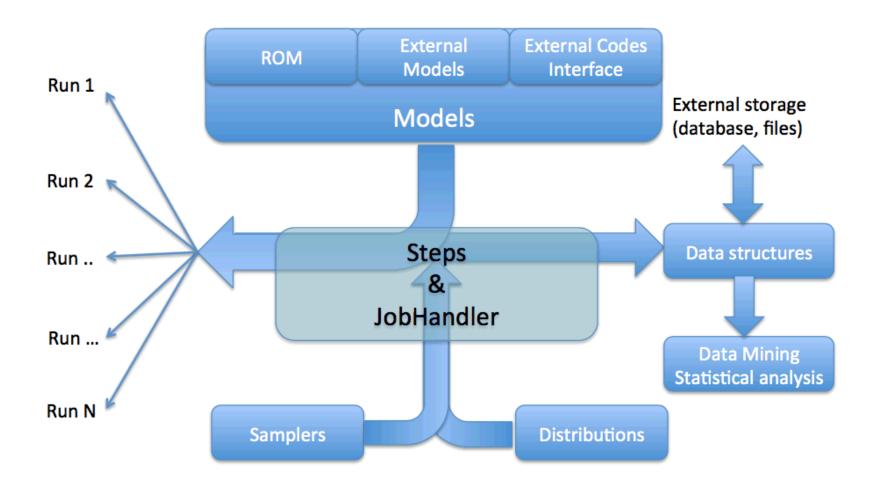
Understanding risk (data mining)

Mitigating risk (optimization)

SAPHIRE: perform complete PRA

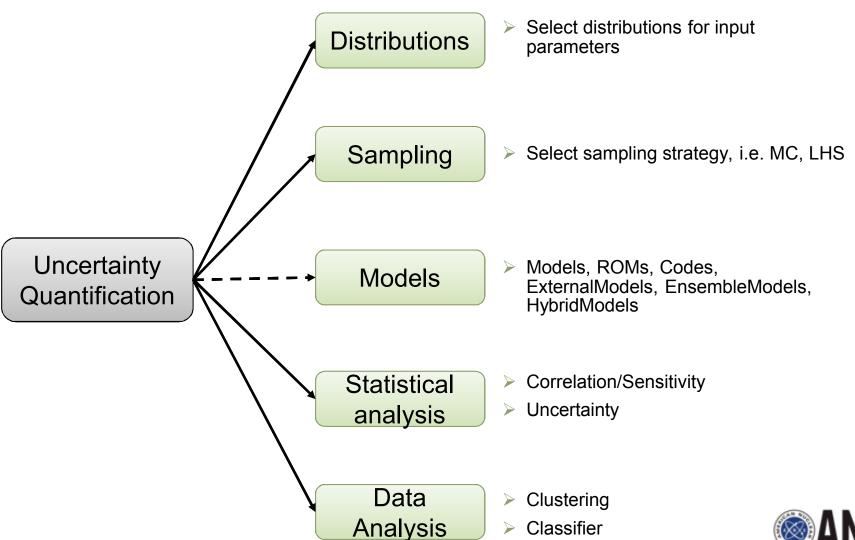
Level 1: model a complex system's response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage

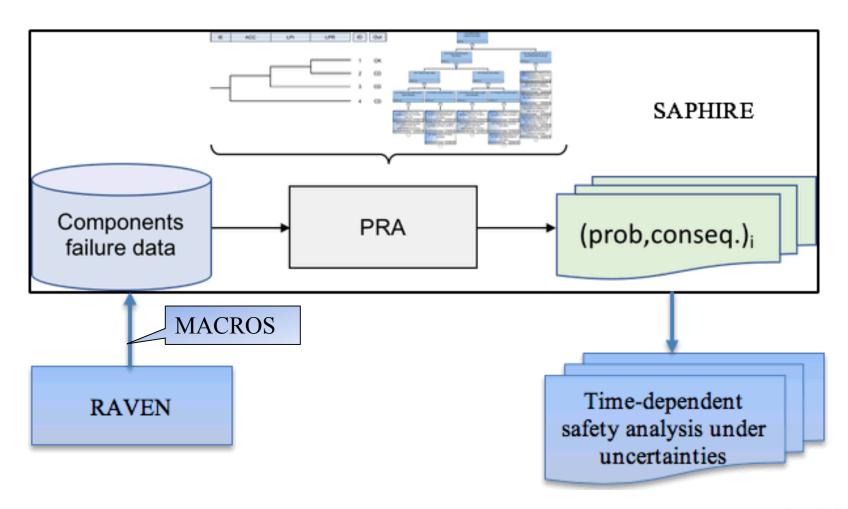
- Level 2: analyze containment performance during a severe accident and quantify radioactivity releases
- Level 3: quantify risk in terms of radioactivity release accidents to both the public and environment


Data Mining

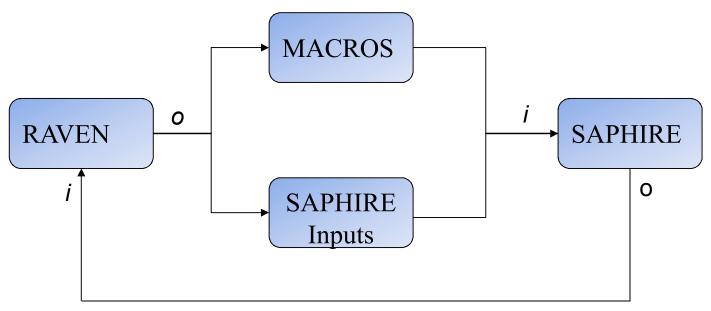
Uncertainty

Quantification


RAVEN Infrastructure


UQ Example: Capabilities vs. Needs

RAVEN-SAPHIRE Coupling



RAVEN-SAPHIRE Coupling

- MACROS in SAPHIRE
 - Automatically perform "analysis-menu" functions
 - Modify basic event data, fault tree logic and event tree logic
 - Using a standard text editor

Perturbing the parameters in MACROS using "wild-cards", i.e.
 \$RAVEN-variableName\$

Example of MACROS' Perturbation

```
<change set>
  <unmark></unmark>
                                               <MonteCarlo name="mcSaphire">
  <delete>
                                                  <samplerInit>
    <name>MOV-1-EVENTS</name>
                                                      <limit>2</limit>
  </delete>
                                                  </samplerInit>
  <add>
                                                  <variable name="allEventsPb">
                                                      <distribution>allEvents</distribution>
    <name>MOV-1-EVENTS</name>
                                                  </variable>
    <description>Class change subset events (
                                                  <variable name="mov1EventPb">

→ Set</description>

                                                      <distribution>mov1Event</distribution>
    <class>
                                                  </variable>
      <event name>?-MOV-CC-1</event name>
                                                  <variable name="single1Pb">
                                                      <distribution>single1</distribution>
      <calc type>1</calc type>
                                                  </variable>
      obability>5E-3
                                               </MonteCarlo>
    </class>
  </add>
    <mark name>MOV-1-HVENTS
    <generate></generate>
</change set>
                                  <class>
                                    <event name>?-MOV-CC-1
                                    <calc type>1</calc type>
                                    obability>$RAVEN-mov1EventPb$
                                  </class>
```


RAVEN-SAPHIRE Coupling

RAVEN

Distributions

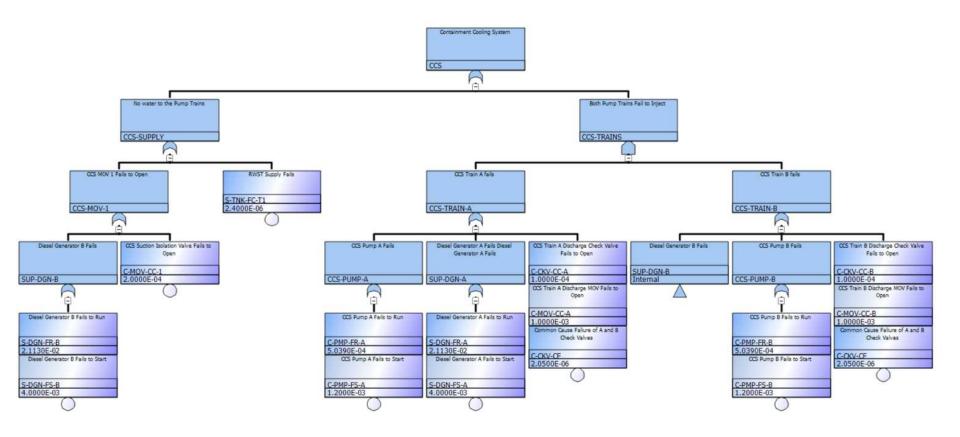
Optimizations

Surrogates

Samplers

Data mining

SAPHIRE


LOSP Event Tree Model

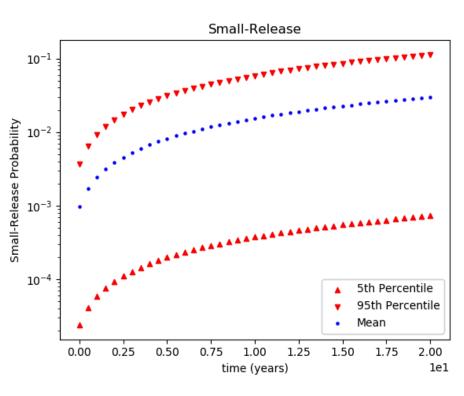
Loss of Offsite Power	Emergency Cooling System	Containment Cooling System	#	End State (Phase - PH1)
LOSP	ECS	CCS		
			1	ОК
			2	SMALL-RELEASE
			3	LARGE-RELEASE

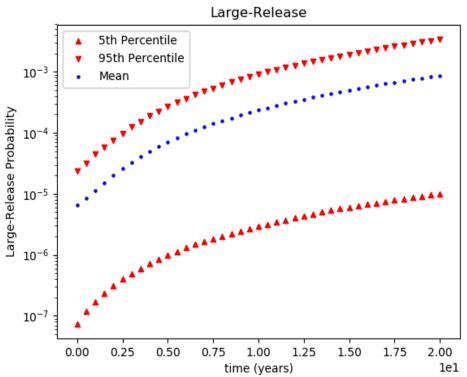
CCS/ECS Fault Tree Model

Failure Model Employed in ECS/CCS FTs

Calc. Type	Equation	Description
1	P = p	Mean probability
3	$P = 1 - \exp(-\lambda T_m)$	λ : mean failure rate, T_m : mission time. Failure probability of an operating component without repair.

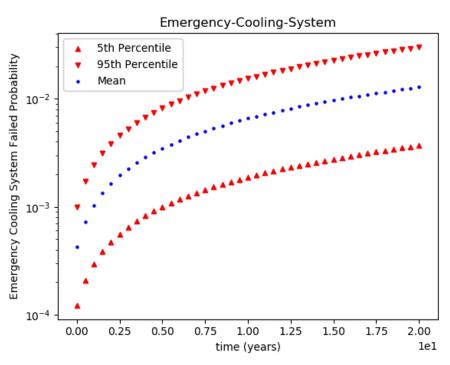
- Linear failure probability model: $P(t) = P_0[1 + b(t t_0)]$
- Exponential failure rate model: $\lambda(t) = \lambda_0 \exp(b(t t_0))$




Failure Model Employed in ECS/CCS FTs

Basic Event	Calc. Type	Failure Probability/Rate	Description
CKV-CC-A	1	$P = 1.0E - 05 + 1.45E - 05 * (t - t_0)$	Train A discharge check valve fails to open
CKV-CC-B	1	$P = 1.0E - 05 + 1.45E - 05 * (t - t_0)$	Train B discharge check valve fails to open
MOV-CC-1	1	$P = 2.0E - 05 + 2.9E - 05 * (t - t_0)$	Suction isolation value fails to open
MOV-CC-A	1	$P = 1.0E - 05 + 1.45E - 05 * (t - t_0)$	Train A discharge MOV fails to open
MOV-CC-B	1	$P = 1.0E - 05 + 1.45E - 05 * (t - t_0)$	Train B discharge MOV fails to open
PMP-FR-A	3	$\lambda = 2.1E - 06 * \exp(0.17(t - t_0))$	Pump A fails to run
PMP-FR-B	3	$\lambda = 2.1E - 06 * \exp(0.17(t - t_0))$	Pump B fails to run
PMP-FS-A	1	$P = 1.2E - 04 + 1.74E - 04 * (t - t_0)$	Pump A fails to start
PMP-FS-B	1	$P = 1.2E - 04 + 1.74E - 04 * (t - t_0)$	Pump B fails to start
S-DGN-FR-A	3	$\lambda = 8.9E - 05 * \exp(0.17(t - t_0))$	Diesel generator A fails to run
S-DGN-FR-B	3	$\lambda = 8.9E - 05 * \exp(0.17(t - t_0))$	Diesel generator B fails to run
S-DGN-FS-A	1	$P = 4.0E - 04 + 5.8E - 04 * (t - t_0)$	Diesel generator A fails to start
S-DGN-FS-B	1	$P = 4.0E - 04 + 5.8E - 04 * (t - t_0)$	Diesel generator B fails to start

Time dependent uncertainty analysis of ET





Time dependent uncertainty analysis of FT CCS/ECS

