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ABSTRACT 

Fire is historically and analytically a significant contributor to nuclear power 

plant risk. The level of fire risk and the methods, tools, and data for modeling this 

risk are highly debated by experts. One area of debate is the input data used in 

fire modeling and how to deal with this data’s high rate of uncertainty. This 

report outlines work performed for determining the key parameters causing this 

uncertainty and how it propagates into nuclear power plant PRA models. This 

research used the Integrated Probabilistic Risk Assessment (I-PRA) method and 

paves the way to correctly assess and reduce data uncertainty in fire modeling. 

SUMMARY 

The Nuclear Regulatory Commission requires that nuclear power plants 

evaluate fire risk, emphasizing the use of PRA modeling. However, there are 

several issues with the current risk modeling implementation that affect the 

results. Approved modeling methods can be overly conservative and often do not 

match plant experience. Also, the data used in the modeling can have many 

uncertainties and can be influenced by expert judgment.  

To evaluate input data uncertainty, researchers performed an initial review of 

several fire experiments done at Sandia National Laboratories. Uncertainties for 

fire data can come from many sources, such as experiment design constraints, 

environmental conditions, or other plant-specific aspects. There are many 

different significant and insignificant parameters driving the uncertainty. 

Additionally, the uncertainty of the different input data used in the fire modeling 

could have a significant or insignificant effect on the entire plant risk.  

A four-step methodology was developed to perform I-PRA Importance 

Ranking. A demonstration case using these steps was set up and three of the four 

steps were completed in fiscal year (FY) 2019. The fourth step was done in FY 

2020. These steps included: 

1. A qualitative analysis of potential sources of uncertainty. The following items were 

considered for the demonstration:  

 Maximum heat release rate 

 Time to maximum heat release rate 

 Duration of max heat release rate 

 Time to decay 

 Thermal conductivity of concrete 

 Specific heat of concrete 

 Density of concrete 

 Cable jacket thickness 

 Fire location 

2. A quantitative characterization of dominant sources of uncertainty. A list of distributions 

and their parameters obtained for the dominant sources of uncertainty is shown in 

Appendix A.  

3. A quantitative screening of the potential sources of uncertainty using Morris Elementary 

Effects (EE) analysis. A case study fire simulation model was developed and coupled 

with the Risk Analysis Virtual Environment (RAVEN). Compared to the one-way 

sensitivity analysis methods commonly used in the current PRA practices, the Morris EE 
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method provides a more robust distinction between influential vs. non-influential factors 

since it can explicitly address both main effects and the effects by nonlinearity and 

interaction through a randomized one-at-a-time sampling scheme. Among the sources of 

uncertainty associated with the nine input parameters of the fire simulation model, the 

Morris EE analysis was able to screen out four insignificant parameters, i.e., thermal 

conductivity of concrete, specific heat of concrete, density of concrete, and cable jacket 

thickness. 

4. Global importance measure (Global IM) analysis to generate a comprehensive ranking 

based on their influence on the plant risk. In this research, a moment-independent Global 

IM is used since it can address (a) uncertainty in the input parameters of the fire model, 

(b) uncertainty in the risk outputs, and (c) non-linearity and interactions among input 

parameters in the fire model, more accurately than the correlation-based and variance-

based global methods. The observations from the research showed that, depending on the 

initial and boundary conditions of the fire scenarios, fire-induced damage could have a 

very small probability and could be dominated by the tail of the uncertainty distribution; 

hence, the accuracy of the correlation-based and variance-based methods is questionable. 

The moment-independent Global IM analysis in this research provides a better 

understanding of how experimental uncertainty data affects industry’s plant models and 

where improvements in that data will have the largest benefit for improving fire modeling 

accuracy in causing core damage. Among the five unscreened parameters obtained from 

the Morris EE analysis, the Global IM analysis results for the case study indicated that 

max heat release rate and fire location are the most important parameters.  

The report also outlines benefits of using a unified computational platform 

that integrates the underlying simulations (e.g., a fire progression model), 

quantitative screening (using the Morris EE method), and the Global IM analysis. 

A unified platform can (i) facilitate the ranking of input parameters considering 

multiple key fire scenarios simultaneously, rather than considering one scenario 

at a time, (ii) contribute to more explicit and accurate treatment of dependencies 

at multiple levels of Fire PRA, (iii) facilitate the sampling-based uncertainty 

quantification for Fire PRA, and (iv) help generating both “industry-wide” and 

"plant-specific" ranking of uncertainty sources in Fire PRA.  

Future research should be done to include additional parameters such as 

detection/suppression or cable fire spread. Adding a PRA software such as 

SAPHIRE to the RAVEN platform would help with plant model integration and 

improve treatment of fire-induced dependency. The I-PRA risk importance 

ranking methodology offered in this report can provide valuable information for 

efficiently (a) enhancing the realism of Fire PRA for existing plants and (b) 

supporting the development of Dynamic Fire PRA for advanced reactors and new 

plants.  
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1. INTRODUCTION 

The 1976 fire at Brown’s Ferry Nuclear Plant highlighted weaknesses in assessing and understanding 

the impacts of fire scenarios with respect to potential core damage events for nuclear reactors. To address 

the fire risk to the nuclear utilities, Appendix R to the Code of Federal Regulations (CFR) 10 CFR 50 was 

created. This was a deterministic approach to assessing the fire risk within the nuclear plants. A risk-

informed performance-based standard, National Fire Protection Association (NFPA) 805 [1] was 

introduced in 2001 and led to the development of approved guidelines for the implementation within the 

nuclear plants themselves. The U.S. Nuclear Regulatory Commission (NRC) and Electric Power Research 

Institute (EPRI) created Nuclear Regulatory Commission technical report designation (NUREG) 

NUREG/CR-6850 (EPRI 1011989) which outlined guidelines for the nuclear plants to assess risk 

attributed to fire events within the plant that could cause core damage or a release of radionuclides. This 

NUREG outlines the methodology for using Probabilistic Risk Assessment (PRA) to assess and monitor 

fire risk to the plant. 

There is a very strong interest in analysis of fire protection engineering practice, both domestically 

and worldwide. The NRC with EPRI and the National Institute of Standards and Technology (NIST) 

conducted a research project to verify and validate five fire models used for Nuclear Power Plant (NPP) 

applications. The results of this effort are documented in a seven-volume NUREG report, NUREG-1824 

[2],[3], Verification & Validation of Selected Fire Models for NPP Applications. More recently, the 

NUREG-1934 [4] document provides information on the use of fire models in support of various 

commercial NPP fire hazard analysis applications.  

The lack of realism in Fire PRA may generate biased risk information, which could impede the 

identification of truly critical risk-contributing factors and result in unnecessary and costly plant 

modifications. To better facilitate risk-informed decision making, the degree of realism in Fire PRA 

should be increased and the risk-contributing factors should be ranked based on their influence on the 

system risk.  

Lack of realism may come from multiple areas. One of these areas is the limited sources and 

uncertainty of the data used to support fire risk modeling. To efficiently improve the realism of Fire PRA, 

it is critical to properly prioritize areas that need further industry, regulatory agency, and academic 

research/investigation. In current practice, the prioritization of Fire PRA research areas is mainly based on 

engineering judgments provided by experienced and knowledgeable experts from within the industry and 

regulatory agency [5],[6]. Although expert judgment helps provide valuable insights, the excessive 

reliance on the experts is vulnerable to various factors. Knowledge dependency among multiple experts 

and biases toward the occurrence of recent events are examples of the factors that could mislead the 

experts’ judgments. To provide additional input for the decision making on prioritizing research areas in 

Fire PRA, this study develops a new methodology for identifying inputs/factors that are the most 

influential sources of uncertainty and conservatism in Fire PRA based on their contributions to the fire-

induced plant risk.  

2. BACKGROUND 

The existing Fire PRA is developed using standard static PRA models, basically with the same 

general concepts as normal internal-events PRA. The major differences from the internal-events PRA 

come from what type of components are currently in scope and how scenarios are created and handled. A 

static PRA utilizes single failures or initiating events when beginning to analyze the plant’s response and 

capabilities to respond to said event. All structures, systems, and components (SSCs) need to be 

incorporated into the PRA model to realistically assess the plant response to accident situations. However, 

it is not practical to model everything, so reasonable assumptions must be made to simplify the model and 

still get a realistic simulation.  
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In creating a Fire PRA, a risk analysis team of experts is required to help identify SSCs to be included 

and also to help develop the scenarios. The fire risk analysis team will include individuals with expertise 

in four key areas:  

1. Fire analysis (basic fire behavior, fire modeling, fire protection engineering, and plant fire 

protection regulatory compliance practices and documentation) 

2. General PRA and plant systems analysis (event tree/fault tree analysis, NPP systems modeling, 

reliability analysis, PRA practices as applied in the internal-events domain, and specific 

knowledge of the plant under analysis) 

3. Human reliability analysis (emergency preparedness, plant operations, plant-specific safe-

shutdown procedures, and operations staff training practices) 

4. Electrical analysis (circuit failure modes and effects analysis and post-fire safe shutdown, 

including plant-specific regulatory compliance strategies and documentation). 

While some of this expertise is generic, much of it is specific to the plant under analysis. 

2.1 Risk-Informed Fire Assessments – Industry Fire PRA and Uses 

2.1.1 Appendix R and Deterministic Approaches 

The requirement to protect the public from nuclear accidents due to fire is addressed in CFR part 50, 

Appendix R. It lays out specifically how many protected systems need to be maintained at all times due to 

fire events. This includes all support components and cables that allow the components to perform their 

required safety function. This methodology is deterministic in its approach to stating whether components 

can provide the specific safety function. There is no use of risk-informed methodology and, as such, it is a 

more conservative assessment of fire’s risk to the nuclear plant. 

2.1.2 Risk-informed methodology – NUREG/CR 6850 and NFPA 805 

The methodology for the static Fire PRA is built of the same event tree/fault tree approach as an 

internal-events PRA. The major differences lie in what is to be considered in scope for the Fire PRA, 

which includes a large selection of components and supporting equipment and scenario development. In 

addition to the safety system mitigation equipment, Fire PRAs must take into account fire-specific 

equipment, such as suppression and detection systems, fire barriers, and equipment credited for specific 

fire-related operator actions must also be addressed. Another unique major contributor to fire risk is the 

associated cabling for the credited equipment. Identifying the cabling is significant to ensure that fires do 

not prevent the specific equipment from performing their mitigation function. To create the overall fire 

scenarios, it is important to lay out the plant boundaries and identify where fires would originate, and 

what types of fires are possible. Once boundaries are established, scenarios need to be made that 

incorporate the heat release rates (HRRs) of fire types, fire spread from target to target and compartment 

to compartment, suppression and detection equipment, and additional operator actions. The goal of the 

Fire PRA is to analyze these scenarios to identify the risks to the plant, including the types and locations 

of fires that cause the most significant amount of risk to core damage or a release of radionuclides. 
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Figure 1: Sample scenarios for fire spread and impacts. 

The components that can cause fire (e.g., electrical cabinets, pumps, oil reservoirs, transient 

combustibles, cable fires) and then impact targets around them are shown in Figure 1. Initially, the direct 

impact of fires on the component must be evaluated. Next, it must be determined if the fire can create a 

hot gas layer which can damage components indirectly. Finally, the scenarios about whether or not the 

fire (or hot gas layer) can spread into an adjacent compartment must be analyzed. These steps provide the 

immediate scope of the fire analysis and what it can directly impact in the scenario. Subsequently, the 

analysis needs to be expanded to see what components are affected by cable damage, the timing for 

failures, and other impedances for operator actions, and then incorporated into the scenarios. 

There are multiple ways to incorporate the scenarios into the PRA model. A scenario can be added 

directly into fault trees or event trees. Also, a new PRA model does not need to be built for the Fire PRA, 

but rather scenarios can be incorporated directly into existing internal-events PRAs. There are different 

types of logic modeling software such as RISKMAN, Computer Aided Fault Tree Analysis System 

(CAFTA), and Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). 

In this analysis, SAPHIRE [7] was used for examples.  

To understand how current Fire PRA works within an internal-events model, an example is shown in 

an event tree (Figure 2) and fault tree (Figure 3).  
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Figure 2: Example event tree with added fire branches into existing PRA. 

The initiators are fires within the compartments that lead into their relevant internal-events event trees 

this is represented by the final TRANS, SLOCA, and LOOPPC boxes in Figure 2. Once the initiator 

occurs the fire event transfers into other initiators to assess the mitigation response if that fire managed to 

cause those types of events. The internal-events model will still analyze the individual random failures 

that can occur within the plant, but the fire failures must be accounted for as well. This is done by creating 

fire-specific failures within the fault tree, as shown in the HE-FIRE-AREA2 event in Figure 3. SAPHIRE 

produces cut-sets by quantifying the random failures and fire induced failures in the fault trees and the 

system failures of each accident sequence in the event trees. Once the cut sets are generated it removes 

redundant or non-minimal cut-sets using Boolean algebra to get the correct risk associated with each fire 

scenario. For more detail on this process or the specifics of how SAPHIRE works see [78]. 

IE-FRI-AREA2

FIRE IN AREA 2

TRUE-FT

EVENT OCCURED 

(PROB = 1)

# End State

(Phase - CD)

1 OK

FIRE-TRANS

2 TRANS

FIRE-SLOCA

3 SLOCA

FIRE-LOOPPC

4 LOOPPC
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Figure 3: Example fault tree with specific fire failures added (HE-FIRE-AREA2). 

This a common fire PRA modeling practice and seldom does it need to be more complicated than 

this. The PRA analyst will decide the level of detail that should be modeled in the PRA. The scenarios 

can be modeled from compartment level resolution down to the resolution of individual ignition sources 

and targets 

2.1.3 Fire PRA 

2.1.3.1 Fire Modeling 

Improving the realism is beneficial for a variety of reasons. Namely, improving the uncertainty 

overall will allow for less variability in the results when quantifying our PRA models. It will allow the 

users to be more confident with the fire risk assessments overall. By identifying the key parameters 

driving the results, we can find the parameters that need to have improved uncertainties, improving the 

overall uncertainty of the model. Figure 4 [8] shows the uncertainty associated with Fire PRAs (included 

in the “other external events”) in relation to the more realistic internal-events model. Improving the 

uncertainty distributions would allow for more confidence in these models. 
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Figure 4: Uncertainty distribution for PRAs. 

The second benefit would come from improved data collection and experiments, which may improve 

the mean probabilities or frequencies of our data sets. This may end up driving down the overall results in 

the future if the improved data can be utilized in the PRA model. As an example, a fire was simulated in 

the switchgear room to see how improving the HRR mean-point frequency would impact the scenario 

frequency and improve the model as a whole. The fire scenario was shown to fail both diesel generators 

using a generic pressurized water reactor (PWR) model. The logic that was modeled and inserted is 

shown below in Figure 5. 

 

 

Figure 5: Example fire fault tree logic. 
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The “HE-EPS-FIRE-TEST” house event in the far-right of the diagram, will be triggered in the event 

of a switchgear fire failing both diesel generators. 

Next, a flag set was created to change those house events from a “False” probability to a “True” 

probability after the occurrence of the switchgear fire. That flag set is shown below in Figure 6. 

 

Figure 6: Example fire flag set. 

Additional surrogate events could be placed here to fail additional components, or the house event 

can be placed directly into the logic. 

Finally, the initiating event was created using test frequencies of 1.5E-2 (acquired from industry 

averages) and 1.0E-2 to show how a change may impact results. The fire initiating event tree is shown 

below in Figure 7. 

 

Figure 7: Example fire event tree logic. 
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Once the modeling is done, this specific initiator is quantified with the two different frequencies and 

the results are compared. 

2.1.3.2 Input Data Areas 

The impact of the HRR parameters was one area of interest on the initial phase of research. The 

maximum HRR value, the time to maximum HRR, duration of maximum HRR, and time to decay all 

impact the ignition frequencies of specific initiating event fires. Reducing the uncertainties surrounding 

those parameters will improve the level of realism and confidence in the specific HRR curves used in the 

PRA models. If the mean-point frequency can be improved, showing that fires of specific severity or 

duration are less likely to occur can improve the data used in the models for those types of fires. This is 

the example chosen in the previous section. Another area for data usage is identifying the uncertainty and 

improving the data around cable failure temperatures. This would improve the realism around exactly 

which fires would damage significant cables within the utility. If the data changes, it may change the 

severity of the fires that damage specific targets (reducing the severity factor or ignition frequency) or 

remove those targets from scenarios altogether. Finally, the parameters looking at properties of concrete 

will allow for better realism when modeling specific compartments in how hot those compartments will 

get and how fast they will heat up, as well as the possibility of fire spreading to adjacent compartments if 

the concrete fails. That information will be incorporated into the ignition frequencies or directly into what 

scenarios are possible and able to be modeled. 

The four variables must be multiplied to solve the core damage frequency of each individual fire 

scenario. This new data would impact two of those variables—the ignition frequency and severity factor 

(sometimes included in ignition frequency), or eliminate the scenario entirely. The other variables 

included are NSP and the conditional core damage probability (CCDP). 

(𝐶𝑜𝑟𝑒 𝐷𝑎𝑚𝑎𝑔𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)𝑖 = 𝐼𝐹𝑖 ∗ 𝑆𝐹𝑖 ∗ 𝑁𝑆𝑃𝑖 ∗ 𝐶𝐶𝐷𝑃𝑖 (5) 

When solving a Fire PRA, first the core damage frequency is solved for each scenario and then added 

to find the total core damage frequency for the plant due to fire risk. This shows how reducing two of 

those variables or eliminating scenarios entirely would help reduce the overall core damage frequency of 

the plant. 

2.1.3.3 Regulation Requirements 

Currently, the industry either requires the utilities to be governed by 10 CFR 50 Appendix R, the 

deterministic approach, or they could have transitioned to NFPA 805 [1], the risk-informed methodology. 

This information could help improve the models developed to risk-inform the utilities of their fire risk for 

everyday operations, maintenance, or modification assessments. If this methodology is more accurate and 

shows improvements for facilities, it would help the utilities and the regulators have a better 

understanding and more confidence in the numbers to show just how risky certain actions would be. If the 

mean-point numbers were able to be adjusted through continued experimentation and additional data, it 

would allow the plants to have better numbers, which would encourage more utilities to make the shift to 

risk-informed governance or better utilize the models they allow for more configurations and online 

maintenance. 

2.1.3.4 Data Change Insights 

Using the example from Section 3.4.1, plugging the fire scenario into a generic PWR PRA model 

shows what reducing the mean-point frequency of a single scenario can accomplish. When quantifying a 

fire in the switchgear room scenario with a frequency of 1.5E-2, a single scenario gives a total core 

damage frequency of 2.948E-8. When we reduce the ignition frequency to just 1.0E-2, it drops the core 

damage frequency to 1.897E-8 for a single scenario. When there are thousands of scenarios within a Fire 

PRA, this can make a significant difference, especially if we can combine the possible elimination of a 

scenario. 
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2.2 Detailed Methods 

For a more detailed model, broad fire scenarios that are concerned with fires at a compartment level 

can be broken down into a larger subset of scenarios that utilize more specific information within each 

compartment. For example, when deciding to model fire scenarios associated with the main control room, 

those scenarios can be divided into different sets by identifying unique ignition sources, target sets, or any 

other special separation that could create a unique situation that the user would like to analyze. The 

scenarios are typically divided by the type of initiator (electrical panels, motors, transients, hot work, 

etc.). Some of these initiators may need additional scenarios depending on the types of targets they can 

damage. In SAPHIRE, this would typically be done by modeling the scenarios directly as basic events in 

fault trees or by creating modifiers that manipulate the probabilities of existing basic events already 

within the model. The number of scenarios, targets, and ignition sources are unique to each plant. The 

approved identification, classification, and modeling methods are found within NUREG-6850. 

2.3 Fire Simulation 

Computational fire modeling aims to predict fire behavior in different environmental conditions. 

These computational models need to take into account the various physical processes of combustion, fluid 

dynamics, and heat transfer processes. The complexity in modeling the physical process of fire 

propagation arises from the dynamic turbulent nature of the internal processes. Computational Fluid 

Dynamics (CFD) is a branch of fluid mechanics that provides methods and tools that help in modeling, 

prototyping, testing, and analysis. NUREG-1824 documents the five software toolkits used in modeling 

fires in a typical NPP. They are (1) NRC's NUREG- 1805 Fire Dynamics Tools (FDT)[9], (2) EPRI's 

Fire-Induced Vulnerability Evaluation Revision 1, (FlVE-Rev1), (3) NIST’s Consolidated Model of Fire 

Growth and Smoke Transport (CFAST) [10], (4) Electricité de France's (EdF) MAGIC[11], and (5) 

NIST's Fire Dynamics Simulator (FDS)[12].  

Algebraic models such as FDT and FIVE-Rev1, from NRC and EPRI, take minimal inputs and create 

quick analytical calculations. The advantages are that it is fast and easy to use. However, this might result 

in being too conservative. Zone models CFAST and MAGIC perform more detailed analysis than FDT 

and FIVE-Rev1. They can compute hot gas layers as well as target heat fluxes. A hot gas layer is a layer 

of smoke and heat that forms at the ceiling, filling the entire ceiling. It slowly descends, damaging 

additional targets as it lowers (see Figure 8). But these models also have limitations with respect to 

complex room geometries and large horizontal paths.  

In terms of the types of analysis, FDS is broadest in scope. Moreover, its dynamic nature and 

simulations can be performed in three-dimensional (3-D) space. Chapter 3 of NUREG-1934 specifically 

lists seven generic scenarios which are considered for a fire at an NPP, and in many of those scenarios 

CFD models are either recommended or necessary to provide detailed analysis with obstacles in the path 

of the fire. Since FDS is a CFD model, it allows the analyst the ability to simulate fire conditions in 

complex geometries with complex vent conditions. However, it takes a significant effort to properly 

create the model for simulation, and computation times could be quite long. This modeling is used to 

simulate the types of fires that can cause damage to components by showing the specific HRRs that 

would damage nearby targets via direct impact or through a hot gas layer.  
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Figure 8: Smoke and hot gas layer formation and behavior. 

Each simulation provides an estimate of the scope of damage and determines the components that will 

be available to help mitigate the specific fire scenario. Figure 9 shows the percentage or likelihood that a 

fire heat release will create a scenario needing further investigation because the resulting peak HRR can 

damage additional targets. These scenarios will be incorporated into the PRA. The fires that generate a 

peak HRR below this point only damage the ignition source itself and no other targets. 

 

Figure 9: Example heat release rate with the severity factor for a particular component. 
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Computer modeling also provides information about the timing of the specific fire and how long it 

takes to damage targets or create a hot gas layer. It additionally provides an estimate of how long it takes 

for suppression and detection systems to actuate, which can be incorporated with plant procedures and 

training times. Further, the information can be used as time measurements for fighting the fire and 

preventing it from damaging targets. This timing information can be used to eliminate the impacts of fire 

scenarios within the PRA models because a non-suppression probability, in addition to the severity factor, 

is incorporated into the ignition frequencies. The graph in Figure 10 shows how the non-suppression 

probability (NSP) approaches 1 on the NSP axis as the time to detection approaches the time to damage. 

Removing the conservatism in either the time to damage and/or the time to detect can have a significant 

impact on the fire scenario in question. 

 

Figure 10: Example non-suppression probability over time. 

2.3.1.1 Limitations 

The primary limitations are due to the modeling assumptions and uncertainty within the model. Some 

are unique to fire modeling, while others are common limitations for PRA in general. 

 Modeling limitations – This is a PRA limitation where not all components or subcomponents are 

incorporated into the PRA due to time and budget limitations for PRA staff. This limitation can 

prevent specific failure modes or actions from being performed if the component is not included 

into the PRA. This issue is mitigated by including enough detail in the model so that an adequate 

representation of the plant can be made with the components required to simulate it. Modeling 

conservative fire scenarios is simpler than creating more accurate individual fire scenarios. 

Excluding severity levels of the fires (what types of fires will damage what components), 

including failures of nearby equipment into scenarios, and assuming conservative failures of local 

fire suppression can all be examples of ways to reduce the detail in PRA modeling. However, this 

simplification introduces conservative assumptions into the modeling that increase the calculated 

level of risk to the plant. The modeling limitations can be reduced by incorporating more detail 

into the PRA model, but it is impossible to eliminate completely. It is up to the PRA developers 

to decide what level of assumptions and generalities are appropriate for a realistic model.  
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 Operator action limitations – The PRA currently can only take modest credit for operator 

actions and cannot take positive credit for actions that are implemented ahead of schedule. 

Gaining credit for sped-up actions that would improve the likelihood of successfully completing 

other actions is not considered within the PRA. Another limitation is the way in which an 

operator action is modeled as a singular step, or multiple actions as chains of simple steps. This 

limitation makes it difficult to create a basis for accuracy. When looking at firefighting activities 

for suppressing fires, being able to credit the timing of operator actions will help improve the 

time to detection and suppression of the fire. This will give the plant a larger credit for the 

number of fires that will be suppressed before the fire can cause damage to plant equipment. The 

credit will reduce the number of fires that create fire scenarios and reduce the overall plant risk.  

 Cable tracing issues – Not all cables are precisely tracked within an NPP. When developing a 

scenario, cables that cannot be definitively excluded from a potential fire due to the uncertainty of 

their actual location must be included within the target sets. This issue is mitigated with better 

cable tracing to ensure specific cables (especially high-risk ones) are excluded from as many 

target sets as possible. 

 Fire modeling limitations – There is significant uncertainty in the HRR profiles used in the 

PRA, which can have a substantial effect on the results since the HRRs are such a significant 

input[13, 14] . To mitigate this limitation, work to refine and characterize the maximum HRR of 

specific ignition sources is ongoing. Additional information on how fire spreads along cables and 

how power, instrument, and control cables respond during a fire can provide improved 

realism[15-17]. Also, improved realism of fire frequencies for individual ignition sources is an 

area of high uncertainty would improve the fire modeling. 

 Timing and spatial limitations – Currently, it is easier to model conservative timing 

assumptions in potential fire scenarios. For example, for a fire scenario, it is often far simpler to 

conservatively assume immediate failure of components or not take credit for operator actions 

within the given area. This simplifies the modeling but reduces the precision of the model. Taking 

credit for timing or spatial considerations within the area can help reduce the conservative 

assumptions placed on the fire scenarios. Specifically, if a cable or manually-operated valve is 

located in a far corner of the room, it will take time to heat up to the point of damage, or make it 

incapable of being operated. Using more precise fluid dynamic modeling coupled with the timing 

of the scenario allows for additional credit to be taken. For example, components that are 

prematurely failed when using conservative timing assumptions may be credited for at least a 

specific amount of time as the scenario develops. 

2.4 Historical Fire Testing 

2.4.1 Experiments 

There have been a series of six test programs to evaluate different aspects related to cable fires in 

NPPs between 2001 and the present. In 2001, Nuclear Energy Institute (NEI) and EPRI conducted 18 full-

scale tests exposing energized low voltage electrical cables to a variety of thermal conditions to evaluate 

the electrical cable failure modes. Specifically, the test program wanted to investigate short-to-ground, 

inter- and intra-cable shorts, and open-circuit configurations. It was shown that, given cable damage, 

single and multiple spurious actuations are credible. Also, in a multiconductor cable, it is highly likely 

that multiple hot shorts will occur simultaneously. However, these results could not support the 

development of a failure mode prediction model[18],[19].  
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In 2006, the NRC and Sandia National Laboratory (SNL) conducted the Cable Response to Live Fire 

(CAROLFIRE) test program consisting of 78 small-scale radiant heating tests and 18 intermediate-scale 

tests, which were representative of in-plant conditions. These tests provided an experimental basis for 

resolving five of six items identified in RIS 2004-03, Risk-informed Approach for Post-Fire Safe-

Shutdown Circuit Inspections. These tests showed that inter-cable shorting is plausible, but less likely 

than the intra-cable failure mode. However, more research was required to determine the number of 

failures assumed to be likely for configurations requiring failures of three or more cables[15],[16] ,[20]. 

The Kerite Analysis in Thermal Environment of FIRE (KATE-Fire) test series was conducted in 2011 

to determine the fire-induced thermal failure limits of Kerite fire resistant cables. Based on the test results, 

the minimum threshold of electrical failure for Kerite FR cables was recommended to be 247°C. 

Thermoset materials are expected to provide adequate short-term electrical performance for temperatures 

of at least 330°C and some common thermoset insulation materials have failure thresholds of 390°C or 

higher. Also, it was determined that the lower bound failure temperature for thermoplastic cables is 

approximately 205°C and some common thermoplastic materials have failure thresholds in the 250–

290°C range[21].  

In 2012, the Direct Current Electrical Shorting in Response to Exposure Fire (DESIREE-Fire) test 

program conducted 59 small-scale tests and 17 intermediate-scale tests. The objective of this test program 

was to evaluate fire-induced cable failure modes and effects for direct current (DC) circuits to determine 

if they differ from alternating current (AC) circuits. It was shown that the faulting behavior of the DC-

powered cables was more energetic than comparable AC-power cables observed in prior testing efforts. 

The DC-powered cables had substantial, sustained, and damaging arcs. Also, open circuits were noted to 

occur as the first failure mode while fuse sizing played a role in the duration of the hot short failures[22].  

The Cable Heat Release Ignition and Spread in Tray Installations During Fire (CHRISTIFIRE) test 

program evaluated 26 horizontal and 17 vertical full-scale calorimetry tests in 2012. This program 

evaluated and quantified the burning characteristics of grouped electrical cables in horizontal and vertical 

configurations. As a result of these experiments, the FLASH-CAT model used for NUREG/CR-6850 

analysis was validated. Also, it was discovered that fires are unlikely to spread upward indefinitely on a 

single tray of qualified cables; however, this was not true for multiple trays of qualified cables[23],[24].  

In 2016, the Refining and Characterizing Heat Release Rates from Electrical Enclosures during Fire 

(RACHELLE-FIRE) test program evaluated 26 horizontal and 17 vertical full-scale calorimetry tests. The 

purpose of this test program was to classify enclosures in terms of function, size, contents, and 

ventilation. Additional objectives included determining the peak HRR probability distributions 

considering specific electrical enclosure characteristics, as well as developing a method to account for the 

impact of the enclosure on the vertical thermal zone of influence. This test program resulted in the 

development of peak HRR distributions for the different classification groups. Also, new fire plume 

temperature profiles were developed, which reflected the obstructed nature of fire plumes generated from 

fires inside electrical enclosures [13].  

2.4.2 Experiment Uncertainty 

NUREG-1855 [25] identifies two primary classes of uncertainty relevant to PRA models. 

 Aleatory – Uncertainties that arise due to inherent randomness in the behavior of a system that 

can never be completely eliminated 

 Epistemic – Uncertainties that arise due to state-of-knowledge and that can be realistically 

reduced by, for example, further experimental effort. 
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A PRA model typically captures a range of aleatory uncertainties that reflect inherent randomness in 

the realization of a future plant state. This could be due to the random failure of a set of SSCs to realize a 

plant state that poses the potential for either core damage or large early release—two key risk metrics 

commonly evaluated by PRA models of Light Water Reactors (LWRs) in the United States. Evaluation of 

the manner in which random failure of SSCs can lead to plant states that pose risk to public health and 

safety is the purpose of internal event PRAs. Other types of PRAs that capture the potential for external 

hazards to induce plant states that can lead to core damage or large early release are external event PRAs. 

These external hazards also reflect aleatory uncertainty due to the random occurrence of these external 

hazards. For example, a Fire PRA captures the impact of aleatory uncertainty associated with the 

occurrence of a fire at an NPP capable of causing damage that leads to either core damage or large early 

release. 

Beyond the actual PRA logic model which is designed to capture the inherent randomness in realizing 

plant damage states posing risk to public health and safety, the characterization of event frequencies and 

probabilities for event occurrences (e.g., the probability that a fire in an electrical cabinet could lead to 

damage to neighboring equipment) often require development of supporting models. For example, the 

potential for a fire to lead to equipment damage in a room can be evaluated using deterministic fire 

simulation models such as CFAST or FDS. While these simulation models are often deterministic in 

nature, they can never completely specify the potential for damage due to uncertainties in numerous 

inputs. These models typically require the specification of: 

 Initial conditions that can never be completely known or are inherently variable. For example, the 

severity and duration of a fire can be influenced by the initial temperature in a room. In the Heat 

Release Rates of Electrical Enclosure Fires (HELEN-FIRE) tests, the temperature in the facility 

where the tests were conducted was below the freezing temperature of water. This was identified 

as an important contributor in some tests to actually realizing a self-sustaining fire. In an NPP, 

temperatures in rooms vulnerable to fires are quite a bit higher than occurred in the HELEN-FIRE 

tests. However, they can exhibit variability based on the time of year, as well as the availability of 

heating, ventilation, and air conditioning (HVAC) systems. Thus, any deterministic fire modeling 

simulation of a plant room must account for the variability in initial room temperatures specific to 

that room in the plant. Variation in the initial room temperature, or other initial conditions, often 

arise due to aleatory contributors as noted above. This variability can typically be evaluated using 

historical data specific to the plant for the uncertain initial condition. However, there may also be 

limited knowledge of that specific initial condition due to a lack of observations at the plant. This 

type of epistemic variability may lead to use of a bounding uncertainty distribution to capture a 

realistic range over which the specific initial condition is thought to vary at the plant. It is 

important to note, however, that the uncertainty distribution capturing the variability in an initial 

condition must be specific to the plant. As in the case of the HELEN-FIRE tests, the initial 

temperature was significantly lower than what would be encountered in an NPP. Variability of 

this temperature from the tests is thus not relevant to analyzing a fire at an NPP. 

 Boundary conditions for the model that can never be completely known or that exhibit inherent 

variability. As before, a model of a room fire may need to specify a temperature for a boundary 

volume to capture the degree of heat loss from the room throughout the course of a fire. This 

boundary temperature could be from a very large volume of a neighboring room, and again, may 

also vary due to natural fluctuations in temperature at an NPP throughout the year, or due 

equipment failures. As is the case with initial conditions, this type of uncertainty must be 

specified based on the variability at the plant for which the simulation is being performed. 

 Event scenario perturbations represent inputs to models capturing the driving event that 

transiently moves the state of a collection of SSCs at a power plant away from normal operating 

conditions. The range of severity for perturbations realized is either variable based on aleatory 

uncertainty in the event occurrence or may exhibit an epistemic component that arises due to 
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imperfect knowledge of the type of event given available tests. In the case of a fire in a room, the 

HRR represents a parameter used to characterize the driving force for the scenario. HRRs used in 

deterministic fire analyses are typically established using available fire tests judged to be 

reasonably prototypic of fires that could be realized at a NPP. While HRRs exhibit an aleatory 

component, it has been acknowledged as containing an epistemic component of uncertainty due 

to imperfect knowledge of fire events in NPP. RACHELLE-FIRE represents an expert judgment 

process adopted to extrapolate the observations of parameters such as HRR made during the 

HELEN-FIRE tests to NPP events. 

 Physical properties also must be specified in analytical models and introduce uncertainty that is 

typically epistemic in nature. For example, the thermal conductivity of concrete has variability 

that may be either due to an inability to completely specify the concrete composition used during 

construction of the plant (i.e., concrete samples are not available), or due to measurement 

uncertainty. These are both examples of epistemic sources of uncertainty. 

 Model parameters represent another source of uncertainty that is typically epistemic for 

deterministic analyses. These types of model parameters could be, for example, parameters to the 

turbulence model. It is typical for these types of model inputs to be established based on 

validation exercises against experimental tests that are deemed to represent reasonably prototypic 

conditions for the scenario at the NPP being analyzed. These experimental tests may either be 

separate-effect (i.e., focused on experimental evaluation of a specific set of phenomena) or 

integral (i.e., focused on evaluating the interaction of multiple phenomena typically occurring 

during a transient event in an NPP). In using tests to establish modeling parameters for a 

simulation of an NPP event, it is necessary to establish the degree to which tests are 

representative of actual plant conditions to ensure that additional extrapolation uncertainty is not 

introduced. For example, in fire tests used to validate models and develop modeling parameter 

uncertainties, generally only tests with room temperatures similar to the plant room being 

simulated should be used. In situations where this is not the case, expert judgment processes have 

been employed to facilitate characterization of uncertainties from available tests to NPP 

conditions. 

3. RISK IMPORTANCE RANKING OF FIRE PRA INPUT DATA 

In Fire PRA, fire growth and its impact on SSCs are simulated using a fire model. The outputs from 

the fire model are used to estimate PRA inputs (e.g., initiating event frequencies, basic event 

probabilities) using the “severity factor” method [26]. In this setting, the classical Importance Measure 

(IM) analysis methods, such as Fussell-Vesely (F-V) IM and Risk Achievement Worth (RAW), cannot be 

used to identify the most critical risk-contributing factors at the failure-mechanism level (e.g., input 

variables of the fire model) for two reasons [27]: (i) input parameters at the failure-mechanism level are 

given in various units and wide ranges, unlike the basic event probabilities in classical PRA that have no 

units and only range from 0 to 1; and (ii) the underlying fire model may consist of a non-closed form of 

equations (e.g., a zone model or a CFD-based model) and may involve nonlinearity and complex 

interactions among input parameters, as opposed to the classical PRA model that is a linear function of 

basic event probabilities.  

To address these challenges, the goal of this work is first to develop a new importance ranking 

methodology that can account for (a) uncertainty in the input parameters of the fire model, (b) non-

linearity and interactions among input parameters in the fire model, and (c) uncertainty in the risk outputs. 

This study makes four key contributions: 

i. A unified computational platform for Fire PRA is generated in a way that the relationships 

between the plant risk (as output from PRA) and the Fire PRA inputs at the failure-mechanism 

level are explicitly tracked. For this purpose, an Integrated PRA (I-PRA) methodological 

framework, (briefly explained in Section 3.1), previously developed by the Socio-Technical Risk 
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Analysis (SoTeRiA) research laboratory at the University of Illinois at Urbana-Champaign 

(UIUC) [28], is adopted. The new importance ranking methodology is hence referred to as the 

“I-PRA Importance Ranking Methodology” [29].  

ii. Four methodological steps are designed as the core of the I-PRA Importance Ranking and are 

explained in Section 3.2.  

iii. A computational platform is developed leveraging Risk Analysis Virtual Environment (RAVEN) 

[30] to operationalize the I-PRA Importance Ranking Methodology and is explained in Section 

3.3. 

iv. The I-PRA Importance Ranking Methodology is applied to a typical NPP fire case study 

(Section 3.4) to demonstrate its feasibility and value. 

3.1 Integrated PRA (I-PRA) Methodological Framework 

Fire I-PRA (Figure 11) is a multi-level risk analysis framework for analyzing layers of causal chains 

initiated by an internal fire that could cause a system-level initiating event (e.g., ‘IE’ in Figure 11), break 

down the defense-in-depth barriers against the progression of fire-induced damage to the safety-critical 

systems (e.g., systems ‘A’ and ‘B’ in Figure 11), and lead to core damage [28].  

 

Figure 11: Integrated Probabilistic Risk Assessment (I-PRA) framework for Fire PRA [28]. 



 

 17 

In the I-PRA framework, simulation-based models of underlying phenomena are integrated with a 

plant PRA model by generating a probabilistic interface, the Interface Module (‘d’ in Figure 11), 

equipped with uncertainty analysis, dependency treatment, and Bayesian updating [28]. In Fire I-PRA, the 

fire-related simulation modules include the Fire Simulation Module (FSM), “b” in Figure 11) and the 

First Responder Performance Module (FRP, “c” in Figure 11). Interactions between these two modules 

are addressed by creating an explicit interface (represented by a two-directional arrow between ‘b’ and ‘c’ 

in Figure 11). Key Performance Measures (KPMs) predicted by FSM are associated with fire-induced 

damage, e.g., maximum temperature inside a target cable jacket (denoted by TCB in Figure 11) and 

maximum heat flux at the surface of that cable jacket (q"CB in Figure 11). Uncertainties associated with 

input parameters of these simulation modules are propagated via features equipped in the Interface 

Module to generate probabilistic results based on the simulation outputs (e.g., probability of a component-

level failure, given fire-induced damage to target cables, represented by basic event ‘BE3’ in Figure 11), 

and these probabilistic results are connected to the plant-specific PRA scenarios (in Module “e” in Figure 

11) [28]. More details on the Fire I-PRA framework are provided by Sakurahara et al. [28, 31]. 

In the previous studies by the SoTeRiA laboratory at UIUC, Fire I-PRA was applied to a critical fire-

induced scenario (i.e., a small-break loss-of-coolant accident due to stuck-open pressurizer valves induced 

by a switchgear room fire) in an NPP [31] that has improved the realism of PRA, leading to a 50% 

reduction in the total core damage frequency associated with the selected scenario. As compared to the 

current Fire PRA methodology based on NUREG/CR-6850 [26], Fire I-PRA advances three aspects [31]:  

Table 1 summarizes four aspects that Fire I-PRA [30] has advanced, as compared to the current Fire 

PRA methodology based on NUREG/CR-6850 [25] and its subsequent NUREGs and Fire PRA FAQs. 

Table 3-A: Comparison of Fire I-PRA with Existing Fire PRA Methodologies. 

Fire PRA Methodological  

Areas 

Current Fire PRA Methodology 

(NUREG/CR-6850) I-PRA Framework 

Connection between plant PRA 

and the fire physics model 

“Passively” connected  

(i.e., fire-induced failure 

probabilities, externally 

computed by a fire model, are 

plugged into the plant PRA 

model) 

Unified computational 

framework  

(i.e., information on 

relationships between fire-

induced PRA events and 

underlying failure models is 

captured in the Interface 

Module, generating an 

automated linkage between the 

underlying simulations and the 

plant PRA)  

Uncertainty propagation & 

computation of fire-induced 

cable damage probability  

Severity factor method based on 

a predefined number of peak 

HRR bins  

Monte Carlo simulation using 

Latin-Hypercube Sampling, 

equipped with a convergence 

study 

Fire detection and suppression 

analysis 

“Implicit” treatment by 

competition between time-to-

damage and time-to-suppression 

“Explicit,” bidirectional 

interface between the Fire 

Simulation Module and the 

First Responder Response 

Module by modifying the time 

profile of HRR  
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Fire PRA Methodological  

Areas 

Current Fire PRA Methodology 

(NUREG/CR-6850) I-PRA Framework 

Risk importance ranking Ranking of the basic events in 

PRA using classical importance 

measures (e.g., Fussell-Vesely 

importance measure, Risk 

Achievement Worth)  

Global importance ranking that 

allows for ranking factors at the 

level of underlying failure 

mechanisms (e.g., input 

parameters of the Fire 

Simulation Module and the 

First Responder Response 

Module). 

 

As compared to the current Fire PRA methodology, the I-PRA framework creates a “unified” 

connection between the Plant-Specific PRA Module and the underlying physics and human performance 

models, where the communications of data and information among multiple levels of causality (i.e., fire 

growth, detection and suppression, cable damage, component failure, and system failure) are generated in 

a single computational platform [31]. In this unified framework, the relationships between the plant risk 

metrics and the input parameters associated with the underlying physics and human models can be traced 

and captured explicitly. The Interface Module in Fire I-PRA is designed so that the underlying physics 

and human models can be integrated with the existing plant PRA model developed in the commercial 

PRA software (e.g., RISKMAN [32], SAPHIRE [7]) without changes to the PRA software or significant 

modifications to the plant PRA structure. The unified connection between the underlying failure 

mechanisms and the plant PRA model allows for a comprehensive parametric study to explore the 

influences of changing the fire protection design parameters on the plant risk estimates. This feature of 

the I-PRA framework, together with the advancements in the global importance ranking [27], provides a 

basis for the development of the I-PRA Importance Ranking Methodology in this report (Section 3.2). In 

previous studies by the SoTeRiA laboratory at UIUC [31], Fire I-PRA was applied to a critical fire-

induced scenario (i.e., a small-break loss-of-coolant accident due to stuck-open pressurizer valves induced 

by a switchgear room fire) in an NPP, which improved the realism of PRA, leading to a 50% reduction in 

the core damage frequency associated with the selected scenario. In the I-PRA framework, the Interface 

Module can treat multi-level dependencies by using the simulation-informed approach for dependency 

analysis developed in the previous research by the SoTeRiA Laboratory at UIUC [33]. 

3.2 Methodological Steps for the I-PRA Importance Ranking Methodology 

Four methodological steps to implement the I-PRA Importance Ranking Methodology, developed in 

this work, are explained in the following sub-sections. 

3.2.1 Step 1 – Qualitative analysis of potential sources of uncertainty and conservatism 

in Fire PRA 

Step 1 provides a qualitative analysis to identify potential sources of uncertainty and conservatism in 

Fire PRA. This qualitative analysis is conducted based on a combined use of expert judgment, literature 

review, and insights from existing Fire PRAs (e.g., results of qualitative and quantitative screening in 

plant-specific Fire PRAs). A comprehensive search for potentially dominant sources of uncertainty and 

conservatism in Fire PRA requires a thorough inspection of all the tasks of the Fire PRA process 

documented in NUREG/CR-6850. When adding detailed simulation models (e.g., fire crew performance 

model [34]) into the scope of Fire PRA or when existing simulation models are utilized in an advanced 

framework (e.g., use of FDS/CFAST model in the Fire I-PRA framework [28, 31]) to generate 

simulation-based PRA inputs (e.g., fire-induced cable damage probabilities), the search for potentially 
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dominant sources of uncertainty and conservatism needs to consider additional factors, e.g., input 

parameters of those simulation models.  

Within the scope of this project, the implementation of Step 1 involves a literature review that 

encompasses regulatory documents, academic research publications, and industry reports to identify 

potentially dominant sources of uncertainty and conservatism in fire progression modeling, focusing on 

electrical cabinet fire scenarios in NPPs. The review identifies, for example, that the HRR curves 

recommended for use in the current Fire PRA methodology are primarily derived from expert judgment 

and experimental data obtained from historical fire tests [13, 26]. Those supporting experiment data and 

expert judgment, therefore, should be included in the scope of Step 1 to identify potentially dominant 

sources of uncertainty and conservatism associated with fire progression. Based on the literature review 

and engineering judgment, all key parameters having potentially significant influences on fire progression 

are identified. 

3.2.2 Step 2 – Quantitative characterization of dominant sources of uncertainty in Fire 

PRA based on experimental data 

Step 2 uses available fire test and experiment data as well as engineering judgment to conduct a 

quantitative characterization for the potentially dominant sources of uncertainty and conservatism 

identified in Step 1. Within the scope of this project, the uncertainty characterization relies on historical 

fire test and experiment data collected by SNL. Results of Step 2 are the probability distributions 

characterizing those sources of uncertainty and conservatism extracted from historical fire tests and 

experiments, which, within the scope of this project, encompass key input parameters of the mechanistic 

fire models, commonly used for the Detailed Fire Modeling (Task 11 of NUREG/CR-6850). 

In this step, for each key input parameter of the fire simulation model, an adequate parametric 

probability distribution is selected, and the parameters of the selected probability distribution (e.g., shape 

and scale parameters for a gamma distribution) are estimated. Two layers of uncertainty associated with 

each probability distribution should be considered. The first is the randomness or stochasticity associated 

with value of the input parameter being considered. This layer of uncertainty can be referred to as the 

aleatory uncertainty that characterizes the variability of the input parameter. Meanwhile, the second layer 

of uncertainty is associated with the type of the parametric probability distribution and the statistical 

estimation of the distribution parameters. This layer of uncertainty is categorized as an epistemic 

uncertainty source that is induced by lack of knowledge on the parametric probability distribution and the 

estimation of its unknown parameters based on limited empirical data. Using historical fire test and 

experiment data, the parametric probability distribution and its parameters can be determined using 

parameter estimation techniques (e.g., Maximum Likelihood Estimation (MLE) method, Bayesian 

approach), and tested with goodness-of-fit tests (e.g., Kolmogorov-Smirnov, Chi-squared tests). Within 

the scope of the project, the MLE method is used for parameter estimation, while the Kolmogorov-

Smirnov method is used for goodness-of-fit test. 

3.2.3 Step 3 – Quantitative screening of potential sources of uncertainty using Morris 

Elementary Effects Analysis 

Step 3 performs a quantitative screening of the potentially dominant sources of uncertainty and 

conservatism using the Morris EE analysis method [35],[36]. The Morris EE analysis method provides an 

economical, randomized one-at-a-time (OAT) design of sensitivity analysis for screening out those input 

parameters of the simulation modules (in Fire I-PRA) that have negligible influence on the KPMs of 

interest obtained from the simulation output (e.g., TCB and q"CB in Figure 11). For predicting the KPMs of 

interest, the fire progression model can be developed using a CFD-based model (e.g., FDS code [37]) or a 

two-zone model (e.g., CFAST code [38]). Based on the results of this screening, input parameters whose 

influence on the KPMs cannot be ignored will be kept as random variables, and their uncertainties will be 

propagated through the Fire I-PRA framework during the Global IM analysis in Step 4 (Section 3.2.4). 
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This quantitative screening can help reduce the complexity of the problem and the total number of 

replications of the simulation runs required for implementing the Fire I-PRA framework. 

In the Morris Elementary Effect (EE) analysis method, EE is an approximate local first derivative of 

the model output with respect to each input parameter. An EE distribution associated with a specific input 

parameter is computed by the individually randomized OAT design at different points in the input space 

[35, 36]. Suppose that the fire simulation model with output 𝑌 (representing the KPMs) can be expressed 

as a function of nX random key input parameters 𝑋𝑖 (identified in Step 1), where 𝑖 ∈ {1,2, … , 𝑛𝑋}: 

 𝑌 = 𝑔(𝑋1, 𝑋2, … , 𝑋𝑛𝑋). (1) 

For simplicity of description, assume that each input parameter Xi is a random variable between [0, 1]. To 

compute the EE, the state space of each input parameter is discretized into a p-level grid so that each input 

parameter Xi can be randomly sampled from its discretized values. Using two sets of input parameters 

where Xi has two different values (𝑥𝑖 and 𝑥𝑖 + ∆), while the other parameters are kept the same, the EE of 

input parameter Xi is defined as 

 𝐸𝐸𝑖 =
𝑔(𝑥1, ⋯ , 𝑥𝑖−1, 𝑥𝑖 + ∆, 𝑥𝑖+1, ⋯ , 𝑥𝑛𝑋) − 𝑔(𝑥1, ⋯ , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑛𝑋)

∆
, (2) 

where Δ is an increment in xi and is set to a predetermined value of 𝑝 [2(𝑝 − 1)]⁄  with p assumed to be 

even [35]. An empirical distribution 𝐹𝑖  of the EE associated with input parameter Xi, i.e., 𝐸𝐸𝑖  ~ 𝐹𝑖, is 

obtained by randomly sampling different sets of values from the input space of Xi and repeating the 

calculation of 𝐸𝐸𝑖 using Eq. (2). Based on the resultant random samples of 𝐸𝐸𝑖, two sensitivity measures 

suggested by Morris [35], i.e., the mean value 𝜇𝑖 and standard deviation 𝜎𝑖 of the distribution 𝐹𝑖 of 𝐸𝐸𝑖, 

can be estimated as follows: 

 𝜇𝑖 =
1

𝑟
∑ 𝐸𝐸𝑖

𝑗

𝑟

𝑗=1

, (3) 

 𝜎𝑖
2 =

1

𝑟 − 1
∑(𝐸𝐸𝑖

𝑗
− 𝜇𝑖)2,

𝑟

𝑗=1

 (4) 

where 𝑟 is the number of observations of 𝐹𝑖  per input parameter for each model output, estimated at a cost 

of 𝑟 ∗ (𝑛𝑋 + 1) model evaluations. 

The measure µ assesses the overall influence of an input parameter on the model output, with higher 

values of µ implying a larger main effect that the parameter has on the model output. Meanwhile, the 

measure σ estimates the ensemble of that input parameter’s effects and indicates the influences of 

nonlinearity and interactions among input parameters on the model output. A higher value of σ implies 

that the EEs of that input parameter varies considerably depending on the choice of the sample point 

where it is computed, i.e., depending on the choice of the values of other input parameters in the input 

space. It should be noted that the sole use of µ may fail to find a parameter that has considerable influence 

on the model output in situations where the EE distribution has both positive and negative elements, i.e., 

the model is non-monotonic or has interaction effects. In such situations, some effects may cancel out 

each other in the process of computing µ, producing a low value of µ for an important parameter. In this 

case, it is recommended that values of both µ and σ be simultaneously considered since a parameter with 

EE of different signs (i.e., that cancel each other out) would have a low value of µ but a considerable 

value of σ [35]. Alternatively, Campolongo et al. [36] suggest using another measure, µ*, which is the 

mean of the absolute values of the EE, to solve the problem of different signs. The drawback is the loss of 
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information on the sign of the EE. To recover this loss of information, a simultaneous examination of 

both µ and µ* can be performed with no extra computational cost. For example, if µ is low while µ* is 

high, it indicates that the parameter being considered carries the effects of different signs. In practice, the 

use of µ* has been shown to be more convenient when the model output contains several variables [36]. 

To extract maximum sensitivity information, however, all three of these sensitivity measures may be used 

[39]. Note that even though the ranking of the input parameters may vary from output to output (when 

several model outputs are of interest), the Morris EE analysis method may still be useful for identifying a 

subset of parameters that is non-influential for all model outputs (or plays a smaller role in the whole 

model). To implement the Morris EE analysis in Step 3, a coupling between FSM (Module “b” in Figure 

11) and the RAVEN tool [30] is developed. Details on this computational coupling are given in Section 

3.3. 

3.2.4 Step 4 – Global Importance Measure Analysis 

For the potentially dominant sources of uncertainty and conservatism that are retained in Step 3 

above, Step 4 conducts a Global IM analysis to generate a comprehensive ranking based on their 

influence on the plant risk. Due to the nature of the risk-contributing factors at the level of the simulation 

inputs and the presence of nonlinearity and interaction effects of the parameters in the fire progression 

model, the Global IM analysis has to account for (i) uncertainty in the input parameters of the fire model, 

(ii) nonlinearity and interactions among input parameters in the fire model, and (iii) uncertainty in the risk 

outputs [27].  

To select a proper Global IM method for ranking the input parameters in I-PRA, a literature review 

has been conducted to identify key attributes that are used to differentiate various types of importance 

ranking approaches and to utilize these attributes for justifying the selection of a Global IM method for 

use with the I-PRA Importance Ranking Methodology. Four key attributes have been identified [27], 

including: (a) level of risk-contributing factors (i.e., component vs. failure-mechanism level), (b) 

uncertainty of input parameters, (c) uncertainty of the model outputs, and (d) nonlinearity and interactions 

in the model. Three main types of global sensitivity analysis methods have been identified and their main 

characteristics are discussed in Section 3.2.4.1. Section 3.2.4.5 summarizes the evaluation of the three 

types of global sensitivity analysis methods based on their capabilities to address the four key attributes 

listed above and proposes a Global IM method for the I-PRA Importance Ranking Methodology. 

3.2.4.1 Existing Global Methods for Importance Ranking 

In literature, global methods for importance ranking include those that are used to (i) conduct 

“sensitivity analysis” for input parameters at the level of failure mechanisms with respect to the physical 

performance outputs or the component failure probabilities, and (ii) conduct “importance measure 

analysis” for the PRA basic events (i.e. at the component level) with respect to the system risk. The 

multiple levels of “importance measure analysis” in this context (including ‘‘failure mechanism,’’ 

‘‘components,’’ and ‘‘system’’) refer to the different layers of accident causation considered in the I-PRA 

framework (Figure 11). Global methods for importance ranking can be divided into three categories: 

correlation-based, variance-based, and moment-independent. 

3.2.4.2 Correlation-Based Global Sensitivity Analysis Methods 

Correlation-based global methods use input-output correlation as a measure of the influence of 

uncertain inputs on output uncertainty. Importance ranking influential factors (e.g., input parameters) is 

based on sensitivity measures calculated using correlation coefficients. The most commonly-used 

correlation coefficients found in literature include Pearson Correlation Coefficient (PEAR), Spearman 

Correlation Coefficient (SPEAR), Standardized Regression Coefficients (SRCs), and Partial Correlation 

Coefficients (PCCs) [40-47]. For example, the SCRs indicate the total strength of the linear relationship 

between the model output and each input parameter, while the PCCs indicate the strength of the linear 

relationship between the model output and each input parameter after the linear effects of all other input 
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parameters are removed. These two methods can also be conducted for the rank-transformed data, where 

they are referred to as the Standardized Rank Regression Coefficients (SRRCs) and Partial Rank 

Correlation Coefficients (PRCCs), to improve the accuracy of the ranking when the model is a nonlinear 

but monotonic function [45].  

Performance of the correlation-based methods is measured by the coefficient of determination (RY
2), 

which is defined as the ratio of the total sum of squares to the regression sum of squares and represents 

the fraction of the model variance explained by the regression [40, 41, 44]. A low value of RY
2 would 

signal “a poor regression model.” In such cases, the ability of the correlation-based methods to capture the 

output variability is low, and it would be unrealistic to assess the influence of the input variables based on 

the correlation coefficients. This typically occurs for nonlinear models and also when interactions among 

model parameters emerge. Variance-based methods are then developed and utilized to integrate and 

improve the information obtained by these correlation-based methods. 

3.2.4.3 Variance-Based Global Sensitivity Analysis Methods 

Variance-based global methods define importance indicators which are independent of model 

linearity and use the variance of the model output as a basis for assessing uncertainty importance. 

Importance ranking of influential factors (e.g., parameters) is based on sensitivity measures calculated as 

the expected reduction in the variance of the model output, given that a specific input parameter (or a 

specific set of input parameters) is fixed [48, 49]. Common variance-based approaches found in the 

literature include First-Order Effects (describing the percentage reduction in the output variance that is 

achieved if an uncertain parameter is fixed [50-53]) and Total Effects (describing the percentage of 

variance that remains if all parameters, except theone specific parameter is treated as random variable, are 

fixed [52-54]). For example, the Sobol method [51] is one of the most widely used variance-based 

techniques which measures sensitivity across the whole input space, deals with nonlinear, and inputs 

interaction terms within the model. The “total effect index” measures the contribution to the output 

variance of the input Xi, including all variance caused by interactions of any order with other input 

variables [51]. Note that, in the variance-based methods, sensitivity measures can be determined for a set 

of variables as well as for single parameters. This is not possible with the correlation-based methods and 

represents a methodological advantage for the variance-based methods when compared to the correlation-

based methods. 

In variance-based global methods, parameters with the highest values of the importance indicator are 

the most effective in reducing output variance. The interpretation of the variance-based importance 

measures is, however, somewhat stretched so that they are deemed to measure “the relative importance of 

each input in driving the uncertainty” [55]. This assumes that the output variance is “sufficient” to 

describe the output variability. In some cases, the assumption that variance is sufficient to describe 

uncertainty, however, does not hold and what reflects a decision-maker’s state of knowledge of an 

uncertain quantity is the distribution [55]. Hence, an ideal measure of uncertainty importance should 

account for changes to the entire distribution, not just to one descriptor of the distribution. To overcome 

this limitation, other efforts have focused on moment-independent global methods, as discussed below. 

3.2.4.4 Moment-Independent Global Sensitivity Analysis Methods 

Moment-independent global methods define uncertainty importance measures not by referring to a 

particular moment of the output; instead, they look at the entire distribution of the output. Two categories 

of moment-independent methods found in literature are: (i) probability distribution function (pdf)-based 

methods, and (ii) cumulative distribution function (CDF)-based methods. 
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Regarding the pdf-based methods, for example, Borgonovo [56] proposed a moment-independent 

sensitivity indicator, δi, which assesses the influence of input parameters on the model output by 

considering the entire probability distribution of input parameters and model output without relying on 

correlation coefficients or any moments of the model output. This method uses the difference between the 

unconditional pdf and conditional pdf, 𝑠(𝑋𝑖), as a measure of sensitivity: 

 𝑠(𝑋𝑖) = ∫|𝑓𝑌|𝑋𝑖
(𝑦) − 𝑓𝑌(𝑦)|𝑑𝑦, (5) 

where fY (y) is the unconditional pdf of the model output Y, while fY|Xi (y) is the conditional pdf of the 

model output Y given that the input parameter Xi is fixed at xi*. By repeating the computation of s (Xi) 

with different choices of xi*, the expected value of s (Xi) is computed by 

 𝐸𝑋𝑖
[𝑠(𝑋𝑖)] = ∫ 𝑓𝑋𝑖

(𝑥𝑖) [∫|𝑓𝑌|𝑋𝑖
(𝑦) − 𝑓𝑌(𝑦)|𝑑𝑦] 𝑑𝑥𝑖 (6)  

where fXi (xi) is the marginal pdf for input parameter Xi. The moment-independent sensitivity indicator δi is 

then defined by 

 𝛿𝑖 =
1

2
𝐸𝑋𝑖

[𝑠(𝑋𝑖)] (7) 

Regarding the cdf-based methods, for instance, Liu and Homma [57] proposed a moment-

independent sensitivity indicator, Si
 (CDF), which quantifies the influence of input parameters based on the 

expected change in the cdf of the model output. Si
 (CDF) is defined based on the difference between the 

unconditional cdf FY (y) and the conditional cdf given Xi = xi
*, FY|Xi (y), which is quantified by the area 

enclosed by these cdfs: 

 𝐴(𝑋𝑖 = 𝑥𝑖
∗) = ∫ |𝐹𝑌|𝑋𝑖=𝑥𝑖

∗(𝑦) − 𝐹𝑌(𝑦)|𝑑𝑦
𝑦∀

 (8) 

Based on the outputs from the replicated calculation of A (Xi), the expected value of A (Xi) is estimated by 

 𝐸[𝐴(𝑥𝑖)] = ∫ 𝑓𝑋𝑖
(𝑥𝑖)𝐴(𝑥𝑖)𝑑𝑥𝑖

𝑥𝑖
∀

 (9) 

The cdf-based sensitivity indicator Si
 (CDF) is defined as 

 𝑆𝑖
(𝐶𝐷𝐹)

= 𝐸[𝐴(𝑋𝑖)] |𝐸(𝑌)|⁄  (10) 

where E (Y) is the expected value of the unconditional output Y [57].  

Another example of the cdf-based methods is proposed in Pianosi et al. [58, 59], and called the 

PAWN sensitivity index. PAWN quantifies the distance between unconditional and conditional cdfs 

based on the Kolmogorov-Smirnov (KS) statistic, defined by 

 𝐾𝑆(𝑥𝑖
∗) = max 

𝑦
|𝐹𝑌(𝑦) − 𝐹𝑌|𝑋𝑖=𝑥𝑖

∗(𝑦)| (11) 
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The KS statistic depends on the selection of xi
* where the input parameter Xi is fixed. The PAWN 

index, denoted by Ti, is defined by considering a statistic of the KS value (e.g., median, maximum) over 

all possible values of xi
* [58, 59]: 

 𝑇𝑖 =  𝑠𝑡𝑎𝑡𝑥𝑖
[𝐾𝑆(𝑥𝑖)] (12) 

As indicated by Equation (11), the PAWN indicator accounts for the information on the uncertainty 

of the model output by considering the maximum difference between the unconditional and conditional 

cdfs of the model output. Other studies on cdf-based sensitivity measures can be found in Refs. [60-62]. 

3.2.4.5 Comparative Analysis for Global Sensitivity Analysis Methods 

The three types of global sensitivity analysis methods discussed above differ in their capabilities to 

account for the four key attributes that should be addressed in Step 4 of the I-PRA Importance Ranking 

Methodology, i.e., generating a comprehensive ranking of the risk-contributing factors at the level of 

simulation model input parameters based on their influence on the plant risk. The four attributes, as 

previously listed, are (a) level of risk-contributing factors (i.e. component vs. failure-mechanism levels), 

(b) uncertainty of input parameters, (c) uncertainty of model outputs, and (d) nonlinearity and interactions 

in the model. 

Attribute (a): The Global IM analysis in Step 4 aims to generate the ranking of input parameters of 

the simulation module in I-PRA at the failure-mechanism level based on their impact on the system risk 

metrics computed by the plant-specific PRA module. All three types of the global methods discussed in 

Section 3.2.4.1 satisfy this requirement.  

 Attribute (b): The input parameters of the simulation models have uncertainty characterized by 

probability distributions; therefore, the Global IM analysis for I-PRA should be capable of capturing the 

uncertainty distributions of the input parameters. All three types of the global methods discussed in 

Section 3.2.4.1 can account for both range and shape of probability distributions for input parameters, as 

the sensitivity is computed by randomly sampling the input parameters. 

Attribute (c): The consideration of uncertainty associated with the risk output is a crucial requirement 

for the Global IM analysis in Step 4 in order to determine whether the uncertainty in the risk estimates 

should be reduced, and if so, where to prioritize the efforts on the uncertainty reduction (e.g., reducing 

uncertainty associated with highly ranked input parameters of the fire model to efficiently reduce the 

uncertainty in the risk estimates). In considering the uncertainty of the model output, the adequacy of the 

correlation-based global methods (Section 3.2.4.2) depends on whether the variation of the model output 

is accurately captured by the selected regression model. Variance-based global methods (Section 3.2.4.3) 

can also capture uncertainty of the model output using their variance; however, these methods can 

produce misleading conclusions [55] when (i) input parameters and model output have asymmetric 

uncertainty distributions and long tails, or (ii) the model output has multiple modes. This limitation is also 

observed in the correlation-based global methods when the coefficient of determination RY
2 is used as a 

measure of sensitivity because RY
2 is defined by the variance of the model output. In contrast, the 

moment-independent global methods (Section 3.2.4.4) capture the uncertainty of the model output by 

using its entire probability distribution (pdf or cdf) as a measure of sensitivity. Compared to the cdf-based 

methods, the pdf-based methods have two limitations in that (i) the construction of empirical pdf 

(e.g., histogram or kernel density estimation) is affected by user-specified tuning parameters [58] and 

(ii) compared to the cdf-based methods, a smaller amount of information on uncertainty of the model 

output (i.e. the maximum distance between conditional and unconditional cdfs) is captured. 

Attribute (d): The capability of addressing nonlinearity and interactions in the model, is also an 

important requirement for the Global IM analysis in Step 4 of the I-PRA Importance Ranking 

Methodology because the simulation modules in I-PRA are composed of spatiotemporal models of 

underlying failure mechanisms, most often formed by nonlinear governing equations and involving 
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interactions among the input parameters. Among the three types of global sensitivity analysis methods, 

the correlation-based global methods are not adequate for addressing this aspect because their capability 

deteriorates when the model is a non-monotonic function or when it involves a high degree of interactions 

[55]. The variance-based and moment-independent global methods, on the other hand, can more 

accurately capture nonlinearity and interactions by sampling all input parameters simultaneously when 

quantifying the sensitivity measures. 

Based on the evaluation above, the Si
 (CDF) method, proposed by Liu and Homma [57], is selected as 

the most suitable method for the Global IM analysis in I-PRA considering that (i) Si
 (CDF) can explicitly 

address all four attributes discussed above, and (ii) as compared to the pdf-based methods [56] and the 

cdf-based methods using distance (or norm) between cdfs [58, 59], Si
 (CDF) can capture more information 

on the uncertainty of the model outputs. To implement the Global IM analysis in Step 4, the coupling 

between FSM and RAVEN (Section 3.3) is equipped with the Si
 (CDF) method. The computational 

procedure for calculating the Si
 (CDF) metric using this FSM-RAVEN coupling is discussed in Section 

3.3.3. 

3.3 Leveraging RAVEN to Develop a Computational Platform for the I-

PRA Importance Ranking Methodology 

To implement Steps 3 and 4 of the I-PRA Importance Ranking Methodology (Section 3.2), a coupling 

between FSM (Module “b” in Figure 11, using CFAST/FDS) and RAVEN [30] is developed (hereafter 

referred to as “FSM-RAVEN coupling,” see Figure 12 below). Then, this project, for the first time, 

integrates the Morris EE analysis and the Global IM analysis [27] with the FSM of the I-PRA framework 

in RAVEN. Specifically, for Step 3, the FSM-RAVEN coupling is equipped with the Morris EE analysis 

using an open-source Python library for sensitivity analysis, namely SALib [63]. For Step 4, the 

FSM-RAVEN coupling is equipped with the Si
 (CDF) method by developing a Python script for 

implementing the Global IM method for I-PRA [27] and interfacing it with the FSM-RAVEN coupling. 

The following subsection provides more details on the FSM-RAVEN coupling and computational 

procedures used for implementing the Morris EE analysis and the Global IM (Si
 [CDF] method) analysis. 

 

Figure 12: FSM-RAVEN coupling for Morris EE and Global IM analyses. 
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3.3.1 Coupling FSM and RAVEN 

Among the five fire models verified and validated by NRC for fire protection applications in NPPs 

[4,64], CFAST [38], and FDS [37] are included in the development of the FSM-RAVEN coupling. 

Between these two, FDS can predict the fire-induced conditions and the physical KPMs for equipment 

damage with higher resolution; however, its computational cost is much higher than that of CFAST 

because FDS numerically solves Navier-Stokes equations, which require higher spatiotemporal 

resolutions compared to the engineering correlations for momentum conservation used in CFAST. As 

outputs, both CFAST and FDS generate predictions for the evolution of physical KPMs associated with 

the fire-induced equipment damage, e.g., TCB and q"CB in Figure 11.  

As illustrated in Figure 12, in the FSM-RAVEN coupling, RAVEN provides a statistical analysis 

platform capable of interfacing with FSM and is used for driving simulation jobs with either CFAST or 

FDS. To perform the Morris EE analysis or the Global IM analysis, the FSM-RAVEN interface, coded in 

Python, first generates random samples of the FSM input parameters by sampling from their associated 

distributions (obtained in Step 2 of the I-PRA Importance Ranking Methodology). The selection of the 

sampling strategy depends on the types of sensitivity analyses used in each step (the Morris EE analysis 

in Step 3; or the Global IM analysis in Step 4 of the I-PRA Importance Ranking Methodology). The input 

parameter samples are then provided for RAVEN to execute the FSM simulation runs. Simulation 

outputs, which include information on the KPMs (e.g., TCB and q"CB of the cable targets), are collected by 

RAVEN and fed back into the FSM-RAVEN interface to generate fire-induced equipment damage 

probabilities. Consequently, the Morris EE analysis and the Global IM analysis features equipped in the 

FSM-RAVEN interface use information on the KPMs and the fire-induced equipment damage to compute 

corresponding sensitivity measures for each input parameter (i.e., µ and σ for the Morris EE analysis and 

Si
 [CDF] for the Global IM analysis). The FSM-RAVEN interface, when fully integrated into the I-PRA 

framework, can generate these sensitivity measures with respect to the impact of each input parameter on 

model outputs obtained at multiple levels of causality in the I-PRA framework. In other words, the 

sensitivity measures can be generated at the fire simulation output level (i.e., to capture the impact of each 

input parameter on the physical KPMs such as TCB and q"CB), at the level of equipment damage (i.e., 

capture the impact of each input parameter on the fire-induced equipment damage probability), or at the 

level of PRA outputs (to capture the impact of each input parameter on the plant risk metrics such as CDF 

and LERF).  

The FSM-RAVEN interface also provides a valuable tool for the sampling-based uncertainty 

quantification in Fire I-PRA, which aims at: (i) propagating the uncertainties associated with the FSM 

input parameters using Monte Carlo simulation and (ii) making the FSM model probabilistic and creating 

a probabilistic interface between FSM and the plant-specific PRA scenarios. This provides an 

improvement for the existing Fire PRA which uses a simplified uncertainty analysis approach 

(i.e., severity factor method [26]).  

3.3.2 Computational procedure for Morris EE analysis integrated with FSM-RAVEN 

This section provides computational steps for calculating the sensitivity measures µ and σ for the 

Morris EE analysis (in Step 3 of the I-PRA Importance Ranking Methodology) using FSM-RAVEN 

coupling (Figure 12). These computational steps are implemented using an open-source Python library for 

sensitivity analysis, namely SALib [63].  

1. Generate a set of realizations of the uncertain input parameters from their associated distributions 

using the Morris sampling strategy [35, 65].  

2. For each realization generated, run the FSM simulation to compute and store the model output, 

i.e., the KPMs of interest such as TCB and q"CB. 

3. Repeat Step 1 and Step 2, above, for 𝑁 times, with 𝑁 being the sample size: 𝑁 =  𝑟 ∗ (𝑛𝑋 + 1), 

as explained in Section 3.2.3. 
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4. Calculate the EE for each input parameter using Equation (2) in Section 3.2.3. 

5. Estimate the sensitivity measures µ, µ*, and σ for each input parameter using Equations (3) and 

(4) in Section 3.2.3. 

3.3.3 Computational procedure for global Importance measure analysis integrated with 

FSM-RAVEN 

This section provides computational steps for estimating the sensitivity measure Si
 (CDF) for the Global 

IM analysis (in Step 4 of the I-PRA Importance Ranking Methodology) using FSM-RAVEN coupling 

(Figure 12). The estimation of Si
 (CDF) in this study uses a two-loop Monte Carlo simulation technique that 

was originally used in Liu and Homma [57]. Key steps to performing this two-loop Monte Carlo 

simulation are summarized below, while details of the implementation can be found in Appendix I of 

Sakurahara et al. [27]. 

1. Construct the unconditional cdf of the model output Y, FY(y), by Monte Carlo simulation.  

2. Calculate the conditional model outputs with the substituted column method [57], following the 

sub-steps below: 

a. This method begins by developing two matrices (A and B) consisting of random samples of 

Xi (𝑖 ∈ {1,2, … , 𝑛𝑋}) whose size is nS1 × nX and nS2 × nX, respectively. Here, nS1 and nS2 

represent the sample sizes for the outer and inner loops of the two-loop MC simulation, 

respectively. 

b. Si
 (CDF) is computed by using a new nS2 × nX matrix (matrix C) constructed by ‘‘substituting’’ 

one of the columns of matrix B for the corresponding column in matrix A. 

c. Repeat this substitution for all columns of matrix B to obtain a full design matrix of size (nS1 

× nS2 × nX). 

d. Run the FSM simulation to compute and store the corresponding conditional model outputs. 

3. Based on the conditional outputs, construct the conditional cdfs of the model output, given that 

the input parameter Xi is fixed at a certain value xi*, denoted by FY|Xi(y).  

4. Calculate 𝐴(𝑋𝑖 = 𝑥𝑖
∗) using Equation (8) in Section 3.2.4.4. 

5. Repeat the steps above with the Monte Carlo method using random sampling for the outer loop, 

i.e., random sampling of xi*. Based on outputs from the replicated calculation of A(Xi), the 

expected value of A(Xi) is calculated using Equation (9) in Section 3.2.4.4. 

6. Calculate the sensitivity measure Si
 (CDF) using Equation (10) in Section 3.2.4.4. 

3.3.4 Computational procedure for computation of fire-induced equipment damage 

probability using FSM-RAVEN  

This section provides computational steps for estimating fire-induced equipment damage probability 

(e.g., fire-induced cable damage probability) using the output obtained from simulation runs. In this 

procedure, input parameters of the fire simulation model are randomly sampled from their distributions. 

The simulations are then repeatedly performed with each set of the sampled values to compute the KPMs 

associated with the fire-induced equipment damage (e.g., maximum temperature inside the cable jacket is 

selected as the KPM of interest when evaluating fire-induced cable damage). The equipment thermal 

damage threshold is also randomly sampled from its distribution, and by comparing the KPM of interest 

against the damage threshold, the fire-induced equipment damage probability can be computed. Key steps 

of this calculation process are summarized below, while more details can be found in Sakurahara et al. 

[28, 33]. 
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1. Generate random samples from the input parameters using the simple random sampling. The ith 

set of the input parameters is denoted as 𝐱(𝑖), with 𝑖 = 1, 2, … , 𝑁𝑖 where 𝑁𝑖 represents a 

sufficiently large sample size in the Monte Carlo simulation for the simulation input parameters. 

2. Run the simulation model using each set of the generated random samples to predict the KPM 

associated with the fire-induced damage of equipment k, denoted as 𝑇𝑘
(𝑖)

. 

3. Generate random samples of the damage threshold from its distribution using the simple random 

sampling. The jth sample of the damage threshold is denoted as 𝐓crt
(𝑗)

, 𝑗 = 1, 2, … , 𝑁𝑗 . Here 𝑁𝑗 

represents a sufficiently large sample size in the Monte Carlo simulation for the damage threshold 

sampling.  

4. For each 𝑇𝑘
(𝑖)

, use Eq. (13) below to compute the point estimate of the fire-induced cable damage 

probability, �̂�𝑘,𝑖
∗ : 

�̂�𝑘,𝑖
∗ =

1

𝑁𝑗
∑ 𝐼 (𝑇𝑘

(𝑖)
, 𝑇crt

(𝑗)
)

𝑁𝑗

𝑗=1
, 𝑖 = 1,2, ⋯ , 𝑁𝑖;  𝑗 = 1, 2, … , 𝑁𝑗 (13) 

where the indicator function is defined as: 

𝐼(𝑎, 𝑏) = {
  1 , if 𝑎 > 𝑏
  0 , otherwise

. (14) 

5. Using the �̂�𝑘,𝑖
∗  (𝑖 = 1, 2, … , 𝑁𝑖) outputs obtained from Eq. (13), construct the empirical histogram 

for the fire-induced damage probability distribution for equipment k. Based on the setting of the 

fire simulation model, this constructed histogram represents the uncertainty associated with the 

fire-induced damage probability of each damage target (equipment) of interest. 

3.4 Implementing I-PRA Importance Ranking Methodology in a Case 

Study and Interpreting Results 

 This section reports on a case study used in this project to demonstrate the four steps of the I-PRA 

Importance Ranking Methodology (Section 3.2). The fire scenario in the case study is a typical and 

realistic NPP fire scenario selected from NUREG-1934 Scenario D (a motor control center panel fire in a 

switchgear room) [4]. Within the scope of this project, CFAST is used for modeling the fire scenario. 

This is because (i) CFAST, rather than FDS is more commonly applied in Fire PRAs of NPPs in the U.S, 

and (ii) the computation with FDS is demanding considering the trials and errors required in the 

development of the methodology and computational platform.  

To minimize the efforts needed for validation of CFAST, this case study closely follows the 

geometry, dimensions, and material properties used in Appendix D of NUREG-1934 [4], for which the 

CFAST has been validated using a procedure recommended by the U.S. NRC [2],[3] and NIST [12]. 

Figure 13 shows the configuration of the fire compartment used in this case study. 



 

 29 

 

Figure 13: Configuration of the fire compartment used in the case study (adopted from NUREG-1934 

Scenario D [4]). 

The boundary walls of this fire compartment are made of concrete with a 0.6-m thickness. The 

material properties of the concrete, including thermal conductivity, specific heat, and density, are treated 

as random variables. Two electrical cabinets are placed in the fire compartment: one is assumed to be the 

fire ignition source, while the other is a potential target of fire-induced damage. In addition, three cable 

trays (A, B, and C in Figure 13) are installed near the ceiling: Cable Tray A is placed directly above the 

ignition source cabinet, Cable Tray B is installed above the other cabinet, and Cable Tray C is placed in 

the right portion of the fire compartment which has a higher ceiling. The cable trays are assumed to be 

filled with cross-linked polyethylene insulated cables with neoprene jackets. These are considered 

thermoset materials. Each cable is modeled as a cylinder with diameter of 1.5 cm with homogeneous 

physical properties in accordance with the Thermally-Induced Electrical Failure (THIEF) model proposed 

in [17]. The cable jacket thickness is treated as a random variable to evaluate its impact on the KPMs of 

interest. In this case study, six KPMs of interest are the maximum temperature inside the cable jacket 

(TCB) and maximum heat flux at the surface of the cable jacket (q"CB) of the three target cable trays. More 

details of this fire scenario can be found in Appendix D to NUREG-1934 [4]. 

3.4.1 Step 1 – Qualitative analysis of potential sources of uncertainty and conservatism 

in Fire PRA 

For the selected fire scenario, the literature review and engineering judgment process have identified 

nine input parameters of the fire simulation models (related to the HRR curve, concrete material 

properties, cable material properties, and fire location) that have potentially significant influences on fire 

progression. These nine parameters are listed in the second column of Table 3-B. 

3.4.2 Step 2 – Quantitative characterization of dominant sources of uncertainty in Fire 

PRA based on experimental data  

 For Step 2, based on the analysis of historical fire experiment and test data provided by SNL and 

previous work by Sakurahara et al. [28], uncertainties associated with the nine input parameters 

(identified in Step 1) are represented by probability distributions. To obtain these distributions, the 

Maximum Likelihood Estimation (MLE) method for parameter estimation and the Kolmogorov-Smirnov 

goodness-of-fit test were used. The nine input parameters and their resulting distributions are listed in the 

third column of Table 3-B. Note that, due to the lack of data on fire location, this work assumes that the 

location of the fire source is uniformly distributed along the length of the ignition cabinet. 
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Table 3-B: List of input parameters treated as random variables and associated uncertainty distributions. 

ID Input Parameters Probability Distribution Sources 

Input parameters associated with the HRR curve 

X1 Maximum HRR [kW] Gamma (α = 0.36, β = 57) NUREG-2178 [13] 

X2 
Time to maximum HRR 

[minutes] 
Uniform (4, 18) 

Sakurahara et al. [28], based on 

experimental data provided in 

NUREG/CR-6850 [26] 

X3 
Duration of max HRR 

[minutes] 
Triangular (0, 0, 20) 

Sakurahara et al. [28], based on 

experimental data provided in 

NUREG/CR-6850 [26] 

X4 Time to decay [minutes] Uniform (10, 30) 

Sakurahara et al. [28], based on 

experimental data provided in 

NUREG/CR-6850 [26] 

Input parameters associated with concrete material properties 

X5 
Thermal conductivity of 

concrete [W/(m K)] 
Gamma (α = 30.148, β = 0.099675) 

Based on experimental data in 

Wadsö et al. [66] 

X6 
Specific heat of concrete 

[J/(kg K)] 

Gamma (α = 128.389, β = 6.33134) Based on experimental data in 

Wadsö et al. [66] 

X7 
Density of concrete 

[kg/m3] 
Gamma (α = 30.4134, β = 83.5117) 

Based on experimental data in 

Wadsö et al. [66] 

Input parameters associated with thermoset cable material properties 

X8 
Cable jacket thickness 

[mm] 
Gamma (α = 17.2389, β = 0.077989) 

Based on empirical data 

provided in NUREG/CR-6931 

[20] 

Input parameters associated with fire source 

X9 Fire location  Uniform (2.15, 6.35) 

Uniformly distributed along the 

length of the ignition cabinet. 

Based on engineering judgment. 

Notes: for a Gamma distribution, its probability density function is given below: 

𝑓(𝑥) =
𝑥𝛼−1

𝛽𝛼  𝛤(𝛼)
𝑒𝑥 𝑝 (

−𝑥

𝛽
), 

where 𝛤 is the Gamma function, and α and β are the shape and scale parameters, respectively. 
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3.4.3 Step 3 – Quantitative screening of potential sources of uncertainty using Morris 

EE analysis 

In Step 3, the fire scenario first needs to be set up with CFAST. The whole fire compartment (Figure 

13) is considered the computational domain for the fire simulation, and is divided into two adjacent 

compartments in CFAST, one for the low-ceiling area and one for the high-ceiling area (as shown in 

Figure 13). Each of the two adjacent compartments is then divided into two zones (or control volumes, 

i.e., an upper layer and a lower layer) in which CFAST assumes the physical characteristics within each 

zone are homogeneous. Results of the Morris EE analysis with the fire scenario modeled in CFAST are 

discussed in Section 3.4.3.1.Appendix B includes results of the Morris EE analysis when the fire is 

modeled with FDS as a preliminary study to investigate how the screening results obtained are influenced 

by the change of the fire simulation model. 

Results of the Morris EE analysis can be sensitive to several factors, including the sampling size and 

the uncertainty associated with types and parameters of the input parameter distributions. The project 

team have tested these two factors of the Morris EE analysis for a limited scope which involves only four 

parameters related to the HRR curve, namely maximum HRR value, time to maximum HRR, duration of 

maximum HRR, and time to decay (i.e., X1, X2, X3, and X4 in Table 3-B, respectively). Results of these 

tests are reported in Appendix B to this report.  

3.4.3.1 Input parameter screening analysis using Morris EE analysis method 

This section reports on the settings and results of the quantitative screening in Step 3 (using the 

Morris EE analysis method [35]) for all nine input parameters listed in Table 3-B. The screening aims to 

identify those input parameters among the ones listed in Table 3-B that have negligible effects on the 

KPM predictions by the simulation model (i.e., maximum temperature and heat flux at each target cable 

tray). To compute the EE, the state space of each input parameter is discretized into a p-level grid (with p 

= 4) so that each input parameter Xi can be randomly sampled from its discretized values. As measures of 

sensitivity, the sample mean (𝜇), and the sample standard deviation (𝜎) of the EE analyses are used. 

Values of these sensitivity measures are obtained by performing 5000 CFAST model executions (nine 

input parameters and 500 observations of 𝐹𝑖 per input factor 𝑖). The Morris samples are drawn using the 

sampling strategy suggested by Campolongo et al. [36]. The computation of the sensitivity measures 

follows the procedure given in Section 3.3.2.  

Figure 10 to Figure 15 below show 𝜇 and 𝜎 results of this Morris EE analysis for the nine input 

parameters regarding their influences on the six KPMs of interest, i.e., maximum temperature inside the 

cable jacket (TCB) and maximum heat flux at the surface of the cable jacket (q"CB) of the three target cable 

trays A, B, and C. In each figure, in the blue bar chart on the left, the right ends of the blue bars indicate 

observed point values of 𝜇 and the black line segments represent the 95% CIs around them. Table 3-C 

presents all values of these two sensitivity measure values obtained for nine parameters listed in Table 

3-B. 
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Figure 14: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #1 (Cable Tray A Max. Temperature). 

 

Figure 15: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #2 (Cable Tray A Max. Heat Flux). 

 

Figure 16: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #3 (Cable Tray B Max. Temperature). 
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Figure 17: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #4 (Cable Tray B Max. Heat Flux). 

 

Figure 18: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #5 (Cable Tray C Max. Temperature). 

 

Figure 19: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #6 (Cable Tray C Max. Heat Flux). 
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In practice, to decide whether an input parameter can be screened out, one can apply specific 

screening criteria and a concept of a threshold area, designed based on both 𝜇 and 𝜎, to separate 

influential input parameters from the non-influential ones. The use of such screening criteria, accounting 

for both 𝜇 and 𝜎facilitates the consideration of both the overall influence of the input parameters on the 

model output (represented by 𝜇) and the influence of nonlinearity and interactions among input 

parameters on the model output (represented by 𝜎). For example, the threshold area in this case study is 

arbitrarily chosen to be an area on the 𝜇 vs. 𝜎 plot where 𝜇 and 𝜎 are less than 1% of the corresponding 

damage criteria (400⁰C for the maximum temperature inside the cable jacket [16]; and 11 kW/m2 for the 

maximum heat flux at the surface of the cable jacket [9]). Note that, in practice, the design of the 

threshold area (e.g., 1% chosen above) should consider factors that could affect the accuracy of the 

simulation model. With the threshold area defined, one can design a screening criterion such as the 

hypothetical criterion below: 

Screening Criterion: If a specific input parameter falls within the non-influential region (i.e., inside 

the threshold area) for all six KPMs, that input parameter is identified as a non-influential factor in the 

fire simulation model. Otherwise, if the input parameter falls outside the non-influential regions for any of 

the six KPMs, that input parameter cannot be considered a non-influential factor (and cannot be screened 

out). 

Using this hypothetical screening criterion for the sensitivity measures 𝜇 and 𝜎, one would find that 

four parameters can be considered as non-influential parameters for all six KPMs: X5 (i.e., thermal 

conductivity of concrete), X6 (i.e., specific heat of concrete), X7 (i.e., density of concrete), and X8 (i.e., 

cable jacket thickness). These input parameters can be screened out and, hence, can be treated as fixed 

values in the Global IM analysis in Step 4.  

Meanwhile, the remaining five input parameters, including X1, X2, X3, X4 and X9, are considered for 

Global IM ranking in Step 4.  

Table 3-C: Statistics Results Obtained from the Morris EE Analysis for Nine Parameters Listed in Table 

3-B – Fire modeled with CFAST. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM1 

(Cable Tray A 

Max. 

Temperature) 

µ 405.166 6.038 23.068 10.007 -0.127 -0.057 -0.117 -3.151 0.008 

𝜎 125.601 8.894 31.243 10.834 0.172 0.082 0.162 3.772 0.13 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM2 

(Cable Tray A 

Max. Heat 

Flux) 

µ 9.698 0.013 0.001 0.011 -0.001 -0.001 -0.002 0 0 

𝜎 4.398 0.053 0.046 0.049 0.002 0.001 0.002 0 0.001 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM3 

(Cable Tray B 

Max. 

Temperature) 

µ 97.434 3.057 10.593 3.412 -0.151 -0.064 -0.127 -0.371 76.632 

𝜎 115.032 6.083 18.897 6.96 0.248 0.108 0.201 0.858 106.622 



 

 35 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM4 

(Cable Tray B 

Max. Heat 

Flux) 

µ 5.081 -0.175 0.002 0 0.001 0 0.001 0 4.372 

𝜎 7.011 0.369 0.003 0 0.007 0.003 0.007 0 6.673 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM5 

(Cable Tray C 

Max. 

Temperature) 

µ 2.894 0.22 0.769 0.391 -0.095 -0.04 -0.086 -0.006 0 

𝜎 2.919 0.349 1.376 0.612 0.173 0.078 0.16 0.01 0.013 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM6 

(Cable Tray C 

Max. Heat 

Flux) 

µ 0.033 0.002 0.006 0.001 -0.001 0 -0.001 0 0 

𝜎 0.031 0.003 0.011 0.003 0.001 0.001 0.001 0 0 

Note: For input parameters Xi, please refer to Table 3-B. 

 

3.4.4 Step 4 – Global Importance Measures 

One practical benefit of applying global sensitivity analysis for importance ranking is that it can be 

done at multiple levels of detail within the I-PRA framework. This section demonstrates this benefit by 

looking at the importance rankings obtained at the fire simulation output levels and the risk output level, 

as discussed in Section 3.4.4.1 and Section 3.4.4.2, respectively.  

3.4.4.1 Importance Ranking at the Simulation Output Levels 

The cdf-based moment-independent sensitivity measure, Si
 (CDF), is quantified for each of the five 

unscreened input parameters (obtained from the screening analysis in Step 3) with respect to (i) its impact 

on the KPMs obtained from CFAST simulations, and (ii) its impact on the fire-induced cable damage 

probabilities calculated from the maximum temperature KPMs and their corresponding damage 

thresholds. The computation of Si
 (CDF) follows the procedure in Section 3.3.3. In calculating the statistics 

for Si
 (CDF) results at these levels, reported in Table 3-D  and Table 3-E below, the two-loop Monte Carlo is 

set up with the sample size for the inner loop nS2 = 150, and the sample size for the outer loop nS1 = 30. 

The calculation of the fire-induced cable damage probabilities for cable trays A, B, C follows the 

procedure in Section 3.3.4. In this probability calculation, the case study only considers the thermal 

damage threshold for the cable trays. Uncertainty associated with the cable thermal damage threshold 

follows a lognormal distribution with (µ = 6.0704, 𝜎 = 0.0872), obtained for thermoset cables [67]. 

Table 3-Dbelow shows the statistics of Si
 (CDF) estimated for each of the five unscreened input 

parameters with respect to its influence on the six KPMs (i.e., maximum temperature inside the cable 

jacket, TCB, and maximum heat flux at the surface of the cable jacket, q"CB, for three cable trays A, B, and 

C). The 90% confidence intervals (CIs) of Si
 (CDF) are calculated using the replicated Monte Carlo 

simulation and the Bootstrap resampling method (with a sample size of 10,000) [68].  

Similarly, Table 3-Ereports on the statistics of Si
 (CDF) calculated for each of the five unscreened input 

parameters with respect to its influence on the fire-induced cable damage probability of cable trays A and 

B. Note that based on the simulation results, due to its location far from the fire source, cable tray C did 

not experience fire-induced damage within the scope of this fire scenario. Hence, Table 3-E reports on the 

statistics of Si
 (CDF) calculated for cable trays A and B only. 
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Table 3-D: Si
 (CDF) results calculated for five unscreened input parameters with respect to their influence 

on each of the six simulation model outputs 

Input Parameters X1 X2 X3 X4 X9 

KPM1 

(Cable Tray A 

Max. 

Temperature) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 9.93E-01 1.41E-02 4.54E-02 1.70E-02 1.60E-04 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 6.69E-04 1.06E-05 4.98E-05 1.83E-05 1.55E-07 

5th-percentile 8.86E-01 1.23E-02 3.72E-02 1.42E-02 1.36E-04 

95th-percentile 1.11E+00 1.59E-02 5.37E-02 2.01E-02 1.86E-04 

 X1 X2 X3 X4 X9 

KPM2 

(Cable Tray A 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 1.16E+00 3.53E-04 4.37E-04 5.51E-04 2.27E-05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 1.07E-03 2.94E-07 3.15E-07 1.07E-06 3.62E-08 

5th-percentile 9.89E-01 3.06E-04 3.86E-04 3.96E-04 1.67E-05 

95th-percentile 1.34E+00 4.03E-04 4.90E-04 7.43E-04 2.85E-05 

 X1 X2 X3 X4 X9 

KPM3 

(Cable Tray B 

Max. 

Temperature) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 7.34E-01 2.10E-02 6.08E-02 2.37E-02 5.56E-01 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 1.47E-03 1.49E-05 5.74E-05 2.52E-05 7.52E-04 

5th-percentile 5.34E-01 1.86E-02 5.14E-02 1.97E-02 4.37E-01 

95th-percentile 1.00E+00 2.35E-02 7.02E-02 2.80E-02 6.86E-01 

 X1 X2 X3 X4 X9 

KPM4 

(Cable Tray B 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 1.19E+00 3.92E-03 2.47E-04 0.00E+00 8.47E-01 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 3.19E-03 6.19E-06 3.60E-07 0.00E+00 1.16E-03 

5th-percentile 7.72E-01 2.94E-03 1.90E-04 0.00E+00 6.66E-01 

95th-percentile 1.80E+00 4.99E-03 3.09E-04 0.00E+00 1.05E+00 

 X1 X2 X3 X4 X9 

KPM5 

(Cable Tray C 

Max. 

Temperature) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 2.64E-02 9.89E-04 3.15E-03 1.95E-03 1.94E-05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 8.89E-05 8.17E-07 2.72E-06 2.11E-06 2.44E-08 

5th-percentile 1.49E-02 8.55E-04 2.70E-03 1.60E-03 1.57E-05 

95th-percentile 4.34E-02 1.12E-03 3.60E-03 2.30E-03 2.37E-05 

 X1 X2 X3 X4 X9 

KPM6 

(Cable Tray C 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 1.87E-02 4.85E-04 1.56E-03 3.90E-04 1.54E-05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 6.30E-05 3.63E-07 1.33E-06 4.12E-07 2.13E-08 

5th-percentile 1.03E-02 4.25E-04 1.33E-03 3.23E-04 1.21E-05 

95th-percentile 3.07E-02 5.45E-04 1.77E-03 4.60E-04 1.91E-05 

Note: For input parameters Xi, please refer to Table 3-B. 
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Table 3-E: Si
 (CDF) results calculated for five unscreened input parameters with respect to their influence on 

the fire-induced cable damage probabilities 

[Ranking] Input Parameters [1] X1 [4] X2 [2] X3 [3] X4 [5] X9 

Cable Tray A 

Damage 

Probability 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 8.57E-02 2.57E-03 8.17E-03 7.46E-03 8.07E-05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 1.66E-04 1.87E-06 1.05E-05 9.77E-06 8.40E-08 

5th-percentile 5.96E-02 2.26E-03 6.46E-03 5.91E-03 6.76E-05 

95th-percentile 1.14E-01 2.88E-03 9.90E-03 9.11E-03 9.54E-05 

[Ranking] Input Parameters [1] X1 [4] X2 [3] X3 [5] X4 [2] X9 

Cable Tray B 

Damage 

Probability 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 2.36E-03 9.84E-05 3.98E-04 4.32E-05 9.42E-04 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 1.47E-05 3.68E-07 1.41E-06 2.64E-07 3.39E-06 

5th-percentile 4.47E-04 3.84E-05 1.79E-04 5.52E-06 4.38E-04 

95th-percentile 5.17E-03 1.62E-04 6.41E-04 9.15E-05 1.54E-03 

Note: The ranking in this table is based on point estimates of the calculated 𝑆̅
𝑖
(𝐶𝐷𝐹)

. One should, however, note that 

if the confidence intervals are overlapped, the difference in the rankings would not be statistically significant.  

 

The results in Table 3-D and Table 3-E shows that X1 (maximum HRR) is consistently ranked as the 

most important input parameter with respect to its impact on all of the six KPM outputs, as well as its 

impact on the fire-induced cable damage probabilities. This observation indicates that the uncertainty 

associated with X1 contributes the most to the variation in the cdfs of the six KPMs and the fire-induced 

cable damage probabilities.  

Among the other four parameters, it can be seen that X9 (fire location) has considerable impact on the 

KPMs and damage probability associated with Cable Tray B, while its impact on those outputs associated 

with Cable Trays A and C is the smallest among the five parameters. This observation can be explained 

by the locations of the cable trays inside the fire compartment. Cable Tray A runs right above and along 

the ignition source cabinet; therefore, when the fire location is varied in Global IM, the damage target 

associated with Cable Tray A is always assumed to be right above the fire. Cable Tray C is located far 

away from the ignition source; hence, the impact of the fire location, when it is varied along the ignition 

source cabinet, on the Cable Tray C’s KPMs and damage probability is negligible. On the other hand, 

Cable Tray B is located close to the ignition source cabinet, installed at perpendicular angle. Therefore, 

the minimum distance from Cable Tray B to the ignition source, when the fire location is varied along the 

ignition source cabinet, also varies significantly. For these reasons, X9 has a large impact on the KPMs 

and the damage probability for Cable Tray B, while it has a negligible impact on Cable Trays A and C. 

Regarding X2 (time to maximum HRR), X3 (time at maximum HRR), and X4 (time to decay), their 

rankings vary depending on the specific output of interest. Note that, when comparing the ranking of two 

parameters, if their confidence intervals are overlapped, one may not conclude with certainty that one 

parameter is more important than the other. For example, X1 and X9 have overlapped confidence interval 

with respect to their impact on cable tray B damage probability (Table 3-E); hence, one may not conclude 

with absolute certainty if X1 is more important than X9. In such case, the sample size can be increased to 

reduce the overlap between the two confidence intervals. In practice, one would need to conduct a 

thorough convergence study to determine what a sufficiently large sample size would be that would 

guarantee statistically sound ranking results. In this project, this convergence study is not of particular 

interest; rather, this analysis is meant to demonstrate the feasibility of the I-PRA Importance Ranking 

Methodology and its supporting computational platform. 
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3.4.4.2 Importance Ranking at the System Risk Level 

This section covers the global importance ranking at the level of risk estimate, i.e., ranking of the five 

unscreened input parameters (X1, X2, X3, X4 and X9) with respect to their impact on the risk output. To 

demonstrate the quantification procedure, the risk importance ranking is generated for a hypothetical Fire 

PRA model shown in Figure 20. In this hypothetical model, the initiating event of interest is a fire-

induced Small Break Loss-of-Coolant Accident (SBLOCA) in a PWR plant, assumed to be triggered by a 

pressurizer’s stuck-open Pressure Operated Relief Valve (PORV). The safety systems involved in this 

hypothetical model include the High Pressure Injection System (HPIS), Reduce Pressure (RP), and the 

Low Pressure Injection System (LPIS). It is assumed that following the occurrence of the SBLOCA, the 

reactor is successfully tripped. Note that the global risk importance ranking analysis is not bounded by the 

complexity of the PRA model; however, for demonstration purpose, other relevant safety systems such as 

the Residual Heat Removal System, the Containment Fan Cooling System are not considered in this 

hypothetical model for simplification. 

 

Figure 20: A Hypothetical Fire PRA Model 

The HPIS and LPIS are further modeled with simplified Fault Trees in Figure 21 and Figure 22, 

respectively. For simplification, failure of the RP system is modeled as a single pivotal event.  

 

Figure 21: Fault Tree for the High Pressure Injection System 
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Figure 22: Fault Tree for the Low Pressure Injection System 

Identifying the Fire PRA components and the associated cable raceways is a critical task in Fire PRA. 

Table 3-F summarizes the relationships, considered in this case study, among the components of the 

hypothetical Fire PRA model (Figure 20 to Figure 22) and the target cable trays A, B, C in the switchgear 

room fire scenario (Figure 13). 

 The ignition frequency of the electrical cabinet, f (FIRE), is assumed to be 0.03 [1/year] using a 

point estimate (mean value) of the Bin 15 ignition frequency provided in NUREG-2169 [69].  

 The control and power cables associated with LPIS_CV2 are placed in cable tray A. Damage to 

cable tray A is assumed to cause the fire-induced failure of this valve. The fire-induced failure of 

this valve should be added to the PRA model as a basic event “LPIS_CV2_F,” as shown in Figure 

22. This case study considers “Fail to open” as the functional failure mode of concern, and it is 

assumed that, if cable tray A is damaged, “LPIS_CV2_F” occurs with certainty. This assumption 

is conservative yet has been widely applied in Fire PRAs for NPPs to simplify the circuit failure 

analysis.  

 The control and power cables associated with LPIS_MDPUMP2 are placed in cable tray B. The 

fire-induced failure of this pump should be added to the PRA model as a basic event 

“LPIS_MDPUMP2_F,” as shown in Figure 22. It is assumed that, given fire-induced damage to 

cable tray B, the function of this pump is lost with certainty. Cable tray B is assumed to be filled 

with thermoset-insulated conductor cables. NUREG/CR-7150 Volume 2 [70] provides a 

probability distribution which represents the epistemic uncertainty associated with the conditional 

probability of spurious actuation, given the fire-induced damage to the associated cable. In this 

case study, the mean value of the probability distribution (0.47) is used as the point estimate of 

the conditional probability of spurious actuation of pressurizer PORVs, given fire-induced 

damage to cable tray B and the fire occurrence. 
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 The pressurizer PORV control cable is assumed to be placed in cable tray B. The fire-induced 

damage to cable tray B may cause a sustained hot short circuit and spurious opening of the 

pressurizer PORV, which may lead to a SBLOCA. Spurious actuation of the pressurizer PORV is 

assumed to be sustained long enough to cause a SBLOCA condition. The PORVs are assumed to 

be solenoid-operated valves controlled by a double break control circuit for ungrounded AC (with 

individual control power transformers) and may experience the fire-induced spurious operation 

due to a hot short circuit. 

Table 3-F: Mapping among the Fire-induced Damage Targets and PRA Equipment and Events 

Damage 

Targets 
PRA Equipment Failure Mode PRA Event PRA Input 

Cable Tray 

A 

LPIS Train 2 Check 

Valve (LPIS_CV2) 
Fail to open LPIS_CV2_F Pr(LPIS_CV2_F) 

Cable Tray 

B 

LPIS Train 2 

Motor-driven Pump 

(LPIS_MDPUMP2) 

Loss of function LPIS_MDPUMP2_F Pr(LPIS_MDPUMP2_F) 

Pressurizer PORV 

Spurious actuation 

due to hot short 

circuit 

Initiating Event 

(FireSBLOCA) 

f (FireSBLOCA) 

[per year] 

Notes: for notations of the events, please refer to Figure 22. 

 

In some minimal cut sets of the Core Damage scenarios, it appears that a joint damage probability of 

two cable trays, i.e., 𝑃𝑟(𝐶𝐵𝐵 𝑎𝑛𝑑 𝐶𝐵𝐴 | 𝐹𝐼𝑅𝐸), needs to be estimated. In this report, this joint damage 

probability is calculated based on the simulation outputs considering the impact of the shared fire-induced 

conditions on the damage state of the two cable trays. More details on the implementation can be found in 

Sakurahara et al. [33]. 

By leveraging the I-PRA methodological framework and the Global IM computational procedure in 

Section 3.3.3 (when the model output of interest is the plant risk estimate) that are integrated in the I-PRA 

Importance Ranking methodology, the Global IM results at the risk output level can be obtained. Table 

3-G reports the Si
 (CDF) results calculated for the five unscreened CFAST input parameters with respect to 

their influence on the Core Damage Frequency of the hypothetical PRA model. Results for all nine input 

parameters are included in Table C-3 in Appendix C. 

Table 3-G: Si
 (CDF) results calculated for five unscreened input parameters with respect to their influence 

on the risk output (Core Damage Frequency of the hypothetical PRA model) 

Ranking Input parameters �̅�𝒊
(𝑪𝑫𝑭)

 𝑺. 𝑬. (�̅�𝒊
(𝑪𝑫𝑭)

) 90% CIs 

#1 X1 (Max. HRR) 2.92E-08 1.95E-10 (5.20E-09, 6.74E-08) 

#2 X9 (Fire Location) 1.06E-08 3.40E-11 (5.47E-09, 1.66E-08)  

#3 X3 (Time at max. HRR) 4.36E-09 1.60E-11 (1.91E-09, 7.20E-09) 

#4 X2 (Time to max. HRR) 1.24E-09 4.52E-12 (5.06E-10, 2.00E-09) 

#5 X4 (Time to Decay) 7.55E-10 3.50E-12 (2.37E-10, 1.37E-09) 
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Notes: The small orders of magnitude for the Si
 (CDF) results in Table 3-G are due to the use of Equation (9) instead 

of Equation (10) ( which calculates normalized Si
 (CDF) values). The ranking in this table is based on point estimates 

of the calculated 𝑆̅
𝑖
(𝐶𝐷𝐹)

. One should, however, note that if the confidence intervals are overlapped, the difference in 

the rankings would not be statistically significant.  

 

As can be seen in Table 3-G, two parameters X1 (max. HRR) and X9 (fire location) are identified as 

the most important input parameters with respect to the impact on the risk core damage frequency (of the 

hypothetical PRA model). This observation can help inform decision makers as to where to focus 

additional research and experiment efforts to reduce the epistemic uncertainties associated with these two 

parameters. In fact, the importance of X1 helps explain recent efforts that have been made to refine and 

characterize the maximum HRR of electrical enclosure fires [71] more realistically. On the other hand, 

the observed importance of X9 indicates that, in reducing the epistemic uncertainty associated with fire 

location, more fire experiments may need to be conducted, in which the studied fires are considered to 

ignite at various locations within the switchgear room (e.g., on different electrical cabinets, at various 

heights). Such considerations need to be accounted for during the design of experiments to achieve the 

greatest effect on improving the understanding of the fire location and its impact while satisfying limited 

budget or resource constraints.  

3.4.5 Concluding Remarks: Contributions and Benefits  

The SoTeRiA Laboratory at UIUC was the first to conduct quantitative screening using the Morris EE 

method and to compute the moment-independent Global IM for Fire PRA of NPPs [27, 28, 72]. This 

current research has advanced the previous studies by the SoTeRiA Laboratory at UIUC [27, 28, 72] by: 

 Developing methodological steps for the I-PRA Importance Ranking Methodology (section 3.2) 

that generate a structured relationship among uncertainty analysis, Morris EE screening analysis, 

and Global IM analysis; 

 Developing a RAVEN-based automated computational platform for implementing the I-PRA 

Importance Ranking Methodology for Fire PRA of NPPs; and 

 Applying the I-PRA Importance Ranking Methodology to a case study. The results showed that, 

among the sources of uncertainty associated with the nine input parameters of the fire simulation 

model (listed in Table 3-B), the Morris Elementary Effects analysis was able to screen out four 

insignificant parameters, i.e., X5 (thermal conductivity of concrete), X6 (specific heat of 

concrete), X7 (density of concrete), and X8 (cable jacket thickness). Among the five unscreened 

parameters, the Global IM analysis results indicated that X1 (max. HRR) and X9 (fire location) are 

the most important parameters. 

Recently, EPRI published a technical report [Ref.] on uncertainty quantification for Fire PRA of NPPs. The 

EPRI report [73] conducted the identification, review and screening, characterization, and propagation of 

uncertainty sources in the existing Fire PRA models. Uncertainty quantification was performed using 

Monte Carlo simulation. Additionally, the risk importance measure ranking of the uncertainty sources was 

obtained based on the Monte Carlo simulation outputs using the correlation coefficients and the variance 

of the risk outputs as measures of sensitivity.  

In the EPRI report [73], simulation outputs were analyzed in the spreadsheets equipped with a statistical 

plugin to generate the PRA inputs for each fire scenario, such as the probabilities of the fire-induced damage 

states. Those PRA inputs were then plugged into the PRA software, where the plant risk metrics were 

computed. In the “external” linkage between plant PRA and underlying simulations generated by EPRI 

[73], uncertainty sources were ranked based on their contribution to each fire scenario, and the rankings 

then aggregated. The study [73] measured the degree of uncertainty using the correlation coefficients and 

the variance; thus, various sources of uncertainty could be analyzed individually and then be aggregated by 

analytical methods for uncertainty propagation (e.g., the variance formula for error propagation). 
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The following summarizes benefits as well as future work of the current research by UIUC, INL, and SNL 

(UIUC-INL-SNL) and highlights how this research can be complementary to the EPRI study [73]:     

i. In literature, it is recognized that the correlation-based and variance-based importance measures 

may result in misleading ranking, especially when input parameters and model outputs have 

asymmetric uncertainty distributions with fat and long tails. The observations from the CFAST 

and FDS outputs in the UIUC research showed that, depending on the initial and boundary 

conditions of the fire scenarios, fire-induced damage could have a very small probability and 

could be dominated by the tail of the uncertainty distribution. For instance, in the case study 

(Section 3.4), the physical KPMs for cable tray B have skewed probability distributions, and the 

cable damage probability is dominated by the upper tail of those uncertainty distributions; hence, 

the accuracy of the correlation-based and variance-based methods is questionable. To select an 

appropriate sensitivity/importance measure analysis method for the I-PRA Importance Ranking 

Methodology, scientific justifications (Section 3.2.4.5) are provided based on a thorough review 

of the existing sensitivity analysis methods (Section 3.2.4.1). In this research (UIUC-INL-SNL), a 

cdf-based moment-independent global method, Si
(CDF), is selected since it can address the four 

attributes (Attributes a to d discussed in Section 3.2.4.5), including (a) the level of risk-

contributing factors to be ranked, (b) uncertainty of input parameters, (c) uncertainty of model 

outputs, and (d) non-linearity and interactions, and can be more accurate than correlation-based 

and variance-based global methods. 

ii. The I-PRA Importance Ranking Methodology includes quantitative screening of the uncertainty 

sources using the Morris EE method (Step 3 in Section 3.2.3). To go beyond one-way sensitivity 

analysis methods commonly used in the current PRA practices, the Morris EE method provides a 

robust distinction between influential vs. non-influential factors since it can explicitly address 

both main effects and the effects by nonlinearity and interaction through a randomized one-at-a-

time sampling scheme.  

iii. This research (UIUC-INL-SNL) has developed a RAVEN-based automated computational 

platform that can integrate the plant PRA scenarios, underlying simulations (e.g., a fire 

progression model), quantitative screening (using the Morris EE method), and the Global IM 

analysis into a “unified” framework:  

o The unified RAVEN-based computational platform can generate the ranking of input 

parameters considering multiple key scenarios simultaneously, rather than considering one 

scenario at a time followed by post-aggregation. Although the analytical post-aggregation of 

uncertainties could be applicable when the uncertainties are measured by the correlation 

coefficients and the variance, the correlation-based/variance-based global methods can be 

inaccurate compared to the moment-independent global methods, particularly under the 

conditions explained above. For the moment-independent global methods, it is not possible to 

derive an analytical formula for uncertainty propagation, unless the model of interest is a 

simple additive or multiplicative function of input parameters; hence, a unified computational 

platform that integrates the plant PRA model with the underlying simulations is required.  

o The unified computational platform, developed in this research, contributes to more explicit 

and accurate treatment of dependencies at multiple levels of Fire PRA, such as those at the 

levels of physical inputs, multiple targets, multiple spurious actuations, and PRA basic 

events. In the I-PRA framework, the Interface Module can treat multi-level dependencies by 

using the simulation-informed approach for dependency analysis developed in the previous 

research by the SoTeRiA Laboratory at UIUC [33].   
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o The RAVEN-based automated computational platform facilitates the sampling-based 

uncertainty quantification in Fire I-PRA, which aims at: (i) propagating the uncertainties 

associated with the FSM input parameters using Monte Carlo simulation and (ii) making the 

FSM model probabilistic and creating a probabilistic interface between FSM and the plant-

specific PRA scenarios.  

o The unified RAVEN-based computational platform can provide both “industry-wide” and 

"plant-specific" rankings of uncertainty sources. The industry-wide ranking may not be the 

same as the plant-specific ranking. The I-PRA computational platform, developed in this 

research, is designed in a way that alternate models for the plant-specific PRA and the 

underlying simulations can be plugged in; hence, it can provide a possibility for industry to 

easily redo the analysis for a specific plant. This automated computational platform would be 

helpful if a plant uses the I-PRA ranking methodology to identify the plant-specific dominant 

sources of uncertainty and to inform the plant-specific risk-informed decision-making.  

iv. This research has done Morris EE analysis using both FDS and CFAST. As can be seen in Table 

B-3 in Appendix B, the absolute magnitudes of the sensitivity metrics (𝜇 and 𝜎) obtained when 

using FDS are different from those obtained when using CFAST (Table 3-C). One possibility is 

that this disagreement stems from the differences between the FDS and CFAST model 

resolutions. For example, a significant difference between FDS and CFAST in predicting the 

maximum heat flux and cable temperature is that FDS has a “finer” spatial resolution as all of its 

geometrical entities are divided into rectilinear grid cells and described by defining their 

coordinates in the computational domain; CFAST, on the other hand, is a two-zone model where 

the vertical dimension of the fire compartment is divided into two discrete layers. It should also 

be noted that NUREG-1934 indicated a reservation on the applicability of CFAST to Scenario D 

(Figure 13) due to multiple reasons related to the fire conditions that may not be suitable for 

CFAST. To thoroughly investigate the underlying causes of the differences and how they affect 

the results of the Morris Elementary Effects analysis, further study is needed.  

3.5 Future Work or Enhancements 

3.5.1 Uncertainty Scope 

Future research should extend the scope of uncertainty sources beyond the input parameters of the fire 

models, e.g., the uncertainties associated with ignition frequencies, cable fire spread, detection and 

suppression, electrical circuit failure likelihoods, and model uncertainty. For instance, as an initial 

research phase to demonstrate the implementation of the I-PRA Importance Ranking Methodology, the 

illustrative case study (Section 3.4of this report) has not considered detection and suppression. The I-PRA 

framework, however, is capable of accounting for these contributions as discussed in Sakurahara et al. 

[27, 30, 74] and Bui et al. [75]. While the illustrative case study only considered the potential sources of 

uncertainties associated with the Fire Propagation Model, future research needs to analyze and rank the 

uncertainty sources associated with the other modules/submodules of I-PRA. In addition, further research 

should be conducted to establish a theoretical and methodological foundation for analyzing aleatory and 

epistemic uncertainties separately in the I-PRA Importance Ranking Methodology. 

3.5.2 RAVEN Computational Platform 

Future research will advance the RAVEN-based computational platform to have an explicit 

connection to the physical phenomena data and the underlying experimental design parameters that 

contribute to the epistemic uncertainties associated with the simulation models and their input parameters. 

With this advancement, sensitivity analysis and parametric study can be performed to examine, for 

example, the impact of the experimental design parameters on the plant risk outputs. This type of analysis 

helps decision makers understand which refinements of physical phenomena data can provide the largest 

benefit to improving the realism of PRA and to reducing the uncertainty associated with the PRA outputs. 
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3.5.3 PRA Software Integration 

In future research, to generate an automated linkage to a full-scope plant PRA, PRA software (e.g., 

SAPHIRE) should be integrated into the RAVEN-based computational platform developed in this project. 

This advancement will offer an automated and unified computational platform that can be applied directly 

for comprehensive uncertainty analysis and risk importance measure ranking in Fire PRAs by the nuclear 

industry and NRC. One of the main methodological challenges in the integration of the full-scope plant 

PRA is the treatment of dependent failures due to the shared or correlated causal factors at multiple levels, 

such as physical inputs, fire-human interactions, cable damage, circuit failures, and component failures. 

This current research has partially addressed the dependency at the cable damage level, i.e., a joint failure 

event of two cable trays (Section 3.4.4.2). To generate a reliable interface with the full-scope plant PRA, 

future research should implement the simulation-informed dependency treatment methodology in the I-

PRA framework [64] for the other levels of dependencies. 

3.5.4 Additional Significant Scenarios 

The illustrative case study (Section 3.4.1) only considers one fire scenario (i.e., one fire zone and one 

ignition source). Future research should scale up the analysis by applying the I-PRA Importance Ranking 

Methodology and the RAVEN-based computational platform developed in this research to other NPP 

risk-significant fire scenarios that can include multiple ignition sources and intervening combustibles. The 

EPRI [73] study uses three case studies for the uncertainty analysis. 

3.5.5 Time Dependent Scenario Modeling 

Both INL and UIUC are researching dynamic probabilistic risk assessment (DPRA) methods for fire 

analysis and how to apply these insights to existing models and future methodologies. As mentioned in 

Section 3.1, the I-PRA methodological framework (Figure 11) developed by UIUC integrates simulation 

models of the underlying human and physical failure mechanisms with the existing plant PRA through a 

probabilistic interface [28, 74]. The dynamic coupling [75, 76] between the human performance and the 

physical failure simulation in I-PRA is similar in its nature to simulation-based PRA (or dynamic 

PRA).Methods being researched can be applied for advanced reactors and new plants as industry and the 

regulatory agency deem advantageous, using dynamic with static coupling or fully simulation-

based/dynamic PRA. Meanwhile, the Interface Module (‘e’ in Figure 11) in the I-PRA offers the 

possibility of reliably using dynamic simulation approaches linked with the existing PRA of aging plants. 

The I-PRA risk importance ranking offered in this report can provide valuable information for efficiently 

(i) enhancing the realism of Fire PRA for existing plants [77] and (ii) supporting the development of Fire 

DPRA for advanced reactors and new plants. 

Dynamic modeling can more accurately model some aspects of fire scenarios, such as operator 

actions and manual suppression. Changes in time-related data, such as the HRR curves can have a large 

effect in dynamic modeling. Future work of a DPRA model using varied input data can show the 

correlation of this data and operation procedures. This will further identify key areas and show the 

justification for reducing uncertainty of specific input data. 

Recently, DPRA has been implemented in nuclear safety to capture timing aspects that are difficult to 

represent in currently used, purely numerical methods. Some recent DPRA can also employ physics-

based simulator codes to accurately model physical phenomena with system dynamics. These physics-

based simulator codes, like FDS, are coupled with DPRA codes that monitor and control the simulation 

(e.g., Event Model Risk Assessment using Linked Diagrams [EMRALD]). The latter codes, in particular, 

introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., 

component failures and variable uncertainties) elements into the simulation.  
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A typical DPRA analysis involves the following four steps:  

1. Sampling values of a set of parameters from the uncertainty space of interest  

2. Simulating the system behavior for that specific set of parameter values  

3. Analyzing the set of simulation runs  

4. Visualizing the correlations of time contributing values and simulation outcome.  

Step 1 is typically performed by randomly sampling from a given distribution (i.e., Monte Carlo) or 

selecting such parameter values as inputs from the user (i.e., Dynamic Event Tree). In Step 2, a simulation 

run is performed using the values sampled in Step 1. These values typically affect the timing and 

sequencing of events that occur during the simulation. Some codes sample values during the simulation 

run, combining Steps 1 and 2. The objective of Step 3 is to identify the correlations between timing and 

sequencing of events with simulation outcomes (such as maximum core temperature). In a classical PRA 

(event tree/fault tree based) environment, such analysis is performed by observing and ranking the 

minimal cut sets that contribute to a top event (e.g., core damage). In a DPRA environment, however, 

data generated is more heterogeneous since it consists of both (a) temporal profiles of state variables and 

(b) timing of specific events. Clustering and visually displaying failure data over time and space is a new 

research topic and it is especially relevant when analyzing time or order-dependent sequences, such as 

operator actions. 
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APPENDIX A  

The uncertainty of parameters in the fire modeling effort can be analyzed through input of probability 

distributions. Initially, the fire modeling was evaluated with parameters for which the uncertainty was 

formally characterized through probability distributions. The peak HRR of different cable/fuel types was 

characterized as a gamma distribution with the following parameters[13]:  

Table A-1. Peak HRR probability distribution parameters. 

Parameter Fuel Type Distribution Alpha Beta 

Peak HRR 

(kW) 

TS/QTP/SIS Gamma 0.36 57 

TP Gamma 1.21 30 

 

The next parameters are the time to maximum heat release rate, the duration time of the maximum 

heat release rate, and the decay time. These input parameters are treated as random variables and the 

associated distributions are listed in [31]:  

Table A-2. HRR timing probability distribution parameters. 

Parameter Distribution Parameter 1 Parameter 2 Parameter 3 

Time to Maximum HRR (min) Uniform 4 18 N/A 

Duration of Maximum HRR (min) Triangular 0 0 20 

Time to Decay (min) Uniform 10 30 N/A 

 

The cable thermal fragility probability distribution was determined numerically using NRC sponsored 

test data [78]. The distribution parameters are shown in.  

Table A-3. Cable thermal fragility probability distribution parameters. 

Parameter Distribution Mean Standard Deviation p Value 

Cable Thermal Fragility (°C) Lognormal 6.0704 0.0872 0.8905 

 

The uncertainty associated with a second set of parameters was also evaluated in the fire modeling 

effort. The first set were parameters associated with concrete material properties, including thermal 

conductivity, specific heat, and density. The variability of these parameters for concrete samples with 

different aggregate recipes is shown in [66]:  

Table A-4. Concrete material properties of samples with different aggregate recipes. 

Sample 

Density 

(kg/m3) 

Thermal Conductivity 

(W/mK) 

Specific Heat 

(J/kgK) 

REF 2240 2.24 795 

MAG 3650 2.57 734 

GRA 1890 3.52 810 

GAM 2810 3.85 875 

ST1 2330 2.57 828 

ST2 2441 2.95 828 

BRA 2520 2.71 694 

COP 2438 3.63 939 
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A gamma distribution was fit to the parameters in this limited data set. Because the simulations in 

which these distributions are used are primarily for illustrative purposes, the large CIs associated with the 

fitted distributions were deemed to be acceptable. shows the distribution parameters for each of the 

concrete material properties. through show the proposed gamma distribution compared to the empirical 

distribution and the resulting p value for each distribution.  

Table A-5. Concrete material property distribution parameters. 

Parameter Distribution p Value Parameter 1 Parameter 2 

Density Gamma 0.66571 a=30.4134 b=83.5117 

Thermal Conductivity Gamma 0.85516 a=30.148 b=0.099675 

Specific Heat Gamma 0.9836 a=128.389 b=6.33134 

 

 

Figure A-1. Concrete density cumulative probability distribution.  
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Figure A-2. Concrete thermal conductivity cumulative probability distribution. 
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Figure A-3. Concrete specific heat cumulative probability distribution.  

The next set were parameters associated with thermoset cable material properties, including insulation 

thickness, jacket thickness, outer diameter, and bulk density. The variability of these parameters for 

thermoset cables is shown in [20]:  

Table A 6. Thermoset cable material properties. 

Cable 

Number 

Cable Description 

(Insulation/Jacket/No. 

Conductors) 

Cable 

Classification 

Insulation 

Thickness 

(mm) 

Jacket 

Thickness 

(mm) 

Outer 

Diameter 

(mm) 

Bulk 

Density 

(kg/m3) 

3 XLPE/PVC, 7/C Mixed 0.8 1.5 15.1 2166 

2 EPR/CPE, 7/C Thermoset 0.8 1.5 15.1 2232 

7 XLPE/CSPE, 2/C Thermoset 0.6 1.1 7.9 1993 

8 XLPO/XLPO, 7/C Thermoset 0.5 0.9 12.2 2743 

9 SR/Aramid Braid, 7/C Thermoset 1.3 1 14.5 2168 

10 XLPE/CSPE, 7/C Thermoset 0.8 1.5 15 2321 

11 VITA-LINK, 7/C Thermoset 1.5 2 19 1656 

13 XLPE/CSPE, 12/C Thermoset 0.6 1.1 12.7 1825 

14 XLPE/CSPE, 3/C Thermoset 1.1 1.5 16.3 2538 
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A gamma distribution was fitted to the parameters in this limited data set. Because the simulations in 

which these distributions are used are primarily for illustrative purposes, the large CIs associated with the 

fitted distributions were deemed to be acceptable. shows the distribution parameters for each of the 

thermoset cable material properties. through show the proposed gamma distribution compared to the 

empirical distribution and the resulting p value for each distribution. 

Table A-7. Thermoset cable material property distribution Parameters. 

Parameter Distribution p Value Parameter 1 Parameter 2 

Insulation Thickness Gamma 0.64805 a=8.18389 b=0.108614 

Jacket Thickness Gamma 0.5374 a=17.2389 b=0.077989 

Outer Diameter Gamma 0.65443 a=20.4278 b=0.69513 

Bulk Density Gamma 0.95733 a=46.8602 b=46.5735 

 

 

Figure A-4. Thermoset cable insulation thickness cumulative probability distribution.  
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Figure A-5. Thermoset cable jacket thickness cumulative probability distribution. 
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Figure A-6. Thermoset cable outer diameter cumulative probability distribution.  
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Figure A-7. Thermoset cable bulk density cumulative probability distribution. 

The last set was made up of parameters associated with thermoplastic cable material properties, 

including insulation thickness, jacket thickness, outer diameter, and bulk density. The variability of these 

parameters for thermoplastic cables is shown in [20]:  

Table A-8. Thermoplastic cable material properties. 

Cable 

Number 

Cable Description 

(Insulation/Jacket/No. 

Conductors) 

Cable 

Classification 

Insulation 

Thickness 

(mm) 

Jacket 

Thickness 

(mm) 

Outer 

Diameter 

(mm) 

Bulk 

Density 

(kg/m3) 

1 PVC/PVC, 7/C Thermoplastic 0.5 1.1 12.4 2680 

4 PVC/PVC, 2/C Thermoplastic 0.7 1 7 1668 

5 PVC/PVC, 3/C Thermoplastic 0.9 1.5 15.2 2532 

6 PVC/PVC, 12/C Thermoplastic 0.5 1.1 11.3 1948 

12 TEF/TEF, 7/C Thermoplastic 0.4 0.5 10.2 3578 

15 PE/PVC, 12/C Thermoplastic 0.8 1.1 15 2152 

 

A gamma distribution was fit to the parameters in this limited data set. Because the simulations in 

which these distributions are used are primarily for illustrative purposes, the large CIs associated with the 

fitted distributions were deemed to be acceptable. shows the distribution parameters for each of the 

thermoplastic cable material properties. through show the proposed gamma distribution compared to the 

empirical distribution and the resulting p value for each distribution. 
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Table A-9. Thermoplastic cable material property distribution parameters. 

Parameter Distribution p Value Parameter 1 Parameter 2 

Insulation Thickness Gamma 0.74622 a=12.2996 b=0.0514923 

Jacket Thickness Gamma 0.4857 a=10.3509 b=0.101441 

Outer Diameter Gamma 0.96185 a=15.6428 b=0.757539 

Bulk Density Gamma 0.99789 a=16.4843 b=147.191 

 

 

Figure A-8. Thermoplastic cable insulation thickness cumulative probability distribution.  
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Figure A-9. Thermoplastic cable jacket thickness cumulative probability distribution.  



 

 A-11 

 

Figure A-10. Thermoplastic cable outer diameter cumulative probability distribution. 
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Figure A-11. Thermoplastic cable bulk density cumulative probability distribution.  
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APPENDIX B  

Sections B.1 and B.2 of this appendix report on the results of two sensitivity tests that are conducted 

to study the impact of the Morris sampling size and the uncertainty associated with types and parameters 

of the input parameter distributions on the results of the Morris EE analysis (Section 3.4.3). These two 

tests are limited to involve only four parameters related to the HRR curve, namely maximum HRR value, 

time to maximum HRR, duration of maximum HRR, and time to decay (i.e., X1, X2, X3, and X4 in Table 

3-B in Section 3.4.2, respectively). The fire simulation model with FDS is used for these two tests and 

their results are discussed below.  

Section B.3 reports on the results of the input parameter screening analysis using Morris EE analysis 

method when the fire scenario is modeled with FDS. 

B.1. Convergence study on Morris sampling size 

Sample size in the Morris EE analysis is a function of the number of input parameters treated as 

random variables and the number of observations of 𝐹𝑖 quantified through the input space[35],[36]. By 

varying the number of observations, a convergence study on the Morris sampling size has been done. 

Four different Morris sampling sizes were tested: N = 25, N = 50, N = 75, and N = 100. To evaluate the 

degree of confidence in the estimated 𝜇 and σ, it is important to obtain the CIs associated with their point 

estimates. For each sample size N, results obtained from the N iterative FDS simulations can be 

considered as independent and identically distributed random samples of the point estimates of 𝜇 and σ. 

Using the Bootstrap resampling method[79], the 95% Confidence Interval (CI) around the point estimates 

of 𝜇 and σ can be computed. Table B-1 shows the point estimates and 95% CIs of 𝜇 and σ obtained for the 

four input parameters regarding their influences on KPM #3 (maximum temperature of Cable Tray B) for 

the four Morris sampling sizes. 

Table B-1: Statistics results for different Morris sampling sizes (obtained using Bootstrap resampling 

method with 1000 resamples) associated with KPM #3 (maximum temperature of Cable Tray B). 

ID Parameters Statistics 
Morris Sampling Sizes 

N = 25 N = 50 N = 75 N = 100 

X1 
Maximum 

HRR 

𝜇  

(95% CI) 

38.437  

(13.331, 63.543) 

38.571  

(24.184, 52.958) 

42.372  

(29.199, 55.545) 

34.525  

(22.966, 46.084) 

𝜎 

(95% CI) 

32.300 

(17.041, 47.559) 

23.809 

(18.734, 28.884) 

27.327 

(22.882, 31.772) 

27.562 

(23.024, 32.100) 

X2 

Time to 

maximum 

HRR 

𝜇  

(95% CI) 

1.223  

(-0.749, 3.195) 

1.621  

(-0.019, 3.261) 

0.878  

(0.006, 1.750) 

1.137  

(0.456, 1.818) 

𝜎 

(95% CI) 

2.453 

(0.144, 4.762) 

2.844 

(0.885, 4.803) 

1.733 

(0.641, 2.825) 

1.546 

(1.137, 1.955) 

X3 
Duration of 

max HRR 

𝜇  

(95% CI) 

7.698  

(1.108, 14.288) 

5.734  

(1.955, 9.513) 

5.696  

(2.722, 8.670) 

4.885  

(2.330, 7.440) 

𝜎 

(95% CI) 

8.625 

(4.191, 13.059) 

6.387 

(4.797, 7.977) 

6.146 

(4.158, 8.134) 

6.197 

(4.603, 7.791) 

X4 
Time to 

decay 

𝜇  

(95% CI) 

0.706  

(-0.213, 1.625) 

2.086  

(0.186, 3.950) 

2.345  

(0.924, 3.766) 

3.421  

(2.012, 4.830) 

𝜎 

(95% CI) 

1.161 

(0.257, 2.065) 

3.085 

(1.382, 4.788) 

2.914 

(1.954, 3.874) 

3.241 

(2.583, 3.899) 
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The widths of the 95% CIs of 𝜇 and σ, as shown in Table B-1, generally decrease when the Morris 

sampling size increases. The results in Table B-1, however, have shown that the ranking order of the four 

parameters based on the magnitudes of their associated 𝜇 and 𝜎 values is stable for the four tested 

sampling sizes. Based on the magnitudes of 𝜇, for example, input parameter X1 (max. HRR) is the most 

influential parameter on the Cable Tray B maximum temperature (among the four parameters being 

considered) due to its highest 𝜇 value. However, when considering the CIs around the 𝜇 values estimated 

for these four parameters, one should pay attention to the overlaps (if any) among these CIs. For example, 

with N = 25, the CIs for 𝜇 values associated with X1 and X3 are overlapped, which indicates that with this 

sampling size, it cannot be concluded with statistical significance that X1 has a greater influence on the 

output as compared to X3. At larger sampling sizes, for example, N ≥ 50, this overlap, however, is no 

longer present and one can make such conclusion with statistical significance. At this stage, statistical 

thresholds have not been applied on the obtained statistical measures for determining an “optimal” sample 

size required for generating statistically stable estimates of 𝜇 and 𝜎. Use of statistical thresholds should be 

considered in a practical application. Regarding the effect of nonlinearity and interactions among the 

input parameters, the results in Table B-1 have shown that the 𝜎 values obtained for all four parameters 

are relatively high as compared to their 𝜇 values. This implies that there are nonlinearity and interaction 

effects among these input parameters. Note that when considering the values of 𝜎, one should also 

consider their CIs and pay attention to the overlaps among the CIs (if any). 

B.2. Sensitivity of the Morris EE analysis results to changes in the 

characteristics of input parameter distributions 

Based on different sources of data, there may be uncertainty associated with the type and parameters 

of the probability distribution assigned to each input parameter listed in Table 3-B in Section 3.4.2. To 

evaluate the sensitivity of the Morris EE analysis results to this type of uncertainty, a limited-scope 

sensitivity test which involves four key input parameters (X1, X2, X3, and X4 in Table 3-B) was 

conducted. In this test, only these four input parameters are treated as random variables in the Morris EE 

analysis settings. Probability distributions assigned for X2 and X3 are kept the same as those listed in 

Table 3-B. For X1, two probability distributions are tested: (i) the distribution listed in Table 3-B, which 

was obtained from NUREG-2178 [71]; (ii) a distribution obtained from NUREG/CR-6850 [26] for 

electrical fires in multiple cable bundles with qualified cable inside vertical cabinets, which is represented 

by a gamma distribution with α = 0.7, β = 216. Regarding X4, by conducting the Kolmogorov-Smirnov 

test to fit selected distributions to the experimental data provided in NUREG/CR-6850 [26], two 

alternative distributions are not rejected and, hence, are considered in this test: (i) the distribution listed in 

Table 3-B, and (ii) a triangular distribution with lower bound LB = 10, upper bound UB = 30, and mode 

value of 17. In total, four combinations of input parameter distributions have been tested as summarized 

in Table B-2.  

Table B-2: Combinations of input parameter distributions for testing the sensitivity of Morris EE analysis 

results. 

ID X1 (Maximum HRR) Distributions X4 (Time to decay) Distributions 

1 Gamma (α = 0.36, β = 57) Uniform (10, 30) 

2 Gamma (α = 0.36, β = 57) Triangular (10, 17, 30) 

3 Gamma (α = 0.7, β = 216) Uniform (10, 30) 

4 Gamma (α = 0.7, β = 216) Triangular (10, 17, 30) 

Notes: In these four combinations, distributions for X2 and X3 are kept the same as reported in Table 3-B 

(Section 3.4.2). 
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Representative results of this sensitivity test are reported in Figures B-1 through B-4 below, which 

show results on the influences of the four input parameters (X1, X2, X3, and X4) on the maximum 

temperature of Cable Tray B obtained for the four combinations listed in Table B-2 (with N = 75), 

respectively. In each of these four figures, in the bar chart on the left, the right ends of the blue bars 

indicate observed point values of 𝜇 and the black line segments represent the 95% CIs around them. 

 

Figure B-1: Sensitivity measures obtained for KPM #3 (Cable Tray B Max. Temperature) – Combination 

#1. 

 

Figure B-2: Sensitivity measures obtained for KPM #3 (Cable Tray B Max. Temperature) – Combination 

#2. 
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Figure B-3: Sensitivity measures obtained for KPM #3 (Cable Tray B Max. Temperature) – Combination 

#3. 

 

Figure B-4: Sensitivity measures obtained for KPM #3 (Cable Tray B Max. Temperature) – Combination 

#4. 

Figures B-1 to B-4 show that the ranking obtained for the four parameters (based on their 𝜇 values) in 

the four tested combinations seems to follow the same order. It is, however, noted that in Figure B-3, the 

95% CIs obtained for X1 and X3 are overlapped, which indicates that it cannot be simply concluded that 

X1 has a higher influence on the KPM #3 as compared to X3. To make such conclusion, one would need 

to reduce the width of the 95% CIs to avoid the overlap. This reduction may be achieved by increasing the 

Morris sampling size. By varying the distribution of X4, there are, however, noticeable changes in the 

magnitudes of 𝜇 associated with X1 and X3. This result indicates additional experimental data for X4 (i.e., 

time to decay) should be collected to develop an accurate distribution for this parameter. By varying the 

distribution of X1, significant changes were observed in the magnitudes of 𝜇 associated with all input 

parameters. This result could provide an explanation for the motivation behind recent research efforts to 

more realistically refine and characterize the maximum HRR of electrical enclosure fires [13]. The 

observations obtained from this sensitivity test also imply the presence of interaction effects among the 

parameters, which highlights the need for Global IM analysis. Note that, in the current scope of work, the 
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NSP is not considered (i.e., assumed to be unity). Should the analysis consider the suppression curve 

(based on NUREG/CR-6850), it may change the observations obtained in this test. 

B.3. Input parameter screening analysis using Morris EE analysis method 

This section reports on the settings and results of the quantitative screening in Step 3 (using the 

Morris EE analysis method [35]) for all nine input parameters listed in Table 3-B when the fire scenario is 

modeled with FDS. The screening aims to identify input parameters among those listed in Table 3-B that 

have negligible effects on the KPM predictions by the simulation model (i.e., maximum temperature and 

heat flux at each target cable tray). To compute the EE, the state space of each input parameter is 

discretized into a p-level grid (with p = 4) so that each input parameter Xi can be randomly sampled from 

its discretized values. As measures of sensitivity, the sample mean (𝜇) and the sample standard deviation 

(𝜎) of the EE are used.  

Values of the sensitivity measures are obtained by performing 150 FDS model executions (9 input 

parameters and 15 observations of 𝐹𝑖  per input factor 𝑖). The Morris samples are drawn using the 

sampling strategy suggested by Campolongo et al. [36]. Due to an intensive computational resource 

demand associated with the use of FDS, a parallel simulation using the Message Passing Interface (MPI) 

is recommended to efficiently perform the FDS runs. An optimal mesh resolution (i.e., spatial grid cell 

size) for the FDS simulation model is adopted from Sakurahara et al. [28].  

Figure B-5 to Figure B-10 below show 𝜇 and 𝜎 results of this Morris EE analysis for the nine input 

parameters regarding their influences on the six KPMs of interest, i.e., maximum temperature inside the 

cable jacket (TCB) and maximum heat flux at the surface of the cable jacket (q"CB) of the three target cable 

trays A, B and C. In each figure, in the blue bar chart on the left, the right ends of the blue bars indicate 

observed point values of 𝜇 and the black line segments represent the 95% CIs around them. Table B-3 

reports numerical results of these sensitivity measures, 𝜇,  and 𝜎. 

 

Figure B-5: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #1 (Cable Tray A Max. Temperature)  
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Figure B-6: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #2 (Cable Tray A Max. Heat Flux) 

 

Figure B-7: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #3 (Cable Tray B Max. Temperature) 

 

Figure B-8: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #4 (Cable Tray B Max. Heat Flux) 
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Figure B-9: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #5 (Cable Tray C Max. Temperature) 

 

Figure B-10: Results of Morris EE analysis for nine input parameters listed in Table 3-B associated with 

KPM #6 (Cable Tray C Max. Heat Flux) 

Table B-3: Statistics Results Obtained from the Morris EE analysis for Nine Parameters Listed in Table 

3-B, sorted by µ* values – Fire modeled with FDS. 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM1 

(Cable Tray A 

Max. 

Temperature) 

µ 739.92 11.182 13.129 6.162 0.406 -2.513 0.367 -0.814 -1.614 

𝜎 228.444 16.408 20.916 11.357 2.158 3.341 3.489 1.993 11.773 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM2 

(Cable Tray A 

Max. Heat 

Flux) 

µ 82.584 0.99 2.348 0.824 -0.085 -0.396 -0.3 0 1.326 

𝜎 54.206 3.292 5.723 2.868 1.31 2.254 3.552 0 5.704 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM3 

(Cable Tray B 

Max. 

Temperature) 

µ 277.753 8.402 13.089 3.545 0.03 -0.424 -0.233 -0.364 143.016 

𝜎 385.849 17.136 27.342 7.516 2.099 1.472 1.532 1.357 149.702 
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 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM4 

(Cable Tray B 

Max. Heat 

Flux) 

µ 31.669 1.09 0.661 -0.004 0.317 -0.461 -0.838 0 9.579 

𝜎 52.921 1.979 2.987 0.967 2.713 1.803 1.599 0 11.049 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM5 

(Cable Tray C 

Max. 

Temperature) 

µ 8.604 0.525 1.962 0.506 -0.092 -0.078 -0.245 -0.007 -0.18 

𝜎 8.295 0.804 3.438 0.863 0.17 0.152 0.364 0.021 0.328 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM6 

(Cable Tray C 

Max. Heat 

Flux) 

µ 0.425 0.012 0.06 0.005 -0.008 -0.004 -0.015 0 -0.005 

𝜎 0.411 0.023 0.104 0.008 0.019 0.018 0.028 0 0.022 

Note: For input parameters Xi, please refer to Table 3-B. 

 

As can be seen in Table B-3, the absolute magnitudes of the three sensitivity metrics (𝜇,  and 𝜎) 

obtained when using FDS are different from those obtained when using CFAST (Table 2). One possibility 

is that this stems from the differences between the FDS and CFAST model resolutions. For example, a 

significant difference between FDS and CFAST in predicting the maximum heat flux and cable 

temperature is that FDS has a “finer” spatial resolution as all of its geometrical entities are divided into 

rectilinear grid cells and described by defining their coordinates in the computational domain; CFAST, on 

the other hand, is a two-zone model where the vertical dimension of the fire compartment is divided into 

two discrete layers. It should also be noted that NUREG-1934 indicated a reservation on the applicability 

of CFAST to Scenario D (Figure 13) due to multiple reasons related to the fire conditions that may not be 

suitable for CFAST. To thoroughly investigate the underlying causes of the differences and how they 

affect the results of the Morris EE analysis, further study is needed.  
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APPENDIX C  

This appendix reports on the full results the Global IM analysis done for nine input parameters listed 

in Table 1. Table C-1 shows Si
 (CDF) results calculated for each of the 9 input parameters with respect to its 

influence on each of the six KPMs considered in this case study (i.e., maximum temperature inside the 

cable jacket, TCB, and maximum heat flux at the surface of the cable jacket, q"CB, for three cable trays A, 

B, and C). Meanwhile, Table C-2 reports on the Si
 (CDF) results calculated with respect to the influence of 

the input parameters on the fire-induced cable damage probabilities. Table C-3 reports on the Si
 (CDF) 

results calculated with respect to the influence of the input parameters on the risk output (i.e., Core 

Damage Frequency of the hypothetical PRA model in Section 3.4.4). The 90-percentile confidence 

intervals (CI) of Si
 (CDF) are calculated using the replicated Monte Carlo simulation and the Bootstrap 

resampling method [68]. 

Table C-1: Si
 (CDF) results calculated for nine input parameters with respect to their influence on each of 

the six simulation model outputs 

Input Parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM1 

(Cable 

Tray A 

Max. 

Temperat

ure) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
9.93E-

01 

1.41E-

02 

4.54E-

02 

1.70E-

02 

8.05E-

05 

3.90E-

05 

9.08E-

05 

4.48E-

03 

1.60E-

04 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
6.69E-

04 

1.06E-

05 

4.98E-

05 

1.83E-

05 

9.96E-

08 

6.83E-

08 

1.44E-

07 

5.91E-

06 

1.55E-

07 

5th-

percentile 

8.86E-

01 

1.23E-

02 

3.72E-

02 

1.42E-

02 

6.43E-

05 

2.85E-

05 

6.84E-

05 

3.56E-

03 

1.36E-

04 

95th-

percentile 

1.11E+

00 

1.59E-

02 

5.37E-

02 

2.01E-

02 

9.70E-

05 

5.08E-

05 

1.16E-

04 

5.49E-

03 

1.86E-

04 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM2 

(Cable 

Tray A 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
1.16E+

00 

3.53E-

04 

4.37E-

04 

5.51E-

04 

7.24E-

05 

3.55E-

05 

8.93E-

05 

0.00E+

00 

2.27E-

05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
1.07E-

03 

2.94E-

07 

3.15E-

07 

1.07E-

06 

8.42E-

08 

7.53E-

08 

1.03E-

07 

0.00E+

00 

3.62E-

08 

5th-

percentile 

9.89E-

01 

3.06E-

04 

3.86E-

04 

3.96E-

04 

5.93E-

05 

2.34E-

05 

7.29E-

05 

0.00E+

00 

1.67E-

05 

95th-

percentile 

1.34E+

00 

4.03E-

04 

4.90E-

04 

7.43E-

04 

8.70E-

05 

4.83E-

05 

1.07E-

04 

0.00E+

00 

2.85E-

05 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM3 

(Cable 

Tray B 

Max. 

Temperat

ure) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
7.34E-

01 

2.10E-

02 

6.08E-

02 

2.37E-

02 

3.38E-

04 

2.00E-

04 

4.33E-

04 

2.08E-

03 

5.56E-

01 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
1.47E-

03 

1.49E-

05 

5.74E-

05 

2.52E-

05 

3.60E-

07 

3.13E-

07 

3.78E-

07 

2.49E-

06 

7.52E-

04 

5th-

percentile 

5.34E-

01 

1.86E-

02 

5.14E-

02 

1.97E-

02 

2.80E-

04 

1.48E-

04 

3.72E-

04 

1.69E-

03 

4.37E-

01 

95th-

percentile 

1.00E+

00 

2.35E-

02 

7.02E-

02 

2.80E-

02 

3.98E-

04 

2.52E-

04 

4.95E-

04 

2.50E-

03 

6.86E-

01 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 
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KPM4 

(Cable 

Tray B 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
1.19E+

00 

3.92E-

03 

2.47E-

04 

0.00E+

00 

1.40E-

04 

5.14E-

05 

2.24E-

04 

0.00E+

00 

8.47E-

01 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
3.19E-

03 

6.19E-

06 

3.60E-

07 

0.00E+

00 

2.60E-

07 

1.70E-

07 

3.07E-

07 

0.00E+

00 

1.16E-

03 

5th-

percentile 

7.72E-

01 

2.94E-

03 

1.90E-

04 

0.00E+

00 

9.92E-

05 

2.47E-

05 

1.75E-

04 

0.00E+

00 

6.66E-

01 

95th-

percentile 

1.80E+

00 

4.99E-

03 

3.09E-

04 

0.00E+

00 

1.85E-

04 

8.04E-

05 

2.77E-

04 

0.00E+

00 

1.05E+

00 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM5 

(Cable 

Tray C 

Max. 

Temperat

ure) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
2.64E-

02 

9.89E-

04 

3.15E-

03 

1.95E-

03 

2.38E-

04 

1.35E-

04 

3.32E-

04 

2.84E-

05 

1.94E-

05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
8.89E-

05 

8.17E-

07 

2.72E-

06 

2.11E-

06 

1.58E-

07 

1.07E-

07 

3.49E-

07 

2.63E-

08 

2.44E-

08 

5th-

percentile 

1.49E-

02 

8.55E-

04 

2.70E-

03 

1.60E-

03 

2.12E-

04 

1.17E-

04 

2.77E-

04 

2.43E-

05 

1.57E-

05 

95th-

percentile 

4.34E-

02 

1.12E-

03 

3.60E-

03 

2.30E-

03 

2.64E-

04 

1.53E-

04 

3.92E-

04 

3.29E-

05 

2.37E-

05 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

KPM6 

(Cable 

Tray C 

Max. Heat 

Flux) 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
1.87E-

02 

4.85E-

04 

1.56E-

03 

3.90E-

04 

1.21E-

04 

7.03E-

05 

1.69E-

04 

0.00E+

00 

1.54E-

05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
6.30E-

05 

3.63E-

07 

1.33E-

06 

4.12E-

07 

8.36E-

08 

4.71E-

08 

1.60E-

07 

0.00E+

00 

2.13E-

08 

5th-

percentile 

1.03E-

02 

4.25E-

04 

1.33E-

03 

3.23E-

04 

1.07E-

04 

6.27E-

05 

1.44E-

04 

0.00E+

00 

1.21E-

05 

95th-

percentile 

3.07E-

02 

5.45E-

04 

1.77E-

03 

4.60E-

04 

1.35E-

04 

7.81E-

05 

1.97E-

04 

0.00E+

00 

1.91E-

05 

 

Table C-2: Si
 (CDF) results calculated for nine input parameters with respect to their influence on the fire-

induced cable damage probabilities 

Input Parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 

Cable 

Tray A 

Damage 

Probabilit

y 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
8.57E-

02 

2.57E-

03 

8.17E-

03 

7.46E-

03 

5.32E-

05 

2.87E-

05 

7.08E-

05 

3.07E-

03 

8.07E-

05 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
1.66E-

04 

1.87E-

06 

1.05E-

05 

9.77E-

06 

4.06E-

08 

2.30E-

08 

5.48E-

08 

4.61E-

06 

8.40E-

08 

5th-

percentile 

5.96E-

02 

2.26E-

03 

6.46E-

03 

5.91E-

03 

4.65E-

05 

2.49E-

05 

6.20E-

05 

2.36E-

03 

6.76E-

05 

95th-

percentile 

1.14E-

01 

2.88E-

03 

9.90E-

03 

9.11E-

03 

5.99E-

05 

3.26E-

05 

7.98E-

05 

3.88E-

03 

9.54E-

05 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 

Cable 

Tray B 
𝑆̅

𝑖
(𝐶𝐷𝐹)

 
2.36E-

03 

9.84E-

05 

3.98E-

04 

4.32E-

05 

8.13E-

08 

4.31E-

08 

1.69E-

07 

2.29E-

05 

9.42E-

04 
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Damage 

Probabilit

y 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
1.47E-

05 

3.68E-

07 

1.41E-

06 

2.64E-

07 

7.91E-

10 

4.18E-

10 

9.18E-

10 

7.84E-

08 

3.39E-

06 

5th-

percentile 

4.47E-

04 

3.84E-

05 

1.79E-

04 

5.52E-

06 

0.00E+

00 

0.00E+

00 

4.29E-

08 

1.06E-

05 

4.38E-

04 

95th-

percentile 

5.17E-

03 

1.62E-

04 

6.41E-

04 

9.15E-

05 

2.44E-

07 

1.29E-

07 

3.34E-

07 

3.65E-

05 

1.54E-

03 

 

Table C-3: Si
 (CDF) results calculated for nine input parameters with respect to their influence on the risk 

output (of the hypothetical PRA model in Section 3.4.4.2) 

Input Parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 

Core 

Damage 

Frequency 

𝑆̅
𝑖
(𝐶𝐷𝐹)

 
2.92E-

08 

1.24E-

09 

4.36E-

09 

7.55E-

10 

1.23E-

12 

6.58E-

13 

8.69E-

12 

3.63E-

10 

1.06E-

08 

𝑆. 𝐸. (𝑆̅
𝑖
(𝐶𝐷𝐹)

) 
1.95E-

10 

4.52E-

12 

1.60E-

11 

3.50E-

12 

1.19E-

14 

6.38E-

15 

5.93E-

14 

1.34E-

12 

3.40E-

11 

5th-

percentile 

5.20E-

09 

5.06E-

10 

1.91E-

09 

2.37E-

10 

0.00E+

00 

0.00E+

00 

1.29E-

12 

1.53E-

10 

5.47E-

09 

95th-

percentile 

6.74E-

08 

2.00E-

09 

7.20E-

09 

1.37E-

09 

3.68E-

12 

1.95E-

12 

2.04E-

11 

5.98E-

10 

1.66E-

08 
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