Production of More Pure Xe-135

Matthew G Watrous, Troy A Robinson

December 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Production of More Pure Xe-135

Matthew G Watrous, Troy A Robinson

December 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

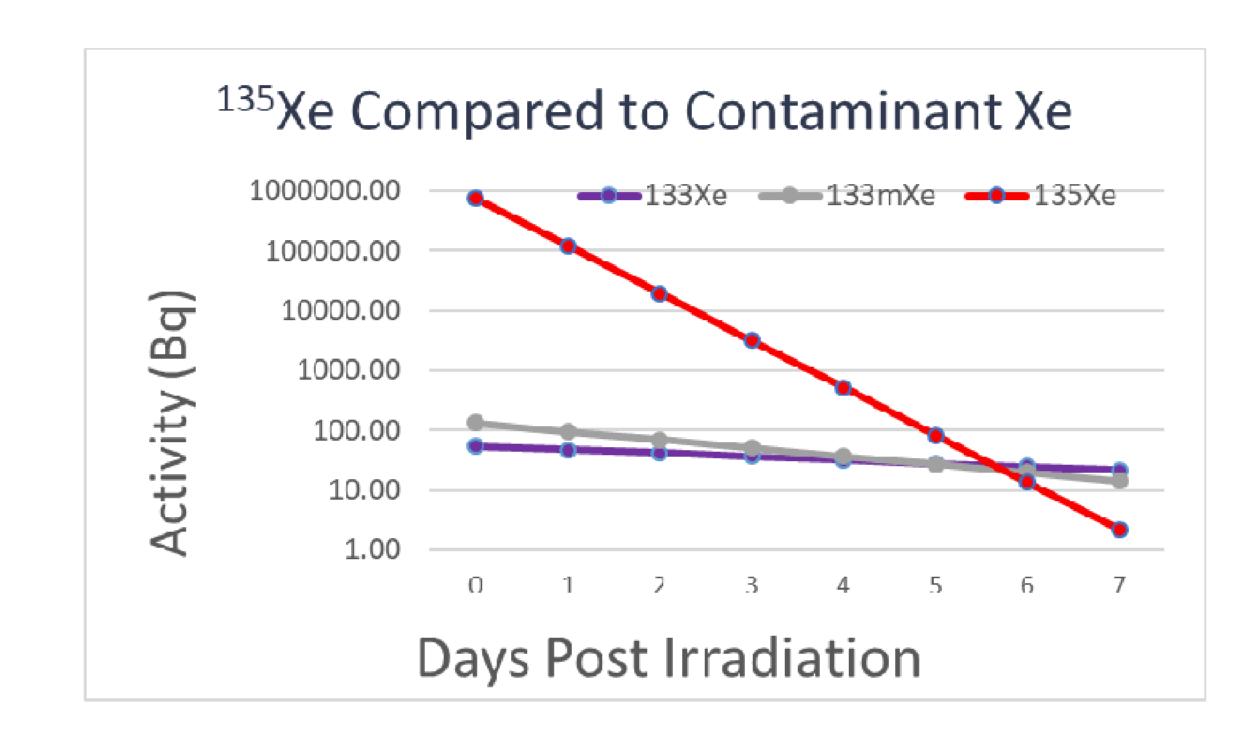
http://www.inl.gov

Prepared for the U.S. Department of Energy National Nuclear Security Administration Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

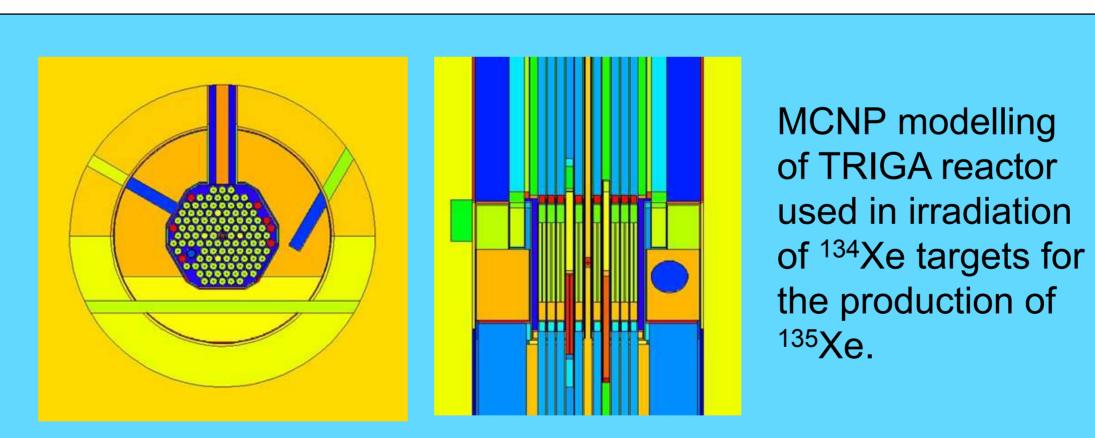
Production of More Pure Xenon-135

Matthew Watrous, Idaho National Laboratory, USA matthew.watrous@inl.gov
Troy Robinson, Idaho National Laboratory, USA troy.robinson@inl.gov
Coral Kazoroff, Georgia Tech University, USA

- Challenge: Over time the shorter half-life of ¹³⁵Xe relative to ¹³³Xe and ^{133m}Xe (14x and 6x, respectively) leads to the impact of the ¹³³Xe and ^{133m}Xe contaminants becoming greater in activity than the desired ¹³⁵Xe activity.
- **Benefit:** Reduced ¹³³Xe and ^{133m}Xe allows for more transit time to reach multiple destinations around the globe.
- **Solution:** Reduce the production of the ¹³³Xe and ^{133m}Xe by adjusting neutron environment where ¹³⁴Xe is activated to ¹³⁵Xe.


¹³⁵Xe currently produced by neutron activation of ¹³⁴Xe

Product ¹³⁵Xe contains ¹³³Xe and ^{133m}Xe

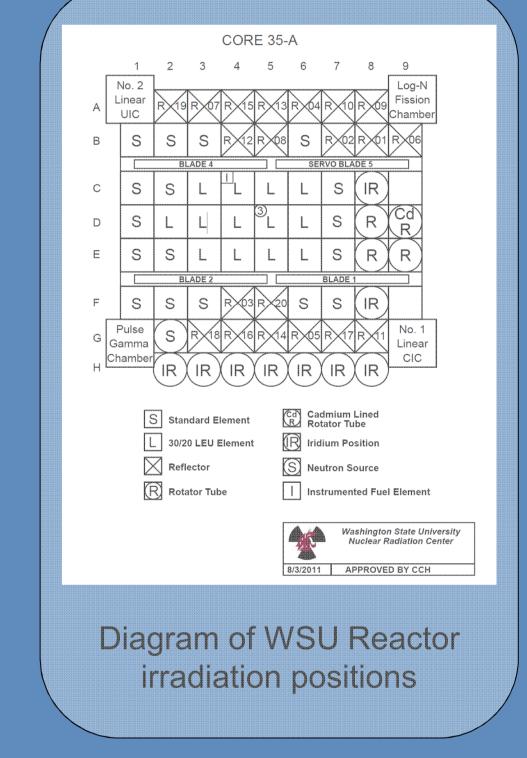

Two sources of contaminant

132Xe impurity in 134Xe target material
neutron activates

(η ,2 η) reaction of ¹³⁴Xe

Neutron Activation Modeling

Modeled effect of added moderator on ¹³³Xe and ^{133m}Xe production versus ¹³⁵Xe production via neutron activation.


Added Moderator	¹³³ Xe: ¹³⁵ Xe	^{133m} Xe: ¹³⁵ Xe
NONE	1.00	1.00
BERYLLIUM	1.57	1.60
GRAPHITE	0.94	0.94
WATER	0.27	0.72
HEAVY WATER	0.22	0.22

Water and Heavy Water Minimize ^{133m}Xe and ¹³³Xe production

Neutron Activation Experiment

Two different lots of ¹³⁴Xe target material were irradiated in the Washington State University Reactor at positions: D8, C9, E9 and F9.
D8 is the typical irradiation position used. The amounts of ¹³³Xe:¹³⁵Xe and ^{133m}Xe:¹³⁵Xe produced relative to the typical D8 irradiation are shown in the table below

0.003% ¹³² Xe in ¹³⁴ Xe Target				
Irradiation Position	¹³³ Xe: ¹³⁵ Xe	^{133m} Xe: ¹³⁵ Xe		
c:d	95%	92%		
e:d	100%	99%		
f:d	109%	96%		
0.150%	0.150% ¹³² Xe in 134Xe Target			
Irradiation Position	¹³³ Xe: ¹³⁵ Xe	^{133m} Xe: ¹³⁵ Xe		
c:d	96%	94%		
e:d	98%	96%		
f:d	104%	98%		

Position C9 Minimizes the Production of 133Xe and 133mXe

Modeling shows ^{133m}Xe and ¹³³Xe production can be minimized by moderating the neutron environment for the irradiation

Experiment demonstrates that the ^{133m}Xe and ¹³³Xe Production can be minimized at different reactor irradiation positions.

Path forward is to rework the modeling and the experiments to refine the improvements in minimizing ^{133m}Xe and ¹³³Xe Production

Sponsored by the U.S. Department of Energy, National Nuclear Security Administration, Office of Nonproliferation and Arms Control