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Biological Cleanliness Verification 

• How does one calculate spore requirements from 
observed, direct spacecraft sampling events? 

• Directly addresses requirement reporting 
– Mars 

• 5 x 105 spores per launched spacecraft

• 3 x 105 spores per landed

• <300 spores/m2

– Outer planets 

• Inadvertent contamination of an ocean or other liquid water body to 
less than a probability of 1 x 10-4 per mission.

• NASA or ESA Standard Spore assay for direct hardware 
verification – damp water wipe or swabs from hardware 
surfaces during mandatory inspection points. 
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Typical Spacecraft Subsystem Process Flow 

Biological Verification Overview 
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Mandatory 
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Image Credit:
https://www.flickr.com/people/nasakennedy

Image Credit:
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Direct Spacecraft Verification 

Assay Swab or Wipe
(water is used as solvent)

Count Plates for Colony Forming Units 
(CFU) @ 24h, 48h, and 72h

Clean hardware (and table 
or bag) with IPA wipe prior 

to sample or install

Process swabs and wipes, 
~3 hours required post-assay
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Direct Verification Counts Distribution

• Bayesian statistics suited dataset similar to that of nuclear industry 
– Data rich with many data points that occur at low frequency 

• >80% of wipes and >90% of swabs containing a bioburden count of 0
– >85% of a missions petri dish observations = no colony forming units

Copyright 2020 California Institute of Technology. Government sponsorship acknowledged 6

MER (Both) MSL InSight

Swabs 3,066 3,472 1,983

Wipes 529 1,283 1,127

Plates (Equivalent) 25,489 47,997 39,379

Counting Opportunities 76,467 143,991 118,137

Example of the 
InSight Missions 

Dataset 
n=3,110 93% 0 CFU

4% 1 CFU
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Bioburden Accounting for Mars Landed Spacecraft
Raw Spore Counts to Calculated Bioburden

1970 2020+1990 20001980 2010

Sum of the Means Approach
The total effective area sampled was represented 
by:

�� = ∑ ���
���

���

��
���

The total number of spores counted was:

���� = ∑ ���

��
���

The bioburden density, B, was given by:
B = Ntot / As

The estimate of the total bioburden, N, was given 
by:

N = B A0

Variable Definition
A0

ns, nw

ntot

asi, awj

fs, fw

es, ew

AS

Nsi

Nwj

Ntot

B

the total area represented by a group or sample 
set, m2

the total number of swabs or wipes

the total number of samples

is the area sampled by the ith swab and the jth wipe, 
(m2) 

the pour fractions for swabs and wipes

the recovery efficiencies for swabs and wipes

the total effective area, (m2) 

the number of CFU counted in the ith swab sample

the number of CFU counted in the jth wipe sample

the total number of CFU in a group, (spores/m2) 

Poisson and Gaussian 
Statistics

Examples equations utilized:
� = � ÷ (����)

���� = �/�� + ��
� = � ÷ ��

���� = �/�� + ��

� = (�/��)
���� = �/�� + ��

NASA / Artist Illustration
NASA NASA

NASA

NASA/JPL-
Caltech/Lockheed 
Martin

NASA / Artist Illustration
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Gamma-Poisson Bioburden Compound Distribution Model
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����
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����
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P(X=xk in [ek]/λk) =
����

��

��!
������

��, ��
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Gamma prior

Poisson Likelihood

Negative binomial predictive

• Utilized a developed Constrained 
noninformative (CNI) prior 

• 90% credible intervals were used 
to quantify uncertainty in 
posterior inference. μ=300 
CFUs/m2 reflects the average 
bioburden density requirement 
provided 
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Bounding Cases for Evaluation 

Summary of Bioburden InSight Components 
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Component
CFU 

count

Area 
sampled, 

m2

Exposure: 
area sampled 
 pour ratio, 

m2

Total surface 
area of the 

component, 
m2

% 
sampled=area 
sampled/total 

area

9 0 0.6031 0.2167 0.7580 79.5650

73 0 2.4200 0.6160 2.7400 88.3212

300 1 2.6600 0.6705 5.0000 53.2000

169 1 0.2400 0.1920 0.5850 41.0260

283 5 4.5710 1.1427 12.0000 38.0920

243 5 0.2800 0.1140 0.2980 93.9600

38 12 3.1050 0.8065 10.0000 31.0500

261 52 0.0600 0.0480 0.3120 19.2310
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Summary of posterior and predictive inference 
for components 9, 73, 300 
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Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 2.2889 0.0090 8.7928 1.7350 0 7

MOM 0.7603 4.1117e-08 4.0993 0.5763 0 3

Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 0.8094 0.0031 3.1096 2.2180 0 9

MOM 0.2684 1.4519e-08 1.4475 0.7356 0 4

Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 2.2315 0.2617 5.8130 11.1579 1 30

MOM 1.7355 0.1267 4.9272 8.6778 0 26

9

73

300
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Summary of posterior and predictive inference 
for components 169, 283, 243 

11

Prior 
distribution

Posterior mean. 
Bioburden density 

– λ, CFU/m2

5th percentile of 
posterior 

distribution

95th percentile 
of posterior 
distribution

Predictive 
mean, CFU

5th percentile of 
predictive 

distribution

95th percentile of 
predictive 

distribution

CNI 7.7452 0.9083 20.1757 4.5309 0 13

MOM 6.0352 0.4408 17.1337 3.5305 0 11

Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 4.8059 1.9987 8.5961 57.6713 22 105

MOM 4.5158 1.8133 8.2011 54.1903 20 100

Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 47.5504 19.7758 85.0510 14.1700 4 27

MOM 44.8607 18.0138 81.4700 13.3685 4 26

169

283

243
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Summary of posterior and predictive inference 
for components 38, 261
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Prior 
distribution

Posterior mean. 
Bioburden density 

– λ, CFU/m2

5th percentile of 
posterior 

distribution

95th percentile 
of posterior 
distribution

Predictive 
mean, CFU

5th percentile of 
predictive 

distribution

95th percentile of 
predictive 

distribution

CNI 15.4671 9.0398 23.2949 154.6710 88 236

MOM 15.0630 8.7294 22.7980 150.6308 85 231

Prior 
distribution

Posterior mean. 
Bioburden 
density – λ, 

CFU/m2

5th percentile 
of posterior 
distribution

95th

percentile of 
posterior 

distribution

Predictive 
mean, 
CFU

5th percentile 
of predictive 
distribution

95th percentile 
of predictive 
distribution

CNI 1057.0469 829.0645 1307.8988 329.7986 253 414

MOM 1061.3672 831.7609 1314.0833 331.1465 254 416

38

261
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Bioburden Density Comparison 
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Proposed Bayesian Approach 

MSL-based 3 

sigma (NASA 

Legacy)

InSight-based weighted 

average technique            

(NASA Current)

Component

CNI, Posterior 

Mean Bioburden 

Density – λ, 

CFU/m2

MOM, Posterior 

Mean Bioburden 

Density – λ, 

CFU/m2

3 sigma Bioburden 

Density – λ, CFU/m2

Weighted Average 

Bioburden Density – λ, 

CFU/m2

9 2.2889 0.7603 13.84 27.99
73 0.8094 0.2684 4.87 17.36
300 2.2315 1.7355 5.96 9.54
169 7.7452 6.0352 20.83 33.70
283 4.8059 4.5158 5.17 11.11
243 47.5504 44.8607 130.14 186.70
38 15.4671 15.0630 52.06 9.66
261 1057.0469 1061.3672 2349.53 658.47
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Summary 

• The mean values of predictive distribution are correlated with the total CFU count found 
on the component

• In general, the uncertainty in the posterior estimate of the bioburden density depends 
on the number of counts and sampled area, while the uncertainty in the predictive 
inference depends on sampling percentage.

• Bayes Factor approach is indicative of  reliance on the data rather than on the prior for 
the components with larger counts

• Implementing a Bayesian statistical approach to perform bioburden density estimations 
will: 

1. facilitate the application of historical datasets and engineering judgement in 
estimating the total bioburden and bioburden density; 

2. assign appropriate confidence intervals and account for uncertainty using a 
methodological approach; and 

3. allow for the prediction of bioburden throughout the lifecycle of a project.

• Future work to include 

– Hierarchical Bayes being the subject of future work and model validation

– Develop informed priors based on hardware and reporting use cases

– Expansion of statistical approach to account for complete bioburden reporting of 
direct, implied and specification value hardware groups. 

14
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Abstract 
To comply with the international planetary protection policy set forth by the Committee on Space Research and NASA Agency 
level requirements, spacecraft destined to biologically sensitive planetary bodies have to minimize terrestrial biological 
contamination. Analysis, testing and inspection are the standard forward verification activities that are used to demonstrate
compliance with the biological contamination requirements. For testing of spacecraft surface areas, a swab or wipe sample is 
collected from surfaces prior to last access and subsequently processed in the lab using NASA Approved Planetary Protection 
Methods for Culture Based Assays. Raw data resulting from this assay is then statistically treated employing a mathematical 
paradigm stemming from the 1970’s Viking Lander Project to generate the bioburden density and total microbial bioburden 
present. This standard approach arbitrarily accounts for error and provides an upper conservative bound as it reports the 
maximum number of spores estimated to be present on flight hardware surfaces. A bioburden density estimate factors in the 
following variables: the observed bioburden count, representative volume processed, sampling efficiencies. Notably, to account for 
error in the approach, a 0 observed count is arbitrarily changed to a count of 1 for each hardware grouping. 

The data generated by spacecraft bioburden verification campaigns in the past have resulted in <80% of wipes and <90% of 
swabs containing a bioburden count of 0. As such, having a robust and well documented statistical approach for dealing with the 
probability of low incident rates is necessary to be able to estimate spacecraft bioburden. Being able to statistically describe the 
bioburden distribution and associated confidence level is a gamechanger for the development of bioburden allocations during 
mission design and will allow for tighter management of risk throughout spacecraft build. Thus, Empirical Bayes statistical 
approach was evaluated to estimate the microbial bioburden on spacecraft to mitigate the aforementioned mathematical concerns
and provide a probabilistic bioburden distribution of the flight hardware surface. 

For application of this approach to performing bioburden calculations, a range of non-informative prior assumptions on hardware 
surfaces are explored for Bayesian analyses while informative priors using posterior distributions from prior assays are utilized for 
Empirical Bayes analyses. Several non-informative priors are currently under investigation to assess fitness including use of these 
priors to serve as a foundation to build off of NASA specification values or a basis of risk to account for unknowns during the 
integration and testing process. Informative priors under consideration are generated using sampled bioburden values from 
hardware originating within like processing environments (e.g. vendor cleaning process or similar assembly process), temporal
spacecraft status events as a prediction for hardware cleanliness of future samples, and heritage system bioburden actuals to
predict allocation for subsequent missions. Informative priors and probabilistic bioburden distributions are then validated using 
data sets from the Mars Exploration Rover, Mars Science Laboratory, and InSight missions. Using Empirical Bayes approach to 
generate a probabilistic bioburden distribution as demonstrated through mission use cases provides a valid approach for use in 
the end-to-end requirements verification process.
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