

Implementation of Depletion Architecture in the MAMMOTH Reactor Physics Application

August 2019

Olin W Calvin, Mark D DeHart, Javier Ortensi, Sebastian Schunert, Yaqi Wang, Sedat Goluoglu

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Implementation of Depletion Architecture in the MAMMOTH Reactor Physics Application

Olin W Calvin, Mark D DeHart, Javier Ortensi, Sebastian Schunert, Yaqi Wang, Sedat Goluoglu

August 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Implementation of Depletion Architecture in the MAMMOTH Reactor Physics Application M&C 2019

Olin Calvin¹, Javier Ortensi², Yaqi Wang², Sebastian Schunert², Sedat Goluoglu¹, and Mark DeHart²

¹University of Florida (UF) ²Idaho National Laboratory (INL)

August 2019

Introduction

- Goal is to add functionality to MAMMOTH to perform depletion calculations. The purpose of this is to allow the use of the same mesh for fuel elements depleted in commercial reactors or the Advanced Test Reactor (ATR) before being placed in the Transient Reactor Test Facility (TREAT) for further experimentation.
- Easily extendable and modifiable data sets are also desired as new and more accurate and/or more applicable cross section and decay data becomes available.

Outline

- Conceptual Overview
 - Depletion
 - The Bateman Equations
 - The Depletion Matrix
- 2 Data Loader
- 3 Architecture Improvements
- 4 Results

Depletion

- Over time, the composition of materials in a nuclear reactor, particularly the fuel, changes as a result of both radioactive decay and neutron transmutation (fission, radiative capture, etc.)
- While the rate of radioactive decay relies on decay constants, neutron reaction rates can vary greatly over the lifetime of a reactor since they are dependent on cross sections and neutron flux.
 - Cross sections are dependent on temperature, incident neutron energy, etc.
 - Neutron flux varies over time in a reactor as the flux typically needs to increase over time in order to maintain a constant power level as the fuel is depleted.

The Bateman Equations

- The analytic solution to decay rates for radioactive isotopes was developed by Harry Bateman¹.
- The Bateman equation for the decay of uranium-238 is shown below where λ_{U238} is the decay constant for uranium-238:

$$\frac{dN_{U238}(t)}{dt} = -\lambda_{U238}N_{U238}(t)$$

- The Bateman equation can then be extended to include loss or gain of a given isotope as a result of neutron transmutation.
- The Bateman equation for the change in number density of uranium-238 when taking into account both radioactive decay and neutron absorption events as a result of a monoenergetic neutron flux (ϕ) with a constant absorption cross-section $(\sigma_{a,U238})$ is shown:

$$\frac{dN_{U238}(t)}{dt} = -\lambda_{U238}N_{U238}(t) - \phi\sigma_{a,U238}N_{U238}(t)$$

¹H. Bateman, "Solution of a system of differential equations occurring in the theory of radioactive transformations," (1910).

The Depletion Matrix

- In a typical reactor system, you will have hundreds of isotopes simply because of the isotopes which can be generated as a result of nuclear fission.
- The Bateman equations can be merged into a matrix which can then be solved using a variety of methods.
- Assuming we have a system tracking iodine-135, xenon-135, and xenon-136, all of which are subjected to a neutron flux, we can obtain the following Bateman Equations, assuming the cross sections for iodine-135 and xenon-136 is negligible compared to the xenon-135 cross section.

$$\frac{dN_{Xe136}}{dt} = \phi \sigma_{a,Xe135} N_{Xe135} \frac{dN_{I135}}{dt} = -\lambda_{I135} N_{I135}$$

$$\frac{dN_{Xe135}}{dt} = -\lambda_{Xe135}N_{Xe135} - \phi\sigma_{Xe135}N_{Xe135} + \lambda_{I135}N_{I135}$$

The Depletion Matrix

- Each production and loss term can be grouped together for each isotope in a matrix with the number densities placed in a separate vector.
- Notice that the decay product of Xenon-135 is not accounted for in this system, meaning over time there will be a decrease in the total atomic number density of our system as the decay product Cs-135 is ignored.

$$\begin{bmatrix} 0.0 & 0.0 & \phi \sigma_{a,\chi_{e135}} \\ 0.0 & -\lambda_{I135} & 0.0 \\ 0.0 & \lambda_{I135} & -\lambda_{\chi_{e135}} - \phi \sigma_{a,\chi_{e135}} \end{bmatrix}$$

Data Loader

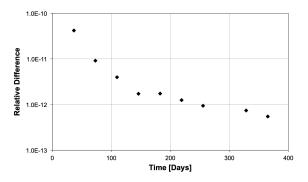
- Functionality to read ORIGEN-formatted ENDF decay data added.
- The ISOXML format was developed for storing the decay data. XML format was chosen because it is both human and machine readable and can be easily modified/extended as needed.

Data Loader

```
1 420960 3 4.0000E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 1.0000E+01 1.000E+01 1.0000E+01 1
```

Example ORIGEN decay data entry for molybdenum-96

Example ISOXML decay data entry for molybdenum-96

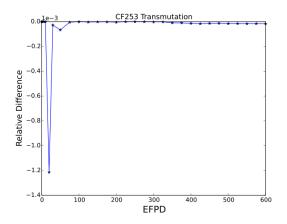

Architecture Improvements

- Significant effort was spent reworking the previous depletion implementation in MAMMOTH to take advantage of the MOOSE framework namely for time step execution and depletion zone specification.
- The Chebyshev Rational Approximation Method² (CRAM) is used to calculate the new number densities after each subsequent time step.
- This new implementation was tested for several different problems.

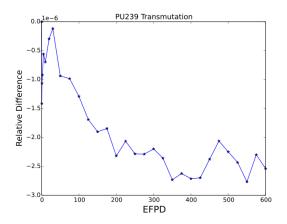
²M. Pusa, "Rational Approximations to the Matrix Exponential in Burnup Calculations," (2011).

Thorium Benchmark

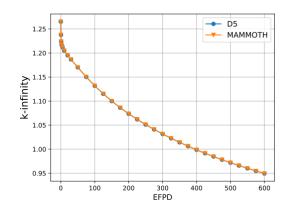
 A reference benchmark solution for the decay of thorium-232 for one year is available³.

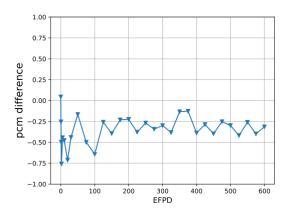


Relative error between the MAMMOTH and reference solutions for lead-208

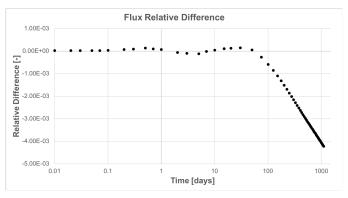

³K. Huang, Y. Li, and B. Ganapol, "A Backward Euler Doubling Feasibility Study Based on Thorium Series Cascade," (2016).

- A homogenized PWR fuel pin was subjected to constant one energy group neutron flux irradiation for 600 days and the results from MAMMOTH compared to those from DRAGON5⁴.
- The DRAGON5 data set was used in this calculation and a total of 297 isotopes were tracked in the system.

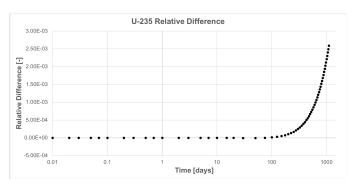

⁴G. Marleau, A. Hebert, and R. Roy, "A User Guide for DRAGON Version 5," (2018).


Relative difference between solutions for californium-253

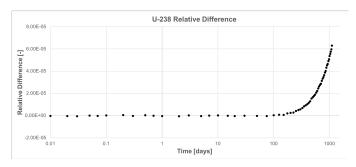
Relative difference between solutions for plutonium-239

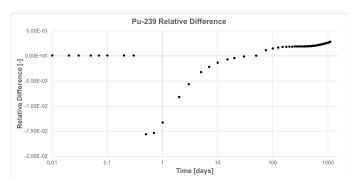


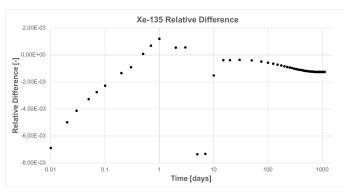
Eigenvalue results for MAMMOTH and DRAGON5



Per cent mille differnece between MAMMOTH and DRAGON5


- In order to test constant power depletion capabilities of MAMMOTH a comparison was made to ORIGEN.
- A metric ton of 5% enriched uranium was depleted at rate of 30 MW for 1,100 days for a total burnup of 33 GWd/MTU.
- Over 1,400 isotopes were tracked in the system.


Relative difference for neutron flux between ORIGEN and MAMMOTH


Relative difference for uranium-235 between ORIGEN and MAMMOTH

Relative difference for uranium-238 between ORIGEN and MAMMOTH

Relative difference for plutonium-239 between ORIGEN and MAMMOTH

Relative difference for xenon-135 between ORIGEN and MAMMOTH

Summary

- Ability to process ORIGEN-formatted ENDF decay data has been added.
- Previous depletion implementation has been refactored and constant power depletion functionality has been implemented.
- Future Work:
 - Test multigroup depletion capabilities.
 - Implement predictor-corrector functionality for solving depletion problems.
 - Couple to RATTLESNAKE to deplete using the results of a neutron transport calculation and then use said results to do a subsequent neutron transport calculation.

Acknowledgements

The authors thank the staff of Idaho National Laboratory for their support of this work. This work was funded at INL under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program managed by the Department of Energy Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Questions?