Analytical Assessment Methods to Directly Measure Impact and Resilience of USAF Mission Assurance

James A Murphy

June 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Analytical Assessment Methods to Directly Measure Impact and Resilience of USAF Mission Assurance

James A Murphy

June 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Analytical Assessment Methods to Directly Measure Impact and Resilience of USAF Mission Assurance

Presented to the Military Operational Research Symposium Military Assessments Working Group (WG-22)

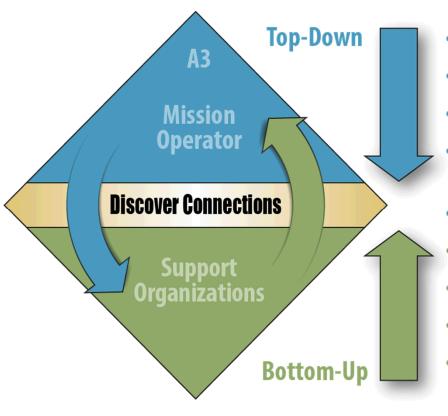
James Murphy June 15-19, 2020

Team members include: John Beck (INL), Michael Shurtliff (INL), Liam Boire (INL), Corey Beebe (INL), Chris Dieckmann (INL), Michael Darby (INL), Kyle Oswald (INL), and John Collins (retired INL)

Presentation is Unclassified

Agenda

- AF Problem Statement given to INL
- DEEPR (Decomposition for Energy Assurance and Electrical Power Resilience) Analytical Framework
- Mission Availability algorithm
- Static and dynamic analyses
- Path Forward to improving dynamic and interdependency analyses
- Conclusions



AF Problem Statement & Challenge to INL

- Air Force is increasingly networked systems and that makes them potentially more vulnerable to power interruptions
- Interdependency of installations and systems expose the enterprise to greater risks
- Current assessment approaches focus solutions on installation's assets and do not account for other methods to resolve mission impacts
- Analysis of Alternatives (AoA) are too focused on power infrastructure as the way to improve resilience
- Need for a method/metric that values resilience to the mission.
 - Understand As-Is resilience value
 - Enables a return on investment (ROI) value for COA/alternatives

Mission Thread Analysis Uses Analytical Framework to Measure Impact

- Mission Objectives
- Functions
- Tasks
- Task Enablers
 - Operational Options
- Mission Systems
- Physical Assets
- Facilities
- AF Utilities & Lifelines
- Commercial Utilities and Lifelines

Mission operators consistently reported backup approaches

- "We would use a different method to avoid telling the commander we can't do a mission"
- Took 1-4 organizations to detail the "blue" portion

Example Response: "This mission thread workshop was the first time in 20 years that I understood what the entire mission was and how my part fit into making it happen"

Installation support and communications built in backup options for power and networking

- "If power goes down on my watch, I hear about it quickly and they expect miracles"
- Took 2-4 organizations to defined the "green" portion

- Mission Objectives
- Functions
- Tasks
- Task Enablers
 Operational Options
- Mission Systems
- Physical Assets
- Facilities
- AF Utilities & Lifelines
- Commercial Utilities and Lifelines

Mission Systems logical enabler needs

Mission system logical relationships

Logic Allowed	Description of Logic
AND	Assets required for mission system to be available
OR	Assets where 1 of 2 or more elements required to be available
OR-Capacity	Assets that supply a quantity of capacity required

Algorithm Steps

Assets and Mission Systems calculate availability:

Availability = Minimum of three terms;
Minimum of Term 1["AND gate logic"],
Maximum of term 2 ["OR gate group logic"], and
Minimum of term 3 [1,Summation("OR-Capacity group logic"]

Validation: Civil engineers, communication squadrons, facility managers review the findings:

- If "asset" is lost, then impact is confirmed
- Method found much more effective than looking at the model

- Mission Objectives
- Functions
- Tasks
- Task Enablers

 Operational Options
- Mission Systems
- Physical Assets
- Facilities
- AF Utilities & Lifelines
- Commercial Utilities and Lifelines

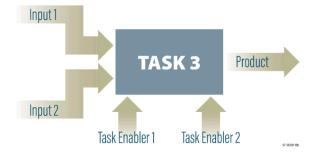
Operational Options may degrade the ability to perform the task to the same level as the preferred option

Operational options degradation levels

Degradation Level	Degradation Value	Description		
No Impact	0	Option has same performance level as primary path.		
Very Small	5%	Barely noticeable degradation to capability.		
Small	10%	Noticeable impact to a capability.		
Moderate	20%	Reportable impact to capability.		
Significant	40%	Sufficient capability degradation that there may be outcomes that require additional mitigation.		
Catastrophic	100%	Cannot perform capability, mission may be in serious jeopardy, "showstopper."		

Algorithm Steps

- 1. Each Operational Option calculates its Mission Availability by multiplying: MS' availability * (1-OO's Degradation)
- 2. Task Enablers seeks the maximum OO score

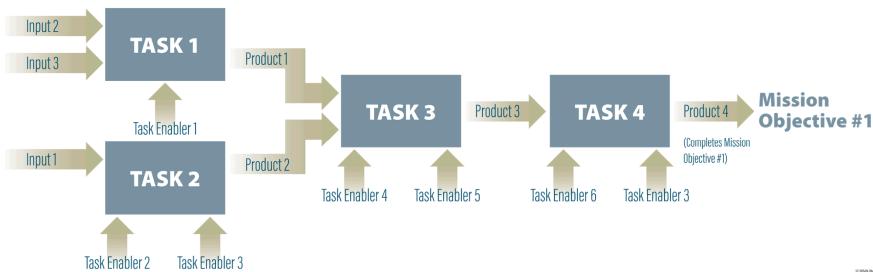

Validation: Mission operators performing the tasks review the findings:

 If x "mission system" is lost, then y operational option is used with this defined degradation level

- Mission Objectives
- Functions
- Tasks
- Task Enablers– Operational Options
- Mission Systems
- Physical Assets
- Facilities
- AF Utilities & Lifelines
- Commercial Utilities and Lifelines

Weighting definitions

Weighting Level	Weight Value	Description and Value of Weight
Essential	100	Must be available for the Task to be completed. Limits the mission availability value of the task.
Important	50	Half as important to the Task as an Essential enabler.
Non- Essential	10	One tenth as important to the Task as an Essential enabler.


Algorithm Steps

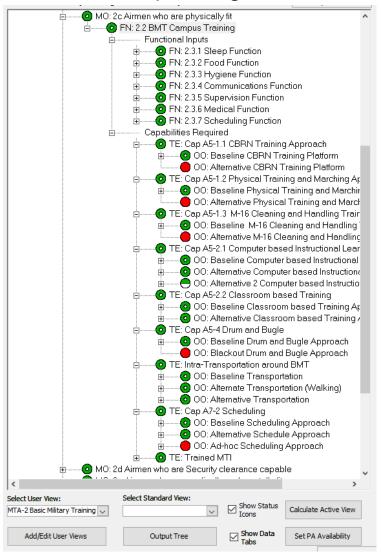
- Calculate constrained score of essential inputs and enablers
- Weight average constrained score with other less important inputs and enablers

Validation: Mission objective owner and/or task operators

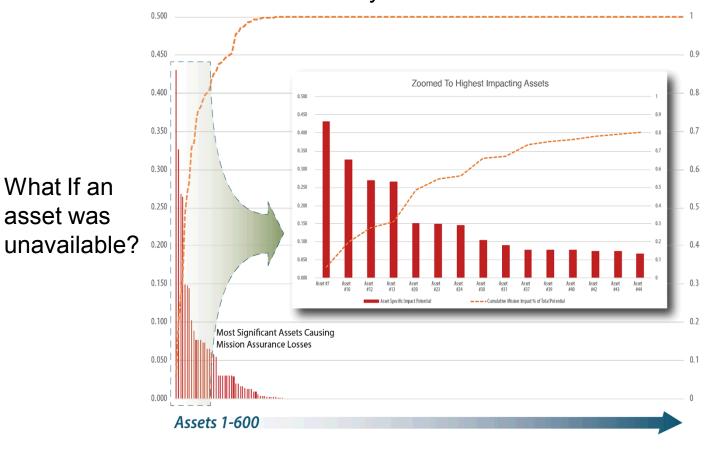
Essential and other weighted inputs/task enablers confirmed

Algorithm Final Steps

- Each Mission Objective is connected to the tasks via a Functional Flow Block Diagram
- Task 4 is based on task 3's product and its task enablers
 - Task 3 uses task 1 and 2 products plus its own task enablers etc.
 - Degradation of the system is perpetuated along this FFBD to the last task
 - The Mission Objective inherits the final task's product score
 - If more than one product completes the Mission Objective, the completing products are averaged
- Mission Objectives roll up to the mission using importance weights of the objectives to the Mission



Analytical Framework Model Evaluates Static Points of Failure


What If an

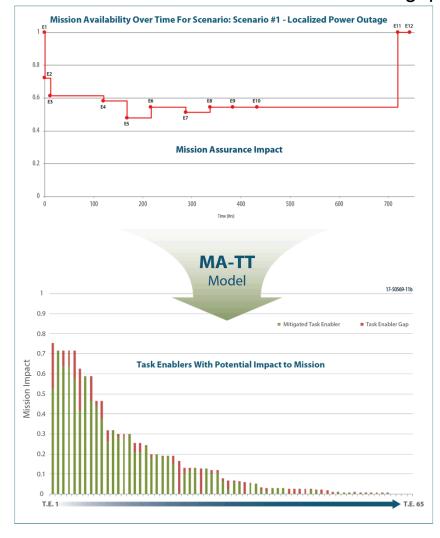
asset was

Normal Operating Conditions

Point of Failure Analyses Identifies Sensitive Assets

N-1, N-2, and N-3 Analyses Performed

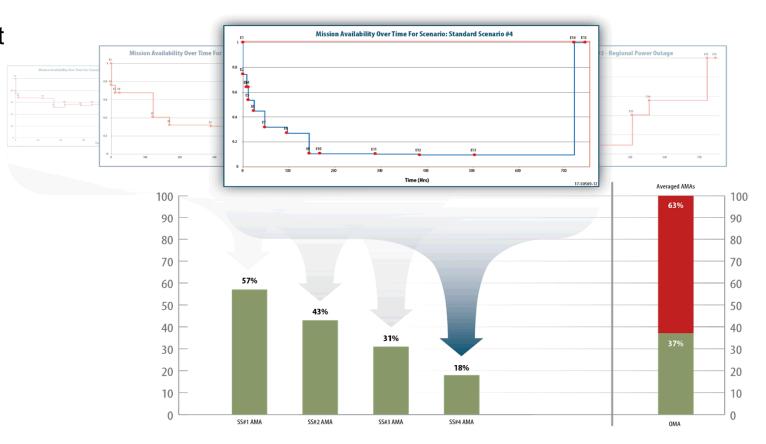
Notional Data

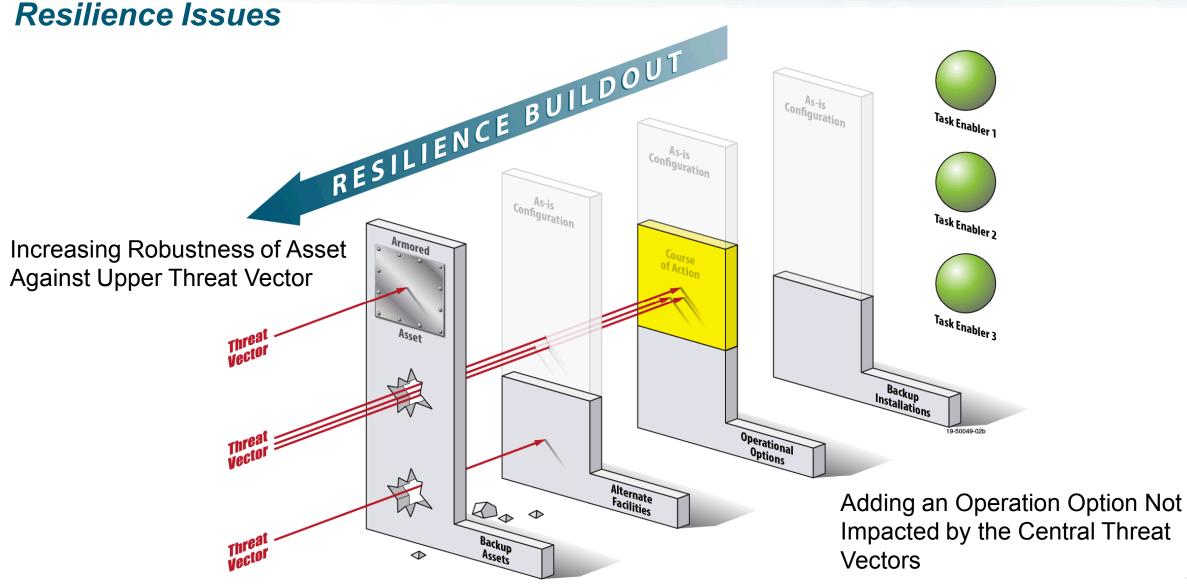

Threat-Informed Scenarios Provide Opportunity for Dynamic Analyses

Four Standard Scenarios Plus Unique Scenarios provide mission impacts testing environment

Represents events/conditions AF desires resilience to:

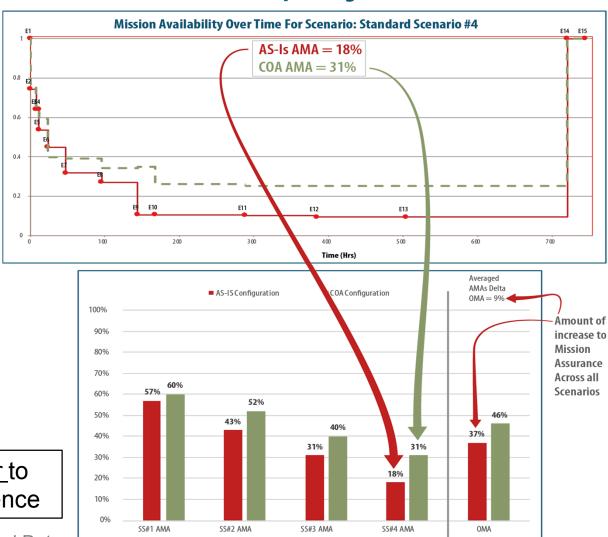
represente evente/conditione/it decires recinemes to.						
Scenario Conditions	Scenario 1	Scenario 2	Scenario 3	Scenario 4		
Power Outage Type	Base power off.	Base power off.	Base power off. Power outage for 45mi radius.	Base power off. Regional Interconnect power outage (see Appendix F).		
1. Duration	30 days	30 days	30 days	30 days		
2. Resupply Availability	Resupply available.	No resupply for first 14 days.	No resupply for first 21 days.	No resupply for 30 days, personnel relocation unavailable.		
3. Equipment repair	Equipment repaired normally.	Equipment repair delayed 14 days.	Equipment repair delayed for 21 days.	Equipment repair delayed for 30 days.		
4. Commercial Communications			 ISPs off line after 8 hours. Cell phones fail after 48 hours. Landlines fail after 7 days. 	 ISPs off line after 8 hours. Cell phones fail after 48 hours. Landlines fail after 7 days. 		


Dynamic analysis defines mission impact from task enablers and size of enabler's gap


Mission Availability, Average Mission Availability (AMA) and Overall Mission Availability (OMA) Measures

- AMA provides measure of mission impact across a scenario
- Averaging the AMAs provide an OMA for the mission's As-Is configuration
- Increasing AMAs and OMA results in resilience improvements
- Improvements in resilience provides the value function for ROI comparisons

DEEPR's Analytical Framework Provides Multiple Approaches to Resolving

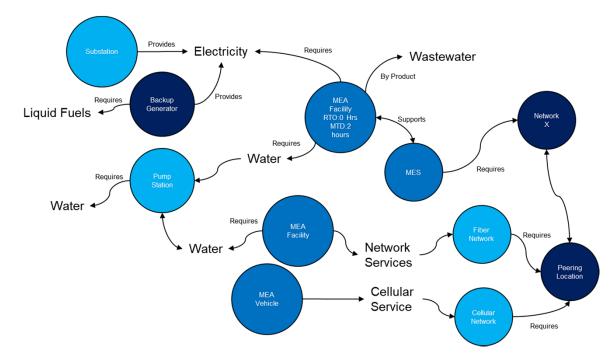


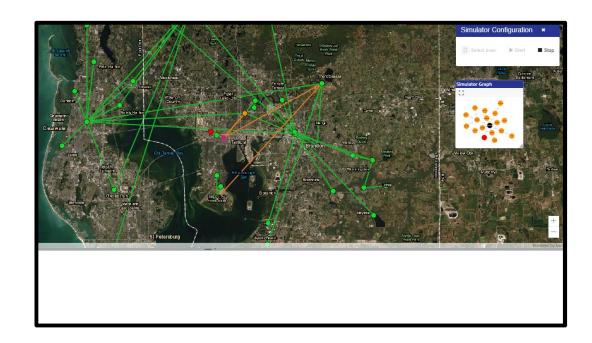
Measuring Resilience Value for Alternatives and Courses of Action

- "Bigger picture" problem definition
 - Increases solution creativity
 - Multiple scenarios avoids point solutions
- Evaluates Alternatives/COAs using same scenarios
 - Scenario prioritization allowed
 - Delta OMA provides resilience value (e.g. input to ROI analysis)
- Evaluates system of solutions
 - Complimentary solutions show compounded benefits
 - Competitive solutions would not yield compounded benefits

COA Effectiveness to Improving Mission Assurance

All mission supporting organizations <u>can work together</u> to identify what each should do to improve mission resilience


Path Ahead


- Opportunity exists to define a leading indicator metric for resilience
 - Mission availability measures when mission impact begins
 - Need a measure that shows when reductions are occurring prior to mission impact
 - Evaluating loss of Operational Options to the essential Task Enablers
- Integrating INL's DEEPR and AHA (All Hazards Analysis) Interdependency methods and tools
 - Commercial systems impact each other
 - Regional events impact installation's missions directly and indirectly
 - Obscured by secondary or tertiary effects
 - Time delays obscure causal factors
 - Increases difficulty defining adequate mitigation approaches
 - Improve the efficiency of analysis
 - Automate data importing
 - Increase reuse of data

Continued Areas of Development

- Integrating DEEPR Modeling approach with the All-Hazards Analysis (AHA) interdependency analysis techniques to better understand wide-spread infrastructure impact on missions
 - Identify interconnectivity and enabling needs of commercial systems with each other and understanding the impact on AF mission supply chain, utilities, communications, etc.
 - Simulate the threat-informed scenarios on both the commercial and AF communities to measure mission impact from additional coupling effects

Project Outcomes

Observations:

- Resilience metrics at the static level were not helpful and could actually be problematic in investment strategies
- Defining what to be resilient to is important to understanding the current state and where to improve
- Relationships and logic define what assets matter and enable drill down to further understand impact

<u>Issues to Resolve:</u>

- Precursor resilience metrics may help understand when Mission Availability impact is approaching
- Interdependencies are largely difficult to evaluate due to indirect effects without modelling the relationships

Conclusion:

- Mission resilience is a dynamic result from eliminating mission impact due to adverse events
 - Not a static metric in itself.
 - Defining applicable threat informed scenarios provide both an evaluation breadth and desire to be resilient
 - Measuring Mission Availability across the scenarios establishes baseline or As-Is effectiveness
 - Improving mission resilience is a result of increasing mission availability across scenarios and supports ROI analyses

Resiliency-valued investment decisions are made possible

Thank You,

Contact Information

James Murphy
Idaho National Laboratory
Systems Science & Engineering

James.murphy@inl.gov

208-526-4453

Questions?

Backups

• Definitions to include, stories to build into notes in appropriate locations.

DEEPR Architectural Elements & Descriptions

• Mission
Mission is decomposed into critical outcomes called Mission Objectives

Mission Objectives <u>Mission Objectives</u> decompose into a logical set of <u>Tasks</u> (e.g. FFBD)

Functions
Functions are used to hierarchically organize <u>Tasks</u>

Tasks Tasks convert inputs into products using Task Enablers

Operational Options Operational Options are alternative approaches to provide the Task Enabler with or without degradation

Mission <u>Mission Systems</u> are required to be available to provide the associated <u>Operational Option</u> Systems

Physical Asset

Physical Assets & Sub-Systems required to provide Mission Systems availability

Sub-Systems

Facilities <u>Facilities</u> contain the <u>Physical Assets and Sub-Systems</u> and connect to <u>AF Utilities and Lifelines</u>

AF Utilities & Lifelines AF Utilities and Lifelines provide Physical Assets and Sub-Systems required enablers

Commercial Utilities Commercial Utilities & Lifelines provide the AF Utilities and Lifelines
& Lifelines