

NRC Engagement and ATF Modeling

October 2019

Kyle A Gamble, Giovanni Pastore, David Andersson, Jason D Hales

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

NRC Engagement and ATF Modeling

Kyle A Gamble, Giovanni Pastore, David Andersson, Jason D Hales

October 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

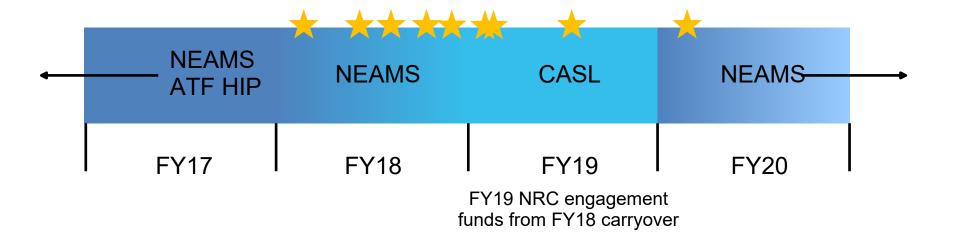
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

NRC Engagement and ATF Modeling

University of Tennessee, Knoxville Knoxville, Tennessee

October 16, 2019

Jason Hales CASL Deputy Director


Acknowledgements

- Kyle Gamble (INL)
- Giovanni Pastore (INL)
- Michael Cooper (LANL)
- David Andersson (LANL)

NRC Engagement: Background

- 2018 Omnibus Spending Bill
 - \$30M, a \$5M increase over the \$25M budget with additional scope
 - Includes collaboration with the Nuclear Regulatory
 Commission to evaluate the use of high-fidelity modeling and simulation tools in the regulatory environment
- 2019 approved budget of \$27.585M
 - DOE direction to plan for last year of funding with sufficient carryover for FY20 close out
 - Significant NRC carryover funding for FY19
- Draft project plan developed
 - CASL centered this collaboration around the confirmatory analysis of accident-tolerant fuels (ATF).
 - The program plan defined the work that would be completed over the course of one year with funding from FY18 carryover

Multiscale ATF Modeling Timeline

 \bigstar

NEAMS/CASL/DOE meetings with NRC/ACRS regarding ATF/industry connection

General NRC Feedback

- Nothing prohibits NRC from adopting DOE advanced modeling and simulation codes
- NRC needs:
 - Requirement for 'deep knowledge' of adopted codes (historically why NRC developed TRACE, FRACON and MELCOR codes)
 - Requirement for training and long term support
- It is likely industry will be adopting DOE codes for advanced reactors
- Collaboration needs to be aligned with "Project plan to prepare the US NRC for efficient and effective licensing of ATF" (Sep. 2018)

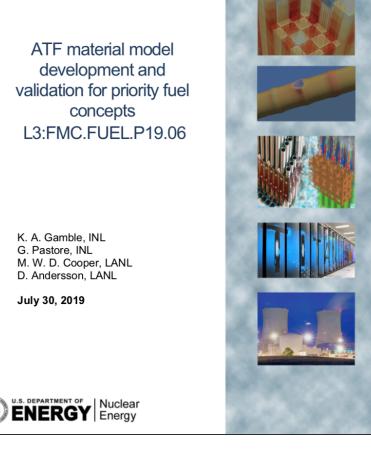
FY19 NRC Collaboration Scope

Collaborate with the NRC on the use of advanced modeling and simulation tools in a licensing environment for ATF

2. Perform development, uncertainty quantification, and documentation of Bison models for ATF concepts

7. Develop collaboration regarding VERA-Shift calculations
FY19 objective was enhanced NRC knowledge and expertise in the use of advanced modeling and simulation in a licensing environment

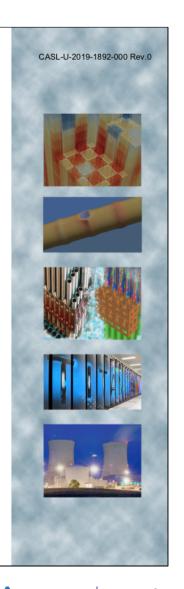
ATF Work: Introduction


- Priority ATF concepts were identified during early discussions with the NRC (late FY 18)
 - U₃Si₂ and Cr₂O₃-doped UO₂ fuel
 - Cr-coated Zircaloy and FeCrAl cladding
- Identify range of applicability and uncertainty in individual models
 - Propagate this uncertainty to fuel performance metrics of interest
- Construct reports in a form similar to NUREG/CR-7024
- Ensure all of the models for the priority concepts can easily be implemented into the NRC code FAST

This work was performed as part of the NRC collaboration effort but also benefits industry's push for accelerated deployment of ATF.

ATF Material Model Reports

CASL-U-2019-1870-000 Rev.0



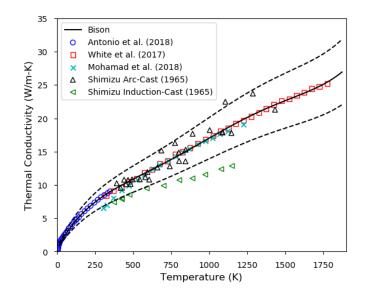
ATF material model development and validation for priority cladding concepts L3:FMC.FUEL.P19.07

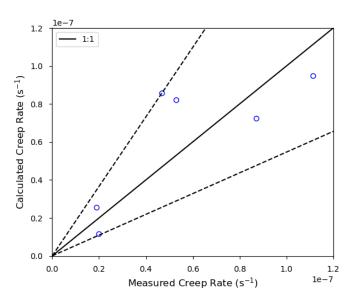
K. A. Gamble, INL

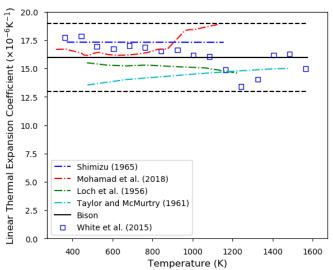
August 30, 2019

U₃Si₂: Material and Behavioral Models

Bison contains the following material and behavioral models for U_3Si_2 :

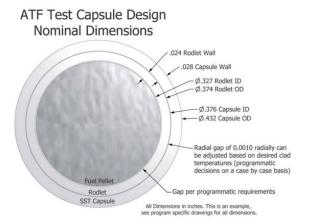

- Thermal Properties
 - Thermal Conductivity (4 options + degradation)
 - Specific Heat (3 options)
- Elasticity

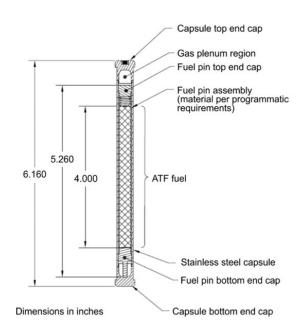

- Thermal Expansion
- Gaseous Swelling (3 options)
- Solid Swelling
- Densification
- Fission Gas Release (lower length
- Porosity dependent Young's and Shear moduli Stoichiometric and Si-rich
- Thermal and Irradiation Creep (2 options)


Model	Range of Applicability	Uncertainty
Thermal Conductivity	13 ≤ T ≤ 1500 K	±18.2 %
Thermal Conductivity Degradation	$390 \le T \le 1190 \text{ K}$	±10% Intra.
	$0 \le G \le 160 \text{ K/mm}$	$\pm 10\%$ Inter.
	$0 \le f \le 2.5755 \times 10^{21} \text{ fissions/cm}^3$	
Specific Heat	$293 \le T \le 1500 \text{ K}$	± 3%
Young's Modulus	$1.5 \le p \le 10\%$	$\pm 29.1\%$
Shear Modulus	$1.5 \le p \le 10\%$	$\pm 26.8\%$
Creep	$300 \le T \le 1900 \text{ K}$	\pm a factor of 1.83
Thermal Expansion	$273 \le T \le 1473 \text{ K}$	$(16.0\pm3.0)\times10^{-6}$
Solid Swelling	All burnups	± 20 %
Fission Gas Release	Normal Operating Conditions	See SA and UQ
Gaseous Swelling	Normal Operating Conditions	See SA and UQ
Densification	Normal Operating Conditions	Needs Further Work

U₃Si₂: Material and Behavioral Models

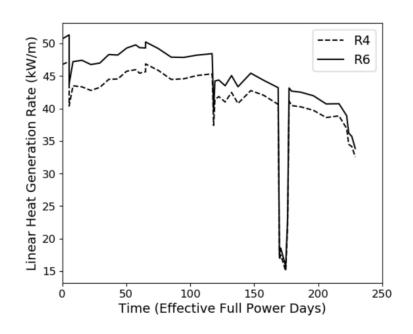
- Uncertainty in empirical models is based upon the data used to develop the models.
- Uncertainty in lower length scale models is propagated to the engineering scale.
 - See SA and UQ section.





U₃Si₂: Validation

- Two U₃Si₂ fueled experiments with ZIRLO™
 - ATF-13 R4 filled with helium
 - ATF-15 R6 filled with helium/argon mixture
- Available data includes:
 - Fission Gas Release
 - Fuel axial elongation (inferred from neutron radiographs)
 - Clad profilometry



Bison geometry used. Axial direction scaled by 0.5.

U₃Si₂: Validation

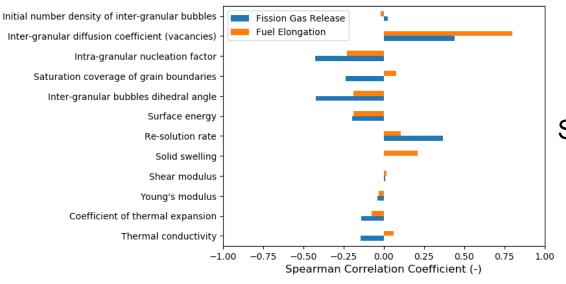
 Using the nominal models Bison underpredicts for R4 and overpredicts for R6.

Bison comparisons to ATF-13 R4 and ATF-15 R6 PIE data

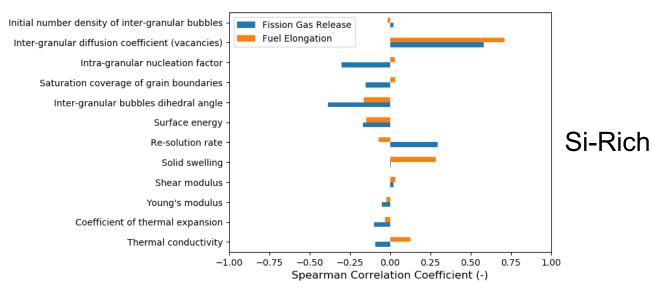
	Bison R4	Experiment R4	Bison R6	Experiment R6
Fuel Elongation (mm)	-0.0784	0.0	0.0128	0.0
Fission Gas Release (%)	0.0	0.06	0.19	0.06

U₃Si₂: SA and UQ

 Using the uncertainty defined in the individual material models, perform an SA and UQ analysis on the ATF-13 R4 case.


Parameters varied in the sensitivity analysis and uncertainty quantification

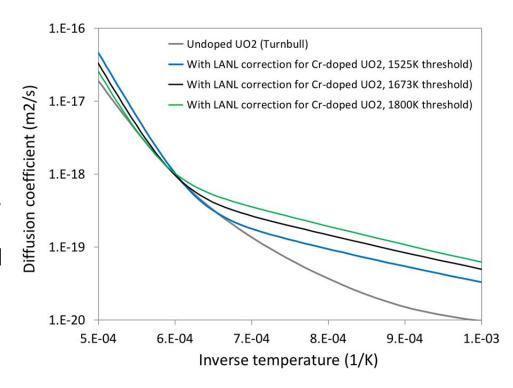
		•	
Parameter	Nominal value	Scaling factor range	Distribution
Thermal conductivity (W⋅m ⁻¹ K ⁻¹)	See Equation 29	[0.82; 1.18]	Normal
Coefficient of thermal expansion (K^{-1})	16.0×10^{-6}	[0.8125;1.1875]	Normal
Young's modulus (GPa)	See Equation 39	[0.709; 1.291]	Normal
Shear modulus (GPa)	See Equation 40	[0.732; 1.268]	Normal
Solid swelling (/)	See Equation 68	[0.8; 1.2]	Normal
Nucleation factor of intra-granular bubbles (/)	10^{-6}	$[10^{-3}; 10^4]$	Uniform
Re-solution rate of intra-granular bubbles (s ⁻¹)	$2.80 \cdot 10^{-25} \left(5 \cdot 10^{-10} / R_{ig}\right)^{0.23} \cdot \dot{F}$	[0.1; 10]	Uniform
U ₃ Si ₂ /gas specific surface energy (J⋅m ⁻²)	1.7	[0.5; 1.5]	Uniform
Inter-granular diffusion coefficient of vacancies (m·s ⁻²)	$10^6 \cdot D^{v}_{ig} \ 2 \cdot 10^{12}$	$[10^{-2}; 10^2]$	Uniform
Initial number density of inter-granular bubbles (bbl·m ⁻²)	$2 \cdot 10^{12}$	$[10^{-3}; 10^3]$	Uniform
Semi-dihedral angle of inter-granular bubbles (deg)	72.9	[0.5; 1]	Uniform
Saturation coverage of grain boundaries (/)	0.5	$[1; \pi/2]$	Uniform


Bison comparisons to ATF-13 R4 PIE data including

	Bison Stoichiometric	Bison Si-Rich	Experiment
Fuel Elongation (mm)	-0.135 to 0.132	-0.1305 to 0.0567	0
Fission Gas Release (%)	0.0 to 1.412	0.0 to 0.902	0.06

U₃Si₂: Sensitivity Analysis

Stoichiometric


Cr₂O₃-doped UO₂: Material and Behavioral Models

- Bison contains the following material and behavioral models for Cr₂O₃-doped UO₂:
 - Thermal Properties (temperatur dependent)*
 - Thermal Conductivity
 - Specific Heat
 - Elasticity and Cracking*
 - Temperature dependent You modulus and isotropic crackii
 - Thermal and Irradiation Creep*
 - Thermal Expansion*
 - Solid Swelling*
 - Densification*
 - Grain Size
 - Fission Gas Release (lower length scale informed)

Model	Range of Applicability	Uncertainty
Thermal Conductivity	$300 \le T \le 3000 \text{ K}$	±10 %
	$0 \le Bu \le 62 \text{ MWd/kgU}$	
	$0.92 \le d \le 0.97$	
	$0 \le Gd \le 10 \text{ wt.}\%$	
Specific Heat	$298 \le T \le 1800 \text{ K}$	± 2%
	$1800 \text{ K} \leq T \leq \text{Melting}$	± 13%
Young's Modulus	298 K \leq T \leq Melting	±3%
Poisson's Ratio	298 K \leq T \leq Melting	±3%
Thermal Expansion	298 K \leq T \leq Melting	± 15%
Solid Swelling	All burnups	± 20 %
Fission Gas Release	Normal Operating Conditions	See SA and UQ
Gaseous Swelling	Normal Operating Conditions	See SA and UQ
Densification	Normal Operating Conditions	0 to 1% theoretical density
Grain Size	$298 \le T \le 1778 \text{ K}$	See SA and UQ

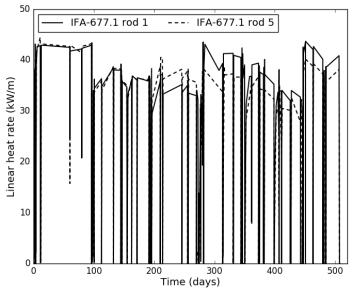
Cr₂O₃-doped UO₂: Material and Behavioral Models

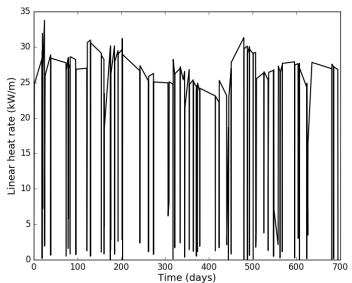
- Fission gas behavior (FGR and gaseous swelling) are computed using Bison's physicsbased model for UO₂
- A specific FG diffusivity correction for Cr₂O₃-doped UO₂ developed at LANL using atomistic modeling was applied
- Various versions were implemented with different threshold temperatures
- Model can also naturally account for the larger grain size in doped UO₂ compared to standard UO₂

$$D^{doped} = \exp\left(-\frac{\Delta H_1}{k_B}\left[\frac{1}{T} - \frac{1}{T_1}\right]\right) D_1^{undoped} + \exp\left(-\frac{\Delta H_2}{k_B}\left[\frac{1}{T} - \frac{1}{T_2}\right]\right) D_2^{undoped} + D_3^{undoped}$$

where $T_1 = T_2 = 1673$ K, $\Delta H_1 = 0.547$ eV, and $\Delta H_2 = -0.674$ eV.

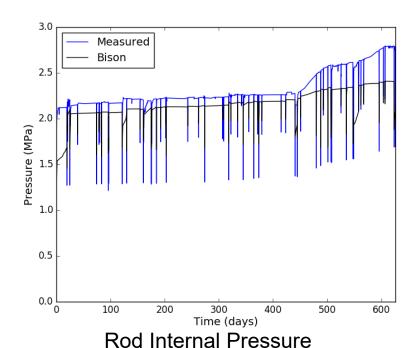
Cr₂O₃-doped UO₂: Validation

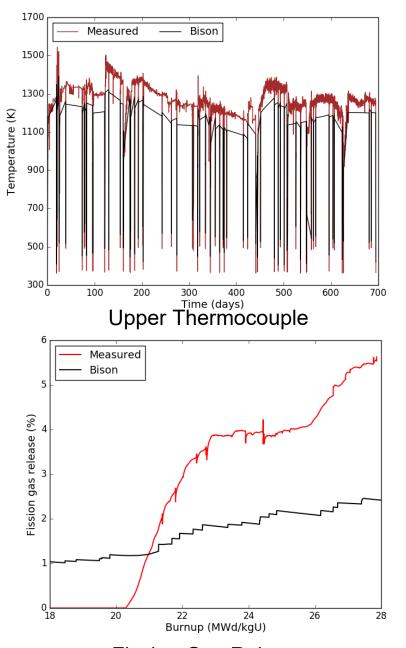

- Three cases have been analyzed:
 - IFA-677.1 rod 1
 - IFA-677.1 rod 5
 - IFA-716.1 rod 1


	IFA-6//.1 rod 1	IFA-6//.1 rod 5	IFA-/16.1 rod 1
	Zircaloy-4	Zircaloy-4	Zircaloy-4
	UO_2 + additives	UO_2 + additives	UO_2 + additives
	Не	Не	Не
mm	398.6	403.5	399.5
mm	109.2	111.0	115
mm	109.7	111.1	-
mm	1.8	1.8	1.8
mm	9.13	9.13	9.12
$\mu\mathrm{m}$	170	170	180
mm	0.725	0.725	725
mm	10.75	10.75	10.75
cm^3	5.34	5.26	5.80
MPa	1.35	1.35	1
ppm	900	500	1580
ppm	200	200	-
%	4.94	4.91	4.90
kg/m ³	10690	10700	10500
μ m	28	22.5	35
	mm mm mm mm mm mm cm ³ MPa ppm ppm ppm kg/m ³	Zircaloy-4 UO_2 + additives He mm 398.6 mm 109.2 mm 109.7 mm 1.8 mm 9.13 μm 170 mm 0.725 mm 10.75 cm^3 5.34 MPa 1.35 ppm 900 ppm 200 $\%$ 4.94 kg/m^3 10690	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

IEA 677 1 mod 1

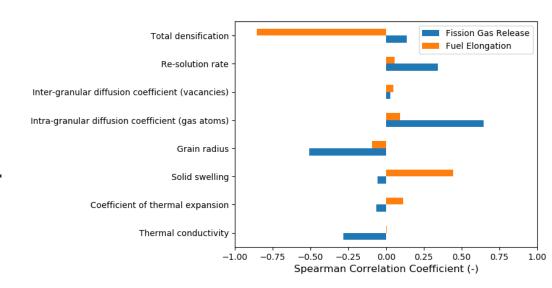
IEA 677 1 mod 5


TEA 716 1 ... 1 1



Cr₂O₃-doped UO₂: Validation (IFA-716.1 Rod 1) • Measurements include:

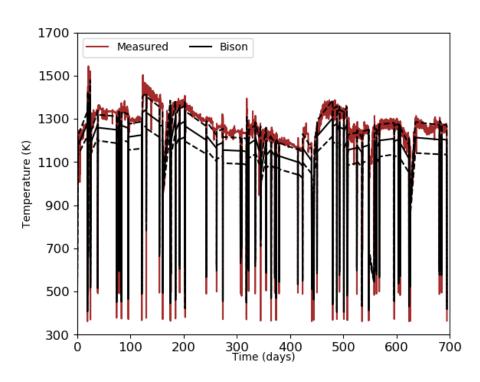
- - Temperature (upper thermocouple)
 - Rod internal pressure
 - Fission gas release

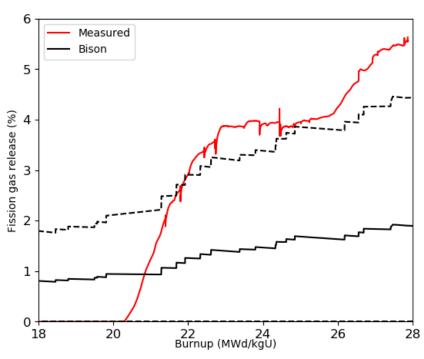


Fission Gas Release

The Consortium for Advanced

Cr₂O₃-doped UO₂: SA and UQ


 Using the uncertainty defined in the individual material models, perform a SA and UQ analysis on the IFA-716.1 Rod 1 case.


Parameter	Nominal value	Scaling factor range	Distribution
Thermal conductivity $(W \cdot m^{-1}K^{-1})$	See Equation 1	[0.9; 1.1]	Normal
Thermal expansion strain (K^{-1})	See Equation 4	[0.85; 1.15]	Normal
Solid swelling (/)	See Equation 18	[0.8; 1.2]	Normal
Total densification (/)	0.002	[0; 5]	Uniform
Intra-granular diffusion coefficient of gas atoms (m·s ⁻²)	See Equation 8	[0.1; 10]	Lognormal
Re-solution rate from intra-granular bubbles (s ⁻¹)	See Equation 10	[0.1; 10]	Lognormal
Inter-granular diffusion coefficient of vacancies (m·s ⁻²)	See Equation 14	[0.1; 10]	Lognormal
Grain radius (m)	See Equation 5	[0.4; 1.6]	Normal

Cr₂O₃-doped UO₂: SA and UQ

- Bison comparisons to IFA-716.1 including
 - Solid line represents mean values, dashed lines represent the 2 band

Upper Thermocouple

Fission Gas Release

Cr-coated Cladding: Material Models

- Material properties were added to Bison for M5[®] and ZIRLO[™] to permit analysis of the zirconium-based substrates of interest to industry.
- Primary differences between the substrates include the cold work, irradiation growth, and oxidation.
 - Oxidation kinetics of M5® and ZIRLO™ not added to Bison as information is not publicly available

Cold work

Zircaloy Material Type	Cold Work (%)
Stress relief annealed	50
$ZIRLO^{^{TM}}$	50
$\mathrm{M5^{@}}$	0

 Uncertainty in zirconium-based clad models is taken from MATPRO and NUREG/CR-7204. Coefficients in the irradiation growth model

$$\epsilon_{irr} = A\Phi^n$$

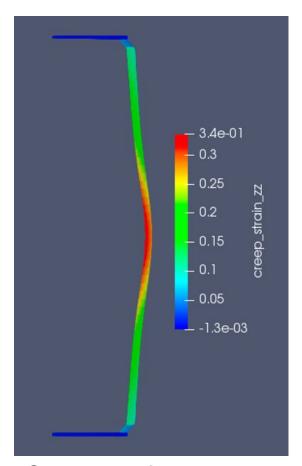
Zircaloy Material Type	Irradiation Growth Strain Coefficient (A)	Irradiation Growth Exponent (n)
Zircaloy-4 (Franklin model)	2.18×10^{-21}	0.845
ZIRLO [™] (Irisa model)	9.7893×10^{-25}	0.98239
M5®(Gilbon model)	7.013×10^{-21}	0.81787

Cr-coated Cladding: Material Models

- Bison contains the following models for chromium:
 - Thermal Properties (temperature dependent)
 - Elasticity
 - Young's Modulus (temperature dependent)
 - Poisson's Ratio
 - Thermal Expansion
 - Thermal Creep
 - Instantaneous Plasticity
 - Irradiation Hardening
 - Oxidation

Chromium

Model	Range of Applicability	Uncertainty
Creep Rate	$0.51T_m$ to $0.78T_m$	± 20%
Poisson's Ratio	$300 \text{ K} \le \text{T} \le 1300 \text{ K}$	$\pm 15\%$
Young's Modulus	$300 \text{ K} \le \text{T} \le 1300 \text{ K}$	$\pm 10\%$
Thermal Expansion	$300 \text{ K} \le \text{T} \le 1300 \text{ K}$	$\pm 10\%$
Thermal Conductivity	$300 \text{ K} \le \text{T} \le 1300 \text{ K}$	$\pm 5\%$
Specific Heat	$300 \text{ K} \le \text{T} \le 1300 \text{ K}$	$\pm 10\%$
Yield Stress	$300 \text{ K} \le \text{T} \le 1500 \text{ K}$	$\pm 20\%$
	$\Phi < 12 \times 10^{26}$	
Oxidation	Normal operating conditions	Factor of 2-4

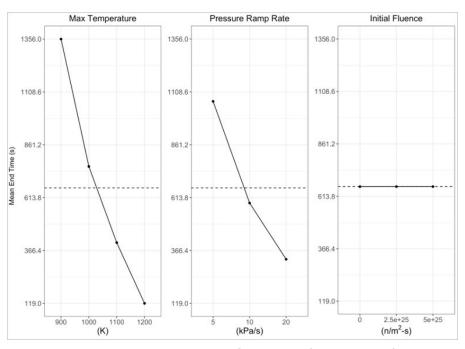

Zirconium-based materials

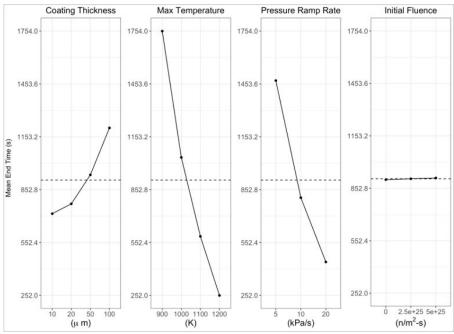
Model	Range of Applicability	Uncertainty
High Temperature Creep Rate	$700 \text{ K} \le \text{T} \le 1600 \text{ K}$	± 30%
Shear Modulus	298 K \leq T \leq Melting	± 9.0 GPa
Young's Modulus	298 K \leq T \leq Melting	± 6.4 GPa
Thermal Expansion	$298 \text{ K} \le \text{T} \le 1200 \text{ K}$	$\pm 25\%$
Thermal Conductivity	$300 \text{ K} \leq \text{T} \leq \text{Melting}$	$\pm 2.02\%$
Irradiation Growth	$\Phi < 12 \times 10^{26}$	$\pm 22.3 (Zr-4)$
		$\pm 18.6 \% (M5^{\circ})$
		$\pm 44.8 \% (ZIRLO^{TM})$
Oxidation	Normal operating and accident conditions	± 40 %

Cr-coated Cladding: Assessment

- Parametric study on cladding-only tubes under LOCA-like conditions until failure (overstrain criteria used).
 - Used to investigate the reported observation that coated tubes balloon less than uncoated tubes.
 - 0.25 m long, 8.36 mm ID, 0.57 mm thick tubes were used.
 - Temperature ramped from 300 K to a sinusoid centered about tube midplane with a 20 K variation with peak occurring at midplane over 10,000 s.
 - Pressure ramp begins at 10,000 s.

Model Parameter	Values
Coating thickness (m)	0, 10, 20, 50, 100
Clad material	M5 [®] , ZIRLO TM , Zr-4
Pressure Ramp Rate (kPa/s)	5, 10, 20
Peak Clad Temperature (K)	900, 1000, 1100, 1200
Fast Fluence (x10 ²⁵ n/m ²)	0, 2.5, 5



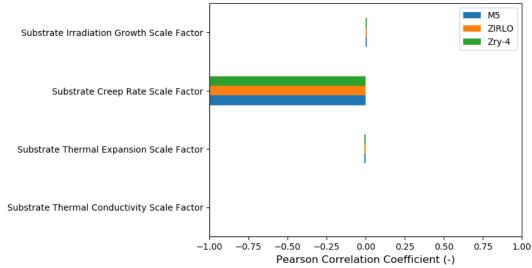

Creep strain at failure for one of the cases. Scaled axially by 0.1.

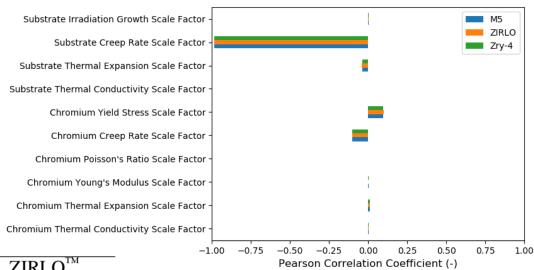
Cr-coated Cladding: Assessment

- The time to rupture is longer in the coated cases indicating smaller balloons at any given time. ZIRLO™ results are shown.
- Similar behavior observed for Zr-4 and M5® substrates.

Uncoated Cases (36 total)

Coated Cases (144 total)


Cr-coated Cladding: SA and UQ


- Performed a sensitivity analysis and uncertainty quantification on one of the combinations from the parametric study:
 - Coating thickness: 20 m
 - Maximum clad temperature: 1000 K
 - Pressure ramping rate: 10 kPa/s
 - Initial fluence: 2.5e25 n/m²

Parameter	Nominal Value	Scaling factor range	Distribution
Chromium thermal conductivity	See Equation 31	[0.95; 1.05]	Normal
Chromium thermal expansion coefficient	See Equation 33	[0.9; 1.1]	Normal
Chromium Young's modulus	See Equation 34	[0.9; 1.1]	Normal
Chromium Poisson's ratio	0.22	[0.85;1.15]	Normal
Chromium creep rate	See Equation 35	[0.8;1.2]	Normal
Chromium yield stress	See Equation 36	[0.8;1.2]	Normal
Substrate thermal conductivity	See Equation 31	[0.9798; 1.0202]	Normal
Substrate thermal expansion strain	See Equations 4 to 7	[0.5;1.5]	Normal
Substrate creep rate	See Equation 19	[0.7; 1.3]	Normal
Substrate irradiation growth	See Equation 21	[0.777; 1.223] (Zry-4)	Normal
	See Equation 21	$[0.814; 1.186] (M5^{®})$	Normal
	See Equation 21	$[0.552; 1.448] (ZIRLO^{TM})$	Normal

Cr-coated Cladding: SA and UQ

- The creep rate of the substrate is the most important factor affecting time to failure.
- Minimal differences seen from one substrate to another.

Mean time to burst

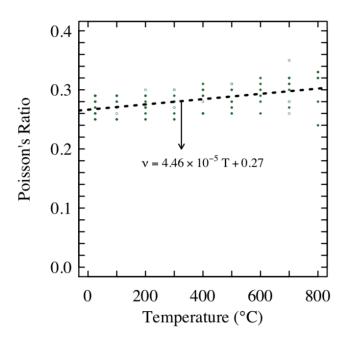
	Zircaloy-4	$\mathrm{M5}^{\scriptscriptstyle{(\!\mathfrak{R}\!)}}$	$ZIRLO^{TM}$
Coated	790.12 ± 26.39	790.35 ± 26.40	789.96 ± 26.40
Uncoated	678.29 ± 26.65	678.55 ± 26.68	678.29 ± 26.65

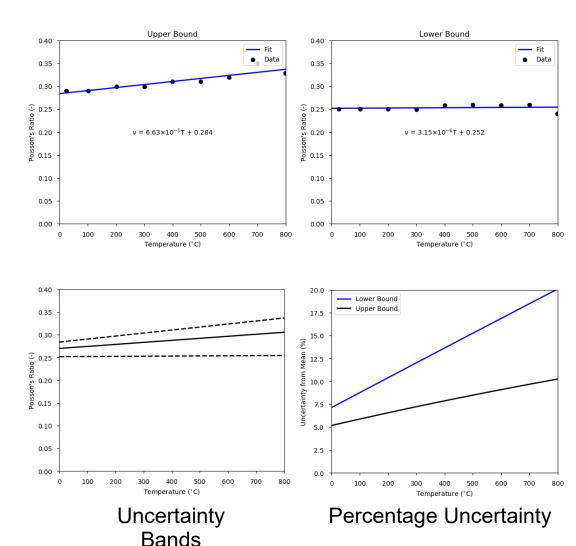
FeCrAl: Material Models

Bison contains the following models for FeCrAl (4 alloys*):

- Thermal Properties
 - Thermal Conductivity
 - Specific Heat
- Thermal Expansion
- Elasticity
- Thermal and Irradiation Creep
 (2 models)

 Thermal and Irradiation Creep (2 models)

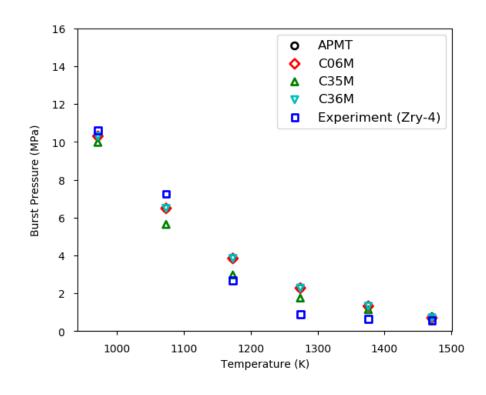

- Irradiation Swelling
- Instantaneous Plasticity
- Failure
- Tritium Permeability


*APMT, C06M, C35M, C36M

Model	Range of Applicability	Uncertainty
Failure (Burst Stress)	$293 \text{ K} \le \text{T} \le \text{Melting}$	± 25%
Yield Stress	$293 \text{ K} \leq \text{T} \leq \text{Melting}$	± 25%
Creep Rate	$623 \text{ K} \le \text{T} \le 1473 \text{ K}$	± 30%
Poisson's Ratio	$298 \text{ K} \le \text{T} \le 1123 \text{ K}$	$\pm~20\%$
Young's Modulus	$298 \text{ K} \le \text{T} \le 1123 \text{ K}$	$\pm 6\%$
Thermal Expansion	$293 \text{ K} \le \text{T} \le 1500 \text{ K}$	± 8%
Thermal Conductivity	$300 \text{ K} \le \text{T} \le 1400 \text{ K}$	± 7%
Specific Heat	$298 \text{ K} \le \text{T} \le 1400 \text{ K}$	± 10%
Irradiation Swelling	Normal operating conditions	0 to 0.05% per dpa
Tritium Permeability	$623 \text{ K} \le \text{T} \le 923 \text{ K}$	± 22.8% (Leading Coefficient)
		± 8.1 % (Activation Energy)
Oxidation	Normal operating conditions	\pm 73 % (PWR)
		± 77% (BWR)

FeCrAl: Material Models

 Uncertainty in empirical models is based upon the data used to develop the models.



FeCrAl: Assessment

- Revisited the PUZRY nonoxidizing burst experiments using the latest FeCrAl models for the alloys
- FeCrAl tube thickness assumed to be ~485 μm for this study.

Conditions of the selected PUZRY

Rod	Temperature	Pressure Ramp
Number	(K)	Rate (MPa/s)
8	1274.15	0.00763
10	1375.75	0.00710
12	1470.85	0.00723
18	1173.35	0.01151
26	971.55	0.01193
30	1073.55	0.02630

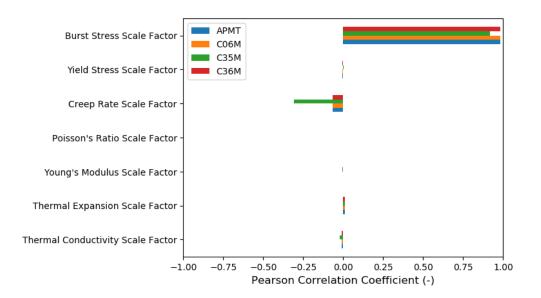
FeCrAl: SA and UQ

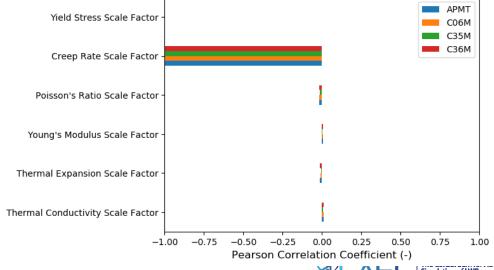
- Performed a sensitivity analysis and uncertainty quantification on the PUZRY case 30 from the previous analysis.
- Two different studies completed
 - One with burst stress and one without

Parameter	Nominal Value	Scaling factor range	Distribution
Thermal conductivity	See Equation 39	[0.93; 1.07]	Normal
Thermal expansion coefficient	See Equation 42	[0.92; 1.08]	Normal
Young's modulus	See Equation 43 or Table 16*	[0.94; 1.06]	Normal
Poisson's ratio	See Equation 44 or 0.3*	[0.8;1.2]	Normal
Creep rate	See Equations 45 to 47*	[0.8;1.2]	Normal
Yield stress	See Figure 5	[0.75;1.25]	Normal
Burst stress	See Equation 53	[0.75;1.25]	Normal

^{*}Depends on alloy

FeCrAl: SA and UQ

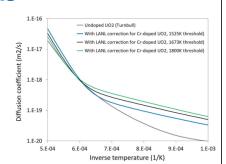

 The results indicate that the two most important parameters for FeCrAl cladding burst predictions is burst stress and the creep rate.


Burst stress case

Alloy	Pressure at Burst (MPa)
APMT	6.412 ± 0.958
C06M	6.412 ± 0.958
C35M	5.601 ± 0.465
C36M	6.412 ± 0.958
Zircaloy-4 (Experiment)	7.251

No burst stress case

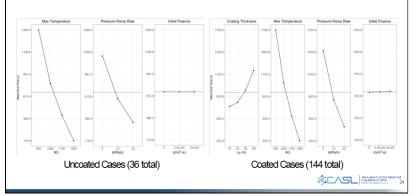
Alloy	Pressure at Burst (MPa)
APMT	6.492 ± 0.071
C06M	6.492 ± 0.071
C35M	5.646 ± 0.153
C36M	6.492 ± 0.071
Zircaloy-4 (Experiment)	7.251



Summary

Cr₂O₃-doped UO₂: Material and Behavioral Models

- · Fission gas behavior (FGR and gaseous swelling) are computed using Bison's physics-based model for UO2
- · A specific FG diffusivity correction for Cr₂O₂-doped UO₂ developed at LANL using atomistic modeling was applied
- · Various versions were implemented with different threshold temperatures
- · Model can also naturally account for the larger grain size in doped UO2 compared to standard UO2

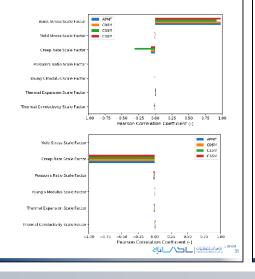

$$D^{doped} = \exp\left(-\frac{\Delta H_1}{k_B}\left[\frac{1}{T} - \frac{1}{T_1}\right]\right)D_1^{undoped} + \exp\left(-\frac{\Delta H_2}{k_B}\left[\frac{1}{T} - \frac{1}{T_2}\right]\right)D_2^{undoped} + D_3^{undoped}$$

where $T_1 = T_2 = 1673 \text{ K}$, $\Delta H_1 = 0.547 \text{ eV}$, and $\Delta H_2 = -0.674 \text{ eV}$.

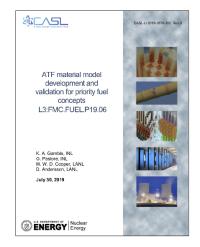
Cr-coated Cladding: Assessment

- The time to rupture is longer in the coated cases indicating smaller balloons at any given time. ZIRLO™ results are shown.
- Similar behavior observed for Zr-4 and M5[®] substrates.

FeCrAl: SA and UQ


 The results indicate that the two most important parameters for FeCrAl cladding burst predictions is burst stress and the creep rate.

Burst stress case


Alloy	Pressure at Burst (MPa)
APMT	6.412 ± 0.958
C06M	6.412 ± 0.958
C35M	5.601 ± 0.465
C36M	6.412 ± 0.958
Zircalov-4 (Experiment)	7.251

No burst stress case

Alloy	Pressure at Burst (MPa)
APMT	6.492 ± 0.071
C06M	6.492 ± 0.071
C35M	5.646 ± 0.153
C36M	6.492 ± 0.071
Zircaloy-4 (Experiment)	7.251

ATF Reports

www.casl.gov