# **DNC Simulation Results** and Risk Assessment

Cliff B Davis, Zhegang Ma

July 2019



The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

### **DNC Simulation Results and Risk Assessment**

Cliff B Davis, Zhegang Ma

**July 2019** 

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

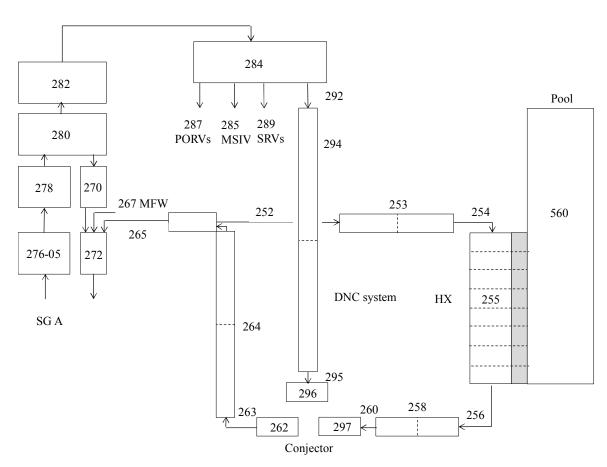
## **DNC Simulation Results and Risk Assessment**



Cliff Davis
Zhegang Ma
Idaho National Laboratory

July31, 2019






#### **Overview**

- Thermal-hydraulic and risk assessment analyses of the Dynamic Natural Convection (DNC) system during a station blackout (SBO) in a PWR were performed
  - Surry, a three-loop Westinghouse PWR, was chosen for analysis
  - A RELAP5-3D model developed for plant level scenario-based risk analysis for Enhanced Resilient PWR was used
  - The RELAP5-3D model was modified to represent the DNC system
  - DNC system was modeled in PRA for risk assessment
- Three SBO scenarios were investigated
  - Nominal RCP seal leakage (21 gpm/pump, equivalent to a 0.23 inch diameter break)
  - Maximum RCP seal leakage (480 gpm/pump, equivalent to a 1.1 inch diameter break)
  - Pressurizer PORV sticks open (nominal RCP seal leakage)
- Effects of DNC failures were considered
- A generic PWR PRA model was used in DNC risk assessment



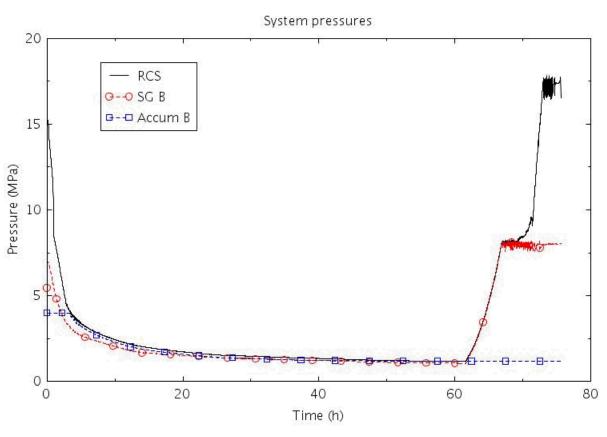
### **RELAP5-3D DNC Model**



- Passive heat rejection from SG to pool
- One DNC loop per SG, with a common pool
- Steam mixes with cold water from the HX in the conjector and generates the head for natural circulation
- Most of the water recirculates to the HX, remainder enters the SG
- RELAP5-3D model of the DNC system is based on correlations developed from small-scale experiments



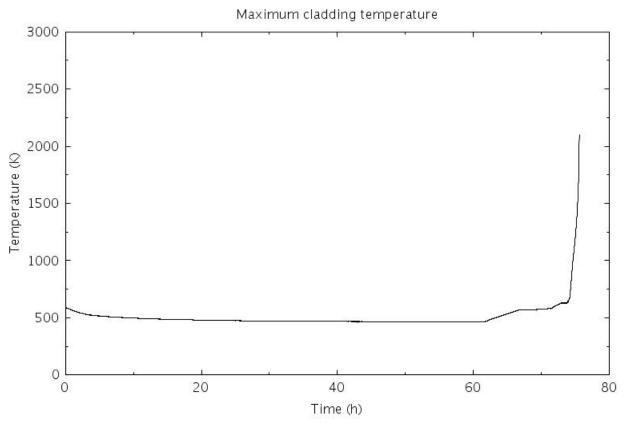
### **Comparison of SBO without and with DNC**


|                              | Leakage (gpm /pump) |          |              |          |
|------------------------------|---------------------|----------|--------------|----------|
|                              | 21                  |          | 480          |          |
| Event                        | Time (hr:min)       |          |              |          |
|                              | Without DNC*        | With DNC | Without DNC* | With DNC |
| SBO occurs                   | 0:00                | 0:00     | 0:00         | 0:00     |
| TD-AFW / DNC FW begins       | 0:01                | 0:00     | 0:01         | 0:00     |
| Operator begins SG cooldown  | 1:30                | N/A      | 1:30         | N/A      |
| Accumulators begin to inject | 2:30                | 3:16     | 2:10         | 1:38     |
| Batteries depleted           | 4:00                | 4:00     | 4:00         | 4:00     |
| SGs empty                    | 8:16                | 71:30    | N/A          | N/A      |
| Core begins to uncover       | 9:30                | 73:38    | 4:40         | 12:51    |
| Core damage                  | 10:32               | 75:36    | 5:25         | 14:10    |

<sup>\*</sup> From INL/EXT-18-51436

The DNC is effective in increasing the coping time compared to traditional AFW




### SBO results with DNC (21 gpm/pump)



 Automatic depressurization of RCS and SGs with DNC



### **SBO** results with **DNC**



Core damage at >72 h

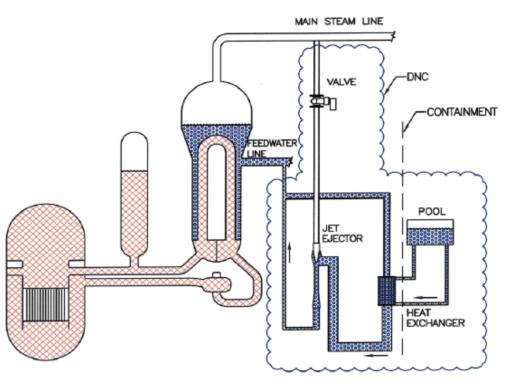


## A PORV failure is not significant because its first opening is so late

| PORV operation               | Normal        | Stuck |  |
|------------------------------|---------------|-------|--|
| Event                        | Time (hr:min) |       |  |
| SBO occurs                   | 0:00          | 0:00  |  |
| DNC FW begins                | 0:00          | 0:00  |  |
| Accumulators begin to inject | 3:16          | 3:16  |  |
| Batteries depleted           | 8:00          | 8:00  |  |
| Accumulator flow ends        | 56:25         | 56.25 |  |
| SGs empty                    | 71:30         | 71:30 |  |
| Pressurizer PORV sticks open | N/A           | 72:45 |  |
| Core begins to uncover       | 73:38         | 73:26 |  |
| Core damage                  | 75:36         | 74:28 |  |



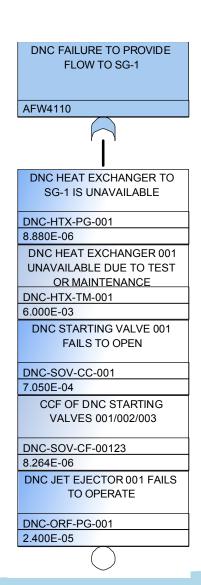
### Failures in opening DNC steam valves were evaluated for the SBO


|                                | Time to core damage (hr:min) |       |       |
|--------------------------------|------------------------------|-------|-------|
| Number of operable DNC systems | 3                            | 2     | 1     |
| Nominal leakage (21 gpm/pump)  | 75:36                        | 75:31 | 74:55 |
| Maximum leakage (480 gpm/pump) | 14:10                        | 6:29  | 2:59  |

- The number of operable DNC systems did not affect the time to core damage significantly at nominal leakage
- The impact of DNC failures was much larger at maximum leakage
- Even though the DNC systems efficiently remove core decay heat via the SGs, they cannot make up for inventory lost during a LOCA
- The DNC systems become less effective as the break size increases



### **Modeling DNC System in PRA**


- DNC system represents a passive system design for removing remove decay heat
- DNC system schematic diagram was used (the design is not finalized yet)
- One DNC loop per SG, with a common heat sink
  - Steam valve
  - Jet ejector
  - Heat exchanger

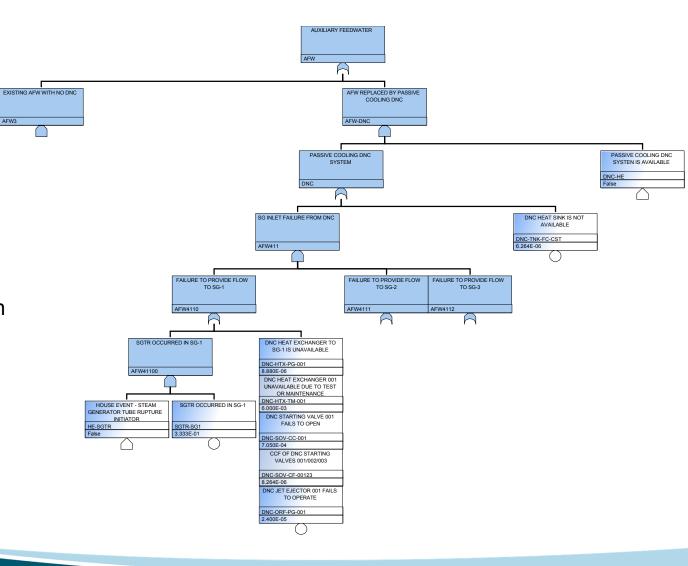




### **Modeling DNC System in PRA**

- In this study, DNC system is modeled in PRA to fully replace AFW system
- Failures of DNC to provide flow to one SG include
  - DNC starting valve fails to open independent failure
  - DNC starting valve fails to open CCF
  - Jet ejector fails to operate
  - Heat exchanger fails to operate
  - Heat exchanger is unavailable due to test or maintenance
  - Heat sink (tank) is not available
- Unreliability and unavailability data uses the NRC 2015 Parameter Estimation Update






### **Modeling DNC System in PRA**

 DNC system is incorporated into AFW fault tree

 DNC-HE is a house event to turn on DNC/turn off AFW (or vice versa)

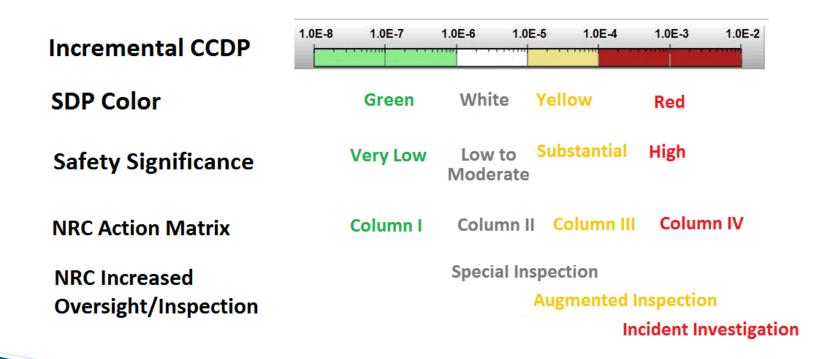
 With this change, event trees can remain as they are





### **DNC Risk Impact – Baseline CDF**

DNC impact on baseline CDF


| ET                     | CDF<br>No DNC | CDF<br>with DNC | ΔCDF      | ΔCDF%  |
|------------------------|---------------|-----------------|-----------|--------|
| INT-LOOPGR (232 Seqs.) | 1.07E-06      | 4.61E-07        | -6.06E-07 | -56.8% |
| INT-LOOPPC (232 Seqs.) | 6.21E-08      | 2.20E-08        | -4.01E-08 | -64.6% |
| INT-LOOPSC (232 Seqs.) | 4.57E-07      | 1.84E-07        | -2.72E-07 | -59.7% |
| INT-LOOPWR (232 Seqs.) | 6.89E-07      | 3.11E-07        | -3.78E-07 | -54.8% |
| Total                  | 2.28E-06      | 9.79E-07        | -1.30E-06 | -57.0% |

 Although T-H analysis was conducted only on SBO and SLOCA scenarios, DNC system is expected to provide decay heat removal function in other accident scenarios



### **DNC Risk Impact - SDP Case**

- ➤ Significance Determination Process (SDP) is used to estimate risk significance of licensee performance problems
- Provide risk insight to help NRC determine the safety significance of inspection findings for the Reactor Oversight Process (ROP)





### **DNC Risk Impact – SDP Case**

- SDP Case: EDG-A failed to start, inoperable from 5/10/2019 9:00 AM to 5/19/2019 9:00 AM for 9 days
  - □ EDG-A failed to start (EPS-DGN-FS-DGA, P=2.86E-3 -> 1)

|                | Without DNC | With DNC | Delta     | %    |
|----------------|-------------|----------|-----------|------|
| Baseline CDF   | 3.12E-05    | 2.28E-05 | -8.34E-06 | -27% |
| CDF'           | 8.64E-05    | 4.51E-05 | -4.13E-05 | -48% |
| Duration (day) | 9           | 9        |           |      |
| CCDP           | 1.36E-06    | 5.48E-07 |           |      |
| SDP Color      | White       | Green    |           |      |

- ➤ In this case, DNC design means a gain of about
  - > 10 days before crossing 1E-6 White threshold
  - 98 days before crossing 1E-5 Yellow threshold

|                   | Without DNC | With DNC | Delta | Benefits |
|-------------------|-------------|----------|-------|----------|
| t(CCDP=1E-6), day | 7           | 16       | 10    | \$\$     |
| t(CCDP=1E-5), day | 66          | 164      | 98    | \$\$\$   |



#### **Conclusions**

- Thermal-hydraulic and risk assessment analyses of the DNC systems during an SBO were performed
  - The DNC systems provide a large increase in coping time
    - About 65 hours for nominal RCP leakage
    - About 8 hours for maximum RCP leakage
  - Even though the DNC systems efficiently remove core decay heat via the SGs, they cannot make up for RCS inventory lost during a LOCA
    - The DNC systems become less effective as the break size increases
- The DNC systems reduce the LOOP/SBO CDF by about 60%
- In a postulated SDP case, the DNC systems could increase the time before CCDP cross the SDP White and Yellow color threshold
  - A gain of 10 days for a CCDP of 1.0e-6 (SDP White color threshold)
  - A gain of 98 days for a CCDP of 1.0e-5 (SDP Yellow color threshold)