TRISO Fuel: Mechanistic Source Term

Paul A Demkowicz

April 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

TRISO Fuel: Mechanistic Source Term

Paul A Demkowicz

April 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

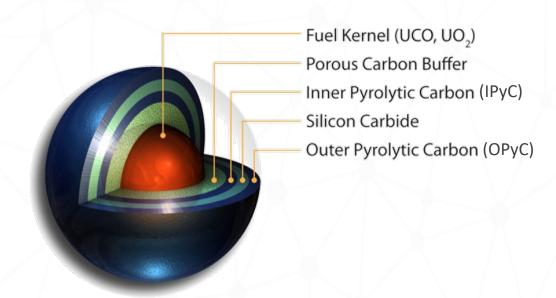
Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

TRISO Fuel: Mechanistic Source Term

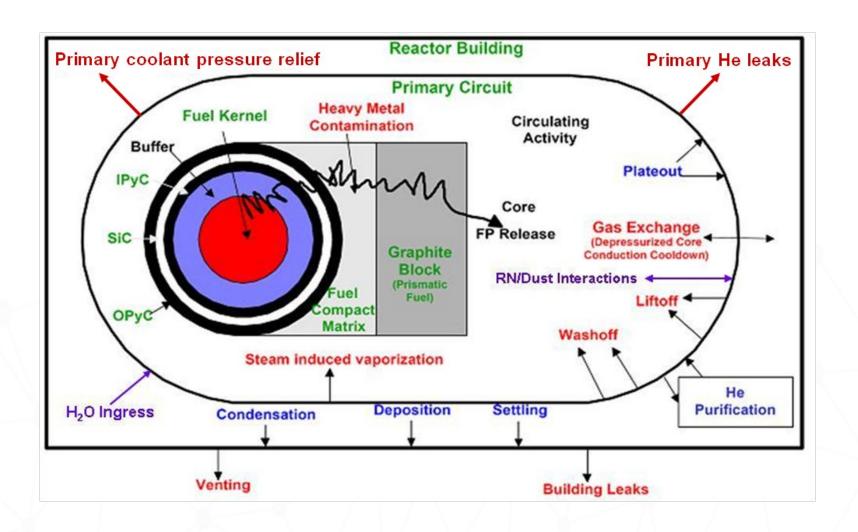
Advanced Reactor Technologies
Idaho National Laboratory

Paul Demkowicz, Ph.D. AGR Program Director

NRC HTGR Training April 16-17, 2019

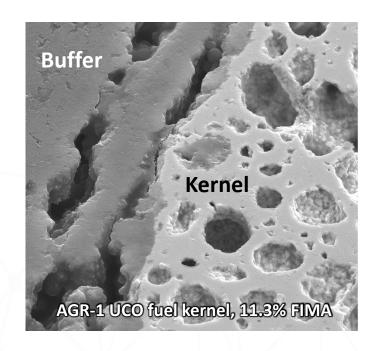

Outline

- Barriers to radionuclide (RN) release in high-temperature gas-cooled reactors (HTGRs)
- Radionuclide Design criteria
- Computational tools to predict radionuclide release
- Simple model to estimate source term from HTGRs


The Training Course delivered to the NRC in 2010 included a module discussing radionuclide behavior in HTGRs (Module 13). You are encouraged to review that course material for additional details.

Radionuclide Barriers

- HTGR designs employ multiple radionuclide release barriers
 - Fuel kernels
 - Particle coatings (most important barrier)
 - Fuel-element matrix and fuel-element graphite (prismatic reactor)
 - Primary coolant pressure boundary
 - Reactor building (RB)
- These multiple radionuclide barriers provide defense in depth



HTGR Radionuclide Sources and Pathways

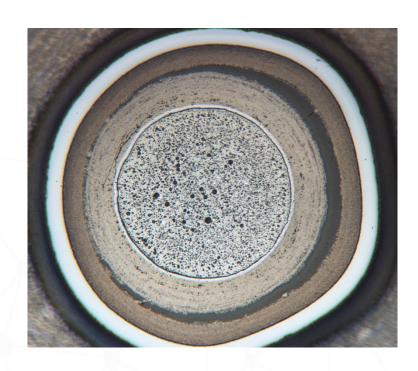
Radionuclide Release Barrier: Fuel Kernel

- Potential release mechanisms
 - Fission recoil
 - Diffusion
 - Hydrolysis (reaction with H₂O)
- Controlling parameters
 - Fuel temperatures
 - Time
 - H₂O concentration
 - Burnup
- Barrier performance
 - Fractional gas release function of time/temperature history
 - Increased gas release in case of hydrolysis
 - Partial diffusive release of volatile fission metals (Ag, Cs > Eu, Sr)
 - Other radionuclides, including actinides, very well retained
 - UO₂ expected to stabilize certain elements to a greater extent than UCO (Sr, Eu)


Fission Gas Release

- Short-lived fission gas release in-pile evaluated using the "release-rate-to-birth-rate" (R/B) ratio
- Release is a function of element (Kr, Xe), isotope half life and fuel temperature
- Gas release calculated using a Booth model

$$R_p \approx \frac{3}{x} = 3 \left[\frac{D_0 e^{-\frac{E_a}{RT}}}{\lambda a^2} \right]^n$$


- Various experiments have been performed to determine the R/B ratio for exposed kernels (including recent AGR-3/4 irradiation)
- Isotopes commonly measured:

Kr-85m	Xe-131m
Kr-87	Xe-133
Kr-88	Xe-135
Kr-89	Xe-135m
Kr-90	Xe-137
	Xe-138
	Xe-139

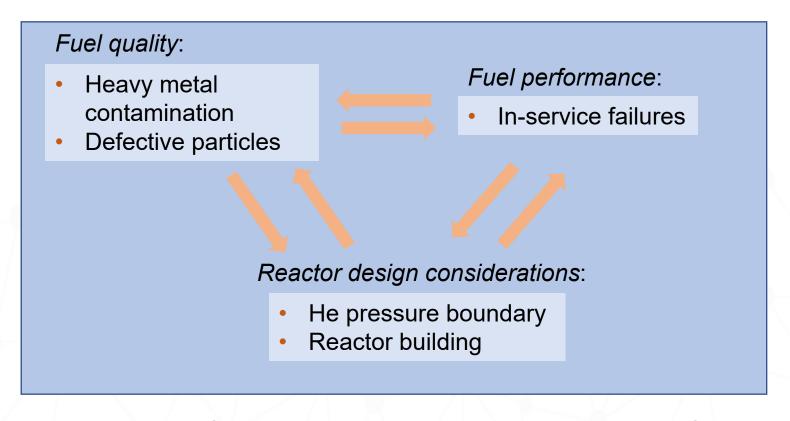
Radionuclide Release Barriers: Particle Coatings

- Potential release mechanisms
 - Diffusion through intact coatings
 - As-fabricated coating defects
 - In-service coating failure
- Controlling parameters
 - Fuel temperatures
 - Time
 - Fast neutron fluence
- Barrier performance
 - Transport through intact coatings:
 - Ag significantly released
 - Other fission products (e.g., Sr, Eu) exhibited more modest release
 - Gases retained by OPyC with defective/failed SiC
 - Metals released when SiC fails
 - TRISO failure rates are very low in modern TRISO fuel

Radionuclide Release Barriers: Matrix/graphite

- Potential release mechanisms
 - Diffusion/vaporization
 - Matrix/graphite oxidation
- Controlling parameters
 - Temperature
 - Time
 - Fast neutron fluence
 - Oxidant concentration
- Barrier performance
 - Sr and Eu exhibit fairly high retention
 - Cs and Ag exhibit lower levels of retention
 - Kr, Xe, and I not retained
 - Sorbed metals assumed to be released by oxidation

Radionuclide Release Barriers: Primary Coolant Circuit


- Potential release mechanisms
 - Primary coolant leaks
 - Liftoff (mechanical re-entrainment)
 - Primary coolant pressure relief
 - Steam-induced vaporization
 - Washoff (removal by liquid H₂O)
- Controlling parameters
 - Temperatures in primary circuit
 - Size/location of coolant leaks
 - Particulate matter in primary circuit
 - Steam/Liquid H₂O ingress and egress
- Barrier performance
 - Condensable radionuclides plate out during normal operation
 - Circulating Kr, Xe and H-3 limited by He purification system
 - Plateout largely retained during rapid blowdowns
 - Radionuclide holdup due to thermal contraction of gas in vessel

Radionuclide Release Barriers: Reactor Building

- Potential release mechanisms
 - Venting through louvers
 - Building leakage
- Controlling parameters
 - Leak path(s) and rates
 - Contaminated steam/liquid H₂O
 - Contaminated particulate matter
 - Temperatures along leak path(s)
- Barrier performance
 - Noble gases decay during holdup
 - Condensable fission products, including iodine, deposit
 - Contaminated steam condenses
 - Contaminated dust settles out and deposits

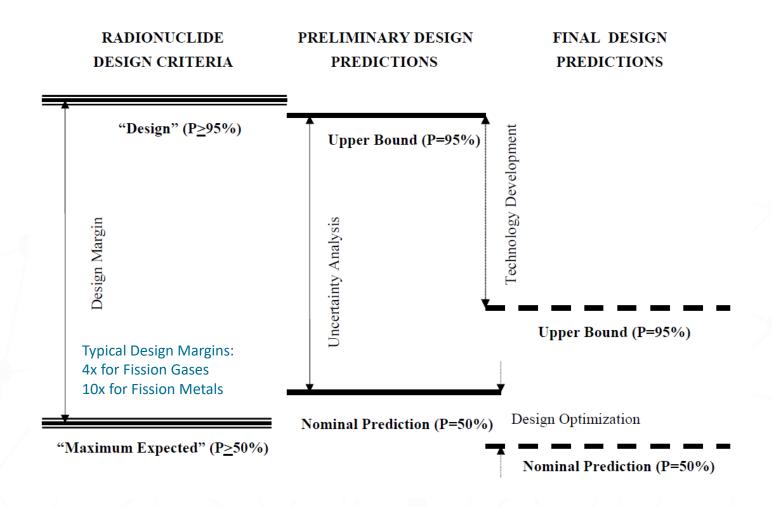
Radionuclide Release Tradeoffs

 Tradeoffs exist between the relative allocations of the performance of some of the barriers

 Example: allowable fuel contamination levels may be higher if inservice failures are much lower than expected

Particulate Matter ("Dust") in Primary Circuit May Alter Fission Product Transport Behavior

- Potential sources of dust in HTGRs
 - Foreign material from initial construction or refueling
 - Abrasion/attrition of spherical fuel elements (pebble bed)
 - Erosion or corrosion of fuel or reflector blocks (prismatic)
 - Foreign material from interfacing systems (e.g., HPS)
 - Spallation of friable metallic surface films
 - Carbon deposition from CO decomposition
- Potential impact on fission product (FP) transport
 - Altered FP plateout distributions in primary circuit
 - Enhanced FP release from primary circuit into reactor building
 - Altered FP transport behavior in reactor building
- Experience:
 - Prismatic: very little dust formation; minor impact (PB1, FSV, HTTR)
 - Pebble bed: Measured and characterized in AVR; had impact on plant D & D

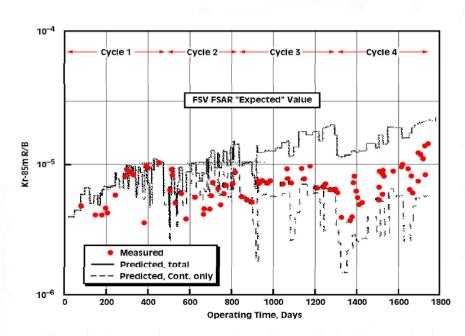

Tritium Release in HTGRs

- Tritium (H-3) will be produced by nuclear reactions
 - Ternary Fission (Yield = ~1 x 10⁻⁴)
 - Neutron activation of impurities (He-3 in coolant; Li in graphite)
 - Neutron capture in boron control materials
- Some H-3 will accumulate in primary helium
 - Controlled by He Purification System
 - Significant sorption on core graphite
- Fraction of circulating H-3 in He will permeate through intermediate heat exchanger (IHX) and SG with potential to contaminate process gases and steam
 - Generally not a concern with 750°C outlet temperatures; becomes more important at outlet of 900°C
- H-3 will contribute to public and occupational exposures
 - Environmental releases from plant (liquid discharge)
 - Contaminated products (e.g., hydrogen, bitumen, etc.)
- Data on H-3 transport in reactors and in relevant materials have been obtained with dedicated experiments and through reactor operating experience
- In operating reactors, offsite H-3 release has been below regulatory limits

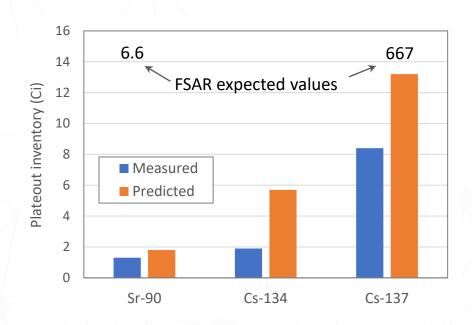
Radionuclide Design Criteria

- "Top down" approach used to determine allowable radionuclide releases within the functional containment system
- Start with imposed requirements (e.g., site-boundary dose limits)
- Allowable radionuclide inventories in primary circuit derived from radionuclide control requirements
 - Two-tier set of "Radionuclide design criteria" defined to explicitly include safety factors in plant design

Design Margins (Safety Factors) Are Explicitly Included in Radionuclide Design Criteria (Prismatic Example)

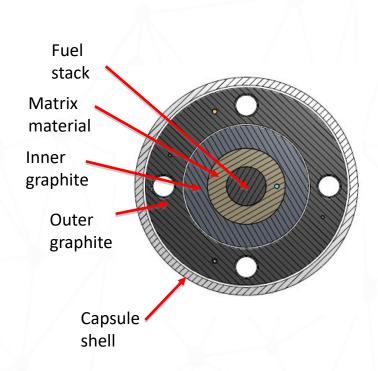

Computational Tools to Predict Radionuclide Behavior in HTGRs

- Design methods for predicting FP transport in HTGRs derived from experimental data
 - Typically, design codes model multiple radionuclide release barriers
 - Core analysis codes typically model fuel performance as well
 - Core codes are typically design specific (i.e., prismatic or pebble)
 - Phenomenological component models derived from data
 - Material property data (e.g., diffusivities, etc.) required as input
- Many comparisons of code predictions with experimental data
 - Reactor surveillance, in-pile tests, etc.
 - Agreement between predictions and measurements has been reasonably good, with predictions somewhat conservative relative to measurements
 - Codes not completely verified and validated

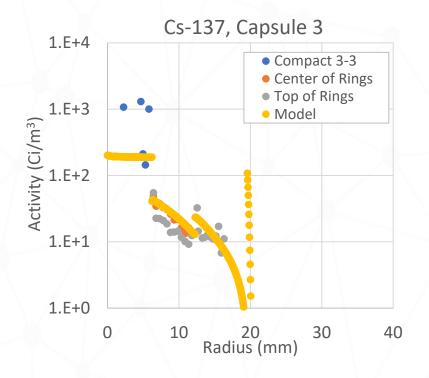

Comparison of Code Predictions with Data

 Past radionuclide release predictions have been reasonably accurate and conservative

Comparison of FSV predicted and measured Kr-85m release

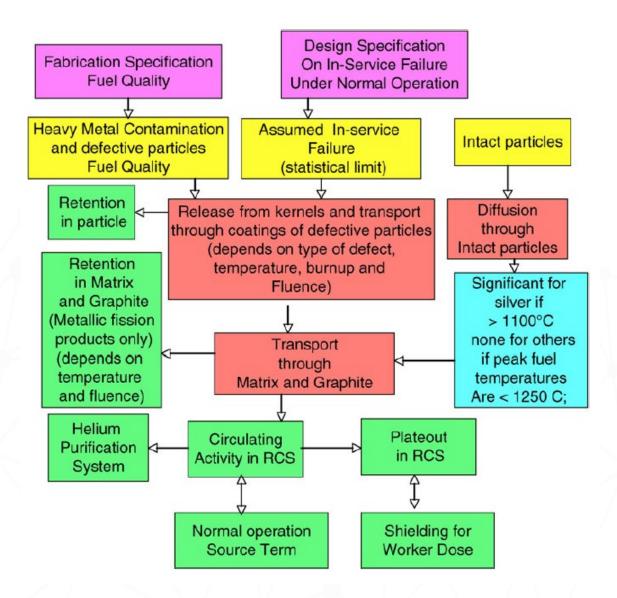

Comparison of FSV predicted and measured fission metal release

Many additional examples presented in TECDOC-978:


Dedicated Experiments to Refine Source Term Input Parameters

- US Advanced Gas Reactor (AGR) Program AGR-3/4 Irradiation Experiment
- Measure fission product transport in matrix and graphite materials

AGR-3/4 Capsule Cross Section


Comparison of measured and predicted Cs profile in AGR-3/4 graphite rings

Simple Model to Calculate Source Terms and Evaluate Barrier Performance

- D.A. Petti et al., Representative source terms and the influence of reactor attributes on function containment in modular high-temperature gas-cooled reactors, Nucl. Tech. 184 (2013) 181-197
- Radionuclide release from core during normal operation from 4 sources:
 - Release from heavy metal contamination
 - Release from TRISO fuel with SiC defects
 - Release from in-service particle failures
 - Diffusive release through fuel particle coatings
- Total radionuclide inventory in the fuel calculated (e.g., ORIGEN)
- "Attenuation factors" (AFs) are applied at various levels to account for retention of radionuclides (calculated at 50% and 95% confidence)
 - Kernels
 - Coatings
 - Graphite
 - He pressure boundary (liftoff)
 - Reactor building
- AFs determined based on expert opinion (informed by experimental data, calculations)
- Accommodate uncertainties in defect/failure fractions and AFs using Monte Carlo approach

mHTGR Source Term During Normal Operation

Calculating Inventory Released from Separate Sources

Release from heavy metal contamination (includes contamination outside SiC layers and exposed kernels)

Release from particles with defective SiC and in-service failure

$$R_{HMC}^{i} = \frac{Inv^{i} * HMC}{AF_{HMC}^{i} * AF_{G}^{i}} \qquad R_{DSiC+ISF}^{i} = \frac{Inv^{i} * (DSiC+ISF)}{AF_{K}^{i} * AF_{G}^{i}}$$

HMC = level of heavy metal contamination

 Inv^i = inventory of fission product i

 R_{HMC}^{i} = release of fission product *i* from HMC (Ci)

 $R_{DSiC+ISF}^{i}$ = release of fission product *i* from SiC defects and in-service failures (Ci)

 AF_{HMC}^{i} = attenuation factor of fission product *i* for HMC

 AF_G^i = attenuation factor of fission product *i* in graphite

 AF_K^i = attenuation factor of fission product *i* in kernel

DSiC = level of SiC defects

ISF = level of in-service failures

 Similar equations for release through intact particles, inventory retained in the graphite, and plate-out inventory

Radionuclide Release Attenuation Factors

Prismatic reactor barrier core-average attenuation factors during normal operations (700°C Reactor Outlet Temperature)

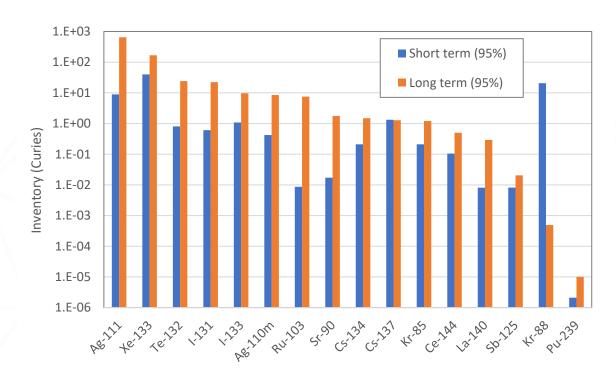
Fission Product Class	•	Metal nination		article nel	Diffusive throug Particle	h Fuel	Grap (Compactand Fuel F	t Matrix	Heli Press Boun	sure
Confidence	AF_{HMC}	AF_{HMC}	AF_K	AF_K	AF_{Diff}	AF_{Diff}	AF_G	AF_G	AF_{HPB}	AF_{HPB}
Limit	50%	95%	50%	95%	50%	95%	50%	95%	50%	95%
Noble Gases	10	3	50	17	10 ⁸	10 ⁷	1	1	1	1
I, Br, Se, Te	10	3	50	17	108	10 ⁷	1	1	10 ⁶	10 ⁵
Cs, Rb	1	1	3	1	10 ⁸	10 ⁶	5	2	10 ⁶	10 ⁵
Sr, Ba, Eu	1	1	50	20	10 ³	200	10 ³	300	10 ⁶	10 ⁵
Ag, Pd	1	1	2	1	500 ^a	100 ^a	2	1	10 ⁶	10 ⁵
Sb	1	1	2	1	10 ⁸	10 ⁶	20	2	10 ⁶	10 ⁵
Mo, Ru, Rh, Tc	1	1	500	30	10 ⁸	10 ⁷	10 ³	300	10 ⁶	10 ⁵
La, Ce	1	1	500	30	10 ⁸	10 ⁷	10 ³	300	10 ⁶	10 ⁵
Pu, actinides	1	1	10 ³	100	10 ⁸	10 ⁷	10 ⁴	10 ³	10 ⁶	10 ⁵

^a Values presented here for Ag-110m. For Ag-111, the values for the diffusive release through the coating are increased by a factor of 5 to account for the effect of the half-life on the release.

Radionuclide Inventories During Normal Operation: Representative Examples for Prismatic Reactor Design

Mean values for I-131, Cs-137, and Sr-90 inventories (curies) released to the helium pressure boundary and retained in the fuel matrix and graphite

	I-131		Cs-1	37	Sr-90	
Reactor Design	Reactor Design In Fuel		In Fuel	In He	In Fuel	In He
Configuration	Matrix and	Pressure	Matrix and	Pressure	Matrix and	Pressure
	Graphite	Boundary	Graphite	Boundary	Graphite	Boundary
600 MW(t)						
Prismatic 700°C	nil	30	24	5	2750	0.1
ROT						
600 MW(t)						
Prismatic 900°C	nil	74	226	254	5680	31
ROT						


ROT: Reactor outlet temperature

Evaluating Radionuclide Release During Licensing Basis Events

- Similar approach taken for accident scenarios to determine total source term released from reactor building
- Radionuclide sources in accidents
 - Release from heavy metal contamination
 - Release from TRISO fuel with SiC defects
 - Release from in-service particle failures
 - Diffusive release through fuel particle coatings
 - Inventory in the graphite/matrix from normal operation
 - Lift-off of inventory plated out on the coolant boundary during normal operation
- Different accident scenarios have specific attenuation factors depending on accident conditions (temperature, dry/wet conditions, etc.)
 - e.g., moisture can increase release from exposed kernels and lift-off from the pressure boundary
- Separate calculations for short- and long-term release for accidents (driven by differing half-lives of radioisotopes)

Radionuclide Source Terms During LBEs: Representative Example for Prismatic Reactor Design

Source terms for a break in He pressure boundary, upper 95% confidence levels 600 MW(t) Prismatic 700°C reactor outlet temperature

Summary

- HTGR designs employ multiple radionuclide release barriers to meet radionuclide control requirements
- Radionuclide transport in HTGRs has been extensively investigated
- Design methods available to predict performance of the radionuclide release barriers during normal operation and accidents
 - Codes have been used extensively for reactor design and analysis, including operating HTGRs
- Many comparisons of code predictions with data
 - Reactor surveillance, in-pile tests, etc.
 - Codes not completely verified and validated
- Additional data from ongoing programs (e.g., US DOE AGR program) will help refine transport parameters and reduce uncertainties
- Contemporary analyses indicate that radionuclide releases during accidents are within acceptable regulatory limits

Suggested Reading

- 2010 HTGR Technology Course for the Nuclear Regulatory Commission
- A Review of Radionuclide Release from HTGR Cores During Normal Operation, EPRI report 1009382 (2003)
- D.A. Petti et al., Representative source terms and the influence of reactor attributes on function containment in modular high-temperature gas-cooled reactors, Nucl. Tech. 184 (2013) 181-197
- Fuel performance and fission product behavior in gas cooled reactors, IAEA, TECDOC-978 (1997)
- High Temperature Gas Cooled Reactor Fuels and Materials, IAEA, TECDOC-1645 (2010)
- Advances in High Temperature Gas Cooled Reactor Fuel Technology, IAEA, TECDOC-1674 (2012)

