Multi-column evaluations for the capture and separation of krypton and xenon using mordenite based sorbents

Mitchell Greenhalgh, Meghan S Fujimoto, Troy G Garn, Amy K Welty

November 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Multi-column evaluations for the capture and separation of krypton and xenon using mordenite based sorbents

Mitchell Greenhalgh, Meghan S Fujimoto, Troy G Garn, Amy K Welty

November 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

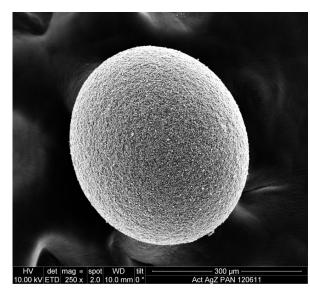
http://www.inl.gov

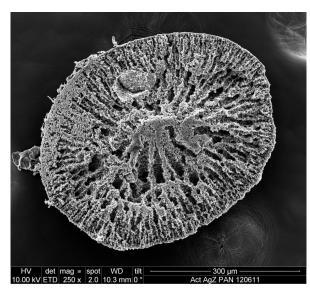
Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

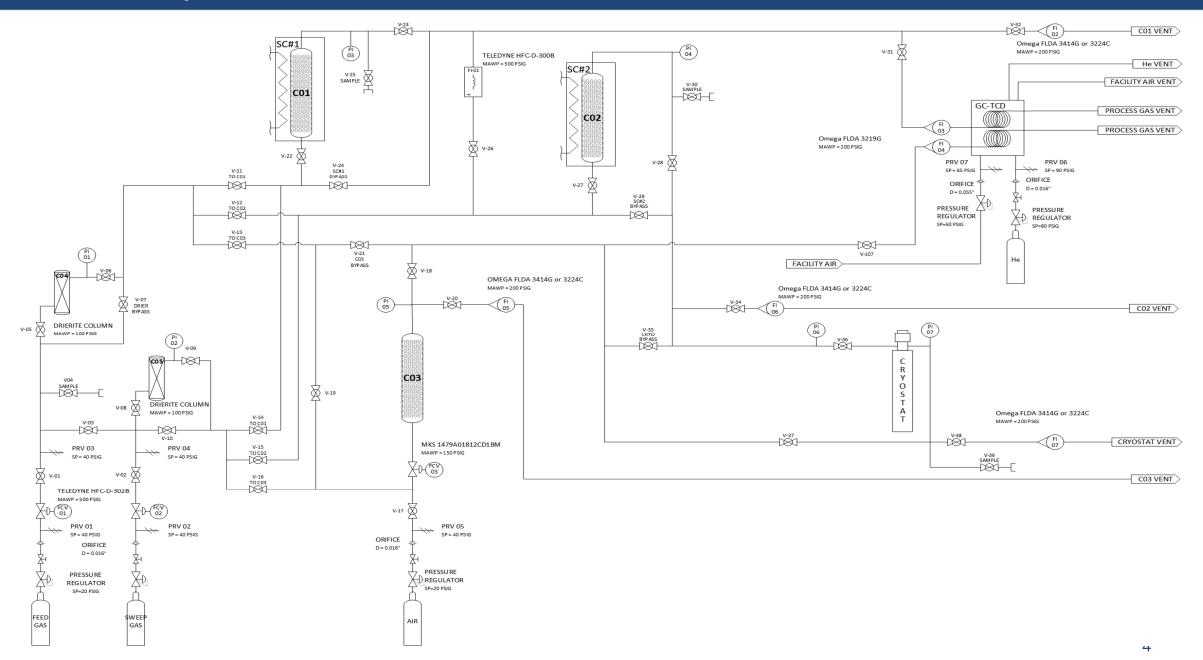
Multi-Column Evaluations for Capturing and Separating Krypton and Xenon using Mordenite-based Sorbents

Mitchell Greenhalgh, Amy Welty, Meghan Fujimoto, and Troy Garn Aqueous Separations and Radiochemistry Department Idaho National Laboratory Materials Research Society, Fall 2020 Meeting November 30, 2020

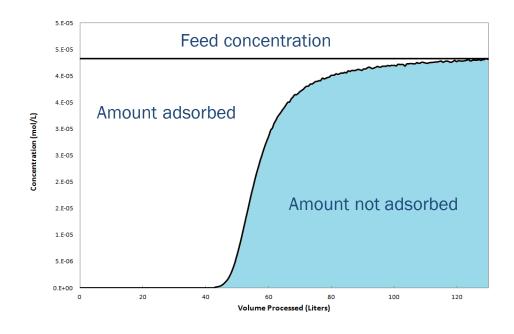



Introduction

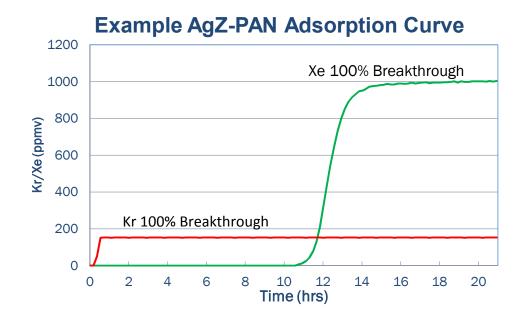
- Off-gas compositions generated through the reprocessing of used nuclear fuel include volatile fission product isotopes
 - Kr-85, I-129, H-3, C-14, and various Xe isotopes
- Radioactive emission levels are addressed by the U.S. EPA in 40 CFR 190
 - Establishes annual dose limits resulting from nuclear fuel cycle activities in the commercial sector
 - To meet these dose limits, Kr-85 may need to be captured and immobilized to minimize its release into the environment
 - Due to the short half-lives of Xe isotopes, the Xe will be stable and have a high commercial value but will compete with Kr capture
- Solid-phase adsorption (physisorption)
 - Activated carbon is well-known as a highly selective material for capturing Kr and Xe at reduced temperatures.
 - Fire hazards associated with carbon-based sorbents have been reported.
 - Mordenite-based sorbents have shown adsorption capacities comparable to activated carbon.


Sorbent Development

- Mordenites
 - Synthetic material commercially available in powder form (Na and H)
 - Limited availability of engineered forms that typically have low surface areas
 - Physisorption necessitates high surface area engineered forms
- The polyacrylonitrile (PAN) macroporous polymer was used to bind mordenite powders
 - Good thermal and radiolytic stability
 - 80-wt% mordenite in PAN mixtures
 - Ag and H forms prepared
 - Original surface areas maintained
 - Beads between 0.30 and 1.4 mm
 - U.S. Patent 8,686,083 B2



Adsorption Testbed


Xe and Kr Adsorption Testing

- Xe and Kr adsorption capacities
 - Various feed-gas compositions
 - Multiple sorbent temperatures
 - Breakthrough curves generated from GC data
 - Jandel Scientific's TableCurve utilized for determining the area under the curve
 - AgZ-PAN and HZ-PAN evaluated
- Xe and Kr adsorption results
 - AgZ-PAN
 - Highly selective for Xe at ambient temp.
 - Little to no Kr adsorbed
 - No thermal degradation observed
 - HZ-PAN
 - Adsorbs Kr at -82°C
 - No thermal degradation observed
 - Kr is easily desorbed by raising temperature

Xe and Kr Separation

- AgZ-PAN column
 - Feed gas: 1000 ppmv Xe, 150 ppmv Kr in air
 - 44.3 grams AgZ-PAN
 - Flowrate: 50 sccm
 - Temperature: 22°C
- HZ-PAN column
 - Feed gas: effluent from AgZ-PAN column
 - 29.8 grams HZ-PAN
 - Flowrate: 50 sccm
 - Temperature: -82°C

AgZ-PAN Xe Desorption

AgZ-PAN column

- Xe/Kr separation
- Ambient temperature adsorption
- Adsorbed phase contains Xe, Kr, and air
- Desorption requires purge gas (air, N₂, Ar, or He)
- Slowly ramp to temperature over 12 hours
- Step temperature and soak 6 hours
- 99-100% Xe separation

2000 × 1500 × 1500 × 1000 × 1000

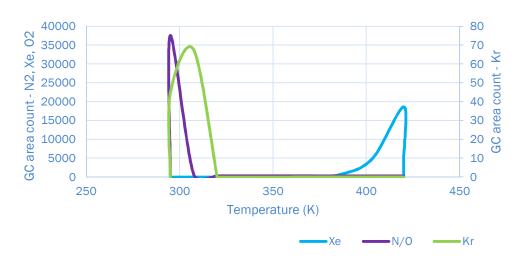
345

Temperature (K)

365

385

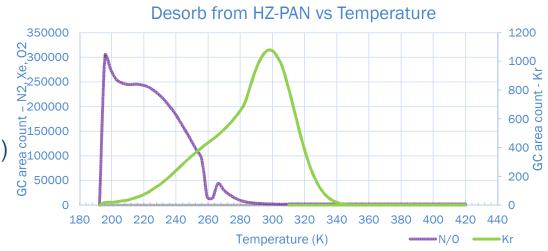
Desorb from AgZ-PAN vs Temperature

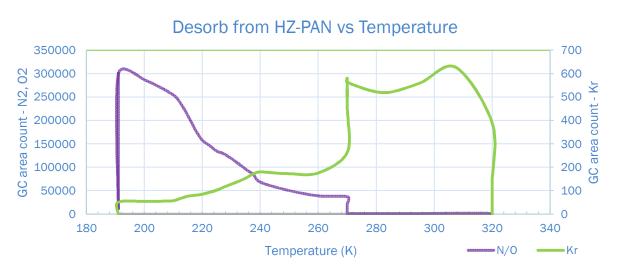

Desorb from AgZ-PAN vs Temperature

500

285

305


325



425

HZ-PAN Kr Desorption

- HZ-PAN column
 - Kr capture
 - -82°C adsorption
 - Adsorbed phase contains Kr and air
 - Desorption requires purge gas (air, N₂, Ar, or He)
 - Slowly ramp to temperature over 12 hours
 - Step temperature and soak 9 hours
 - ~80% Kr separation
 - 3.5–5 times the Kr concentration

Summary

- Major accomplishments
 - Developed novel engineered-form sorbents
 - AgZ-PAN and HZ-PAN
 - Patent awarded for the process (U.S. Patent 8,686,083 B2)
 - Designed custom adsorption system
 - Evaluated the solid-phase adsorption of Xe/Kr
 - Published two journal articles
 - Journal of Nuclear Science and Technology, 51:4, 476-481, DOI: 10.1080/00223131.2014.877404
 - Journal of Nuclear Science and Technology, DOI:10.1080/00223131.2015.1126205
 - Demonstrated the separation of Xe from Kr in a dual-column system
 - Produced a pure Kr stream from a Kr/Xe/Air mixture
 - Evaluated the desorption of Kr and Xe

Acknowledgements

- Funding
 - U.S. Department of Energy's Office of Nuclear Energy
 - Material Recovery & Waste Form Development Campaign