Current Status of the Irradiated Materials Characterization Laboratory at INL with Limited PIE Microstructural Characterization

Brandon D Miller, B. J. Hernandez, K. Wright

September 2017

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

INL/CON-17-42391-Revision-0

Current Status of the Irradiated Materials Characterization Laboratory at INL with Limited PIE Microstructural Characterization

Brandon D Miller, B. J. Hernandez, K. Wright

September 2017

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Current Status of the Irradiated Materials Characterization Laboratory at INL with Limited PIE Microstructural Characterization

Dr. B. D. Miller Idaho National Laboratory Sept. 2017 Mito, Japan

Outline

- Current Status of Irradiated Materials Characterization Laboratory (IMCL)
 - Reason for IMCL
 - Sample Analysis Stations
 - Current IMCL layout and operational equipment
 - Future expansion and equipment
- Limited post irradiation examination characterization at IMCL
 - Focused Ion Beam Microscopy
 - Electron Probe Micro-Analyzer
 - Transmission Electron Microscopy

THINK OF A POWERPOINT AS A SERIES OF COMIC BOOK PANELS....

Reasons for IMCL

- With recent incorporation of high end characterization equipment on irradiated materials and fuels, INL needed a facility to properly house the equipment
- Includes Focused Ion Beams, Electron Probe Micro Analyzers, Transmission Electron Microscopy, and a shielded sample preparation area (SSPA)

Outside of IMCL at INL

Researcher operating the EPMA

Design Basis of IMCL

Low vibration

- Floor designed as a single concrete slab with isolation pads for vibrating equipment
- Temperature control
 - Less than 1°C per hour
- Low electromagnetic interference
 - As to not interfere with operation of high-end electron microscopes

"Dang...the thermostat is broken. It looks like it's going to be a cold day in Hell."

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjXstKI 76XWAhUC1mMKHfAEARIQjRwIBw&url=https%3A%2F%2Fwww.cartoonstock.com%2Fdirectory%2Ft%2Ftempera ture_gage.asp&psig=AFQjCNETPTu3PTe5ugNKryHbTg3WHTaNIA&ust=1505519198452054

Current Layout of IMCL

- IMCL currently has 5 areas designated for characterization of irradiated materials
 - SSPA, TEM, FIB/PFIB SAS, and Thermal Properties SAS
 - Electron Probe Micro-Analyzer (EPMA) SAS
 - Plasma and Focused Ion Beam SAS (FIB/PFIB)
 - Thermal properties SAS
 - Transmission Electron Microscopy (TEM)
- Room for future expansion

IMCL Shielded Cask (ISC)

- Two specially designed casks for IMCL use
- Incorporate La Calhéne mating system
- Shielding equivalent of ~21 cm of steel using lead
- Compatible with various facilities at INL
- Compatible with the flying pig being developed

IMCL shield cask (ISC)

ISC awaiting docking with the Shielded Sample Preparation Area

Shielded Sample Preparation Area-SSPA

- The SSPA's primary focus is sample preparation of highly radioactive materials/fuels
- All portions of the system are connected allowing easy transfer of samples
- Three shielded bays
 - CRL Manipulators
 - Type L-HD
 - Lead equivalent of 21 cm steel
- Radiological glovebox
 - N₂ inert
 - Sample preparation of low dose samples
- Radiological fume hood
 - Decontamination activities
 - Sample preparation

Relaxing after a long day at the SSPA

Various images of the SSPA line

Shielded Sample Preparation Area Cont'd

Three shielded bays

- CRL Manipulators
 - Type L-HD
- Sample preparation bay
 - Autopolisher, low speed saw, ultrasonic cleaner, etc
- Optical microscopy bay
 - Keyonce VHX-5000 microscope
 - 100-1,000x magnification
- Shielded transfer cell
 - Transfers and radiation level measurements

Sample preparation bay

Optical microscopy bay

Shielded transfer cell

Sample Analysis Stations (SAS)

- IMCL uses a variable "hot cell" design designated as Sample Analysis Stations (SAS)
- Instruments are coupled to a glovebox through a loading/unloading port
- Shielded steel walls enclose the glovebox and instrument, providing shielding
- 21 cm steel walls
- Manipulators are attached to the gloveboxes, operated outside the shielded walls
- Flexible design to meet future equipment needs
- With only the loading port attached the glovebox, instrument maintenance is simplified as the outside of the instrument is not contaminated
- Designed to shield a 2 Ci-Co⁶⁰ source

SAS layout for the Focused Ion Beam Microscopes

Steel wall sections awaiting assembly

Focused Ion Beam SAS's

- Duel SAS structure installed for two Focused Ion Beams (FIB) microscopes
 - FEI Helios Plasma FIB
 - FEI Quanta 3D FIB (radioactively contaminated)
- SAS currently undergoing readiness review for operational status
- Fully operational on irradiated fuels and materials in late spring 2018

Images of the shielding in the FIB SAS's

View inside a SAS glovebox

FEI Helios Plasma FIB

FEI Quanta 3D FIB

EPMA SAS

- Similar to the FIB/PFIB SAS setup but with extra manipulator for EPMA operations
- EPMA is a CAMECA SX-100R with 4 wavelength dispersive spectrometers
- Currently operational handing irradiated fuel samples

Outside of the EPMA SAS

Views from inside the EPMA SAS

Thermal Properties SAS

- Currently fabricated and unassembled at IMCL
- Planned for installation in 2018
- Operational in 2019
- Planned equipment include:
 - Differential Scanning Calorimetry
 - Thermal Conductivity Microscope
 - Laser Flash

www.leapsecond.com

Thermal property SAS at the fabrication facility

Transmission Electron Microscopy-TEM

- IMCL is equipped with a FEI Titan 200 keV CHEMI-Scanning Transmission Electron Microscope (STEM)
- Equipped with 4 Energy Dispersive Spectrometers (EDS) for fast elemental mapping
- Located in acoustic sound lowering room to improve resolution
- Able to perform sub-nanometer chemical analysis
- Currently operational to characterize irradiated materials and fuels

TEM Room

Titan TEM

Future Expansion?

• Options include:

- Atom Probe Tomography
- Shielded Scanning Electron Microscope
- Mechanical Properties Cell
- Additional FIB's?

http://toonut.com/dog-house-expansion/

Post Irradiation Examinations-FIB

- FIB/PFIB offer site specific characterization of materials on micron scale and below
- Capabilities of the FIB/PFIB include
 - TEM lamella preparation
 - Cube preparation for serial sectioning and chemical profiling of specific regions
 - Cross-section milling for visualization of the microstructure under the polished surface
 - Electron backscatter diffraction surface preparation
 - and many others.....

Site Specific Capability of the FIB

TEM lamella liftout of U-Mo fuel

Cube liftout of irradiated UO₂ from BR3 reactor

3D reconstruction of porosity in U-Mo fuel

Post Irradiation Examination-EPMA

- EPMA characterization performed on an irradiated TRISO particle irradiated at the Advanced Test Reactor (ATR) at INL
- Uranium Oxycarbide surrounded by C buffer layers and a SiC confinement
- Focus on fission product migration across the fuel particle into the TRISO partilce

Cracked TRISO particle

WDS maps of a TRISO fuel particle

Post Irradiation Examination-TEM

- U-Mo fuels being studied for use in research and test reactors throughout the world
- Forms ordered bubble superlattice at fission densities typically lower than 4.5x10²¹ fissions/cm³
- It was assumed that the bubbles were stabilized by Xe fission gas
- Proof that Xe is indeed present in the fission gas pores

EDS maps of the bubble superlattice in U-Mo fuels

Post Irradiation Examination-TEM

- HT-9 has been used as a cladding material for advanced fuels
- Rare earth elements diffuse into the cladding
- Diffusion can weaken the mechanical properties of the cladding
- Include:
 - Nd, Ce, Pr, Mo, and La

Scale Bar is 1 µm

Concluding Remarks

- Post-irradiation examination of irradiated fuels and materials has commenced at IMCL
- The EPMA, FIB, and TEM are radiologically operational with the FIB/PFIB coming online in early spring
- The thermal properties cell has been fabricated with anticipation of being installed in 2018 and operation in 2019

YOUR CONFERENCE PRESENTATION

https://blogs.ams.org/mathmentoringnetwork/2014/08/04/math-talk-preparing-yourconference-presentation/

Questions!

