

Water Capsule RIA Testing

December 2020

Charles P Folsom

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Water Capsule RIA Testing

Charles P Folsom

December 2020

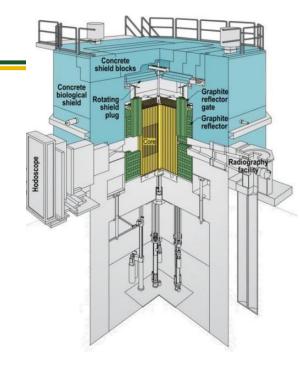
Idaho National Laboratory Idaho Falls, Idaho 83415

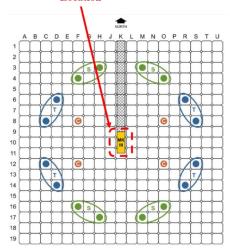
http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Nuclear Energy

Water Capsule RIA Testing


Charles Folsom (INL) charles.Folsom@inl.gov


RIA Testing Overview

Nuclear Energy

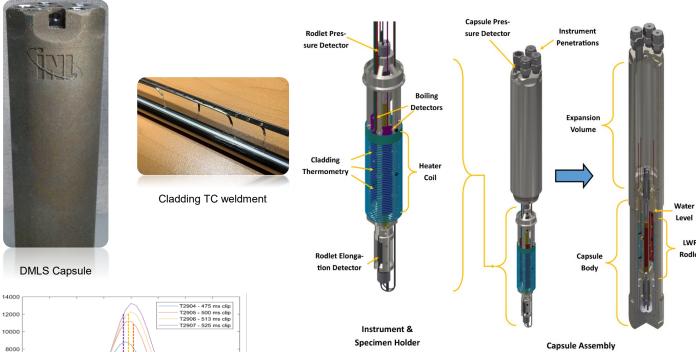
- INL is trying to revive/restore the testing capability in the US (especially regarding LWR technology)
 - These testing capabilities are critical to support the ATF campaign
- INL current/planned capabilities:
 - Steady state irradiation in ATR (drop-in capsules and pressurized water loops)
 - Post irradiation examination (full-size rods through cutting edge material science)
 - Transient testing in TREAT (design basis accident including RIA and LOCA)
 - Operational transients in ATR (instrumented ramp testing in i-loops)
- In 2017 TREAT resumed operations to support fuel safety testing
 - Currently capable of 89 ms FWHM pulse width, ³He clipping system to be deployed in 2022 for ~45 ms
- Collocated at INL with other complimentary facilities
 - Fuel fabrication, characterization, and PIE facilities

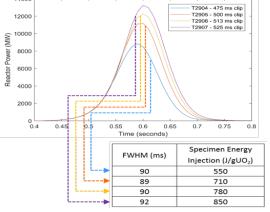
Typical Experiment Location

RIA Water Capsule

Nuclear Energy

MARCH Static Environment Rodlet Transient Test Apparatus (M-SERTTA)


 First tests up 200°C starting temperature with PWR-representative sub-cooling, system uprate-able to 280°C and 16 MPa


Instrumentation for water-based objectives

- LVDT for rod elongation and pressure
- Electro-impedance water void detector
- Cladding TC and multispectral pyrometry
- Configurable for different data objectives

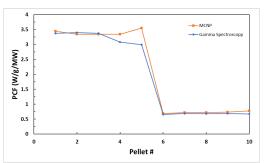
Commissioning tests underway

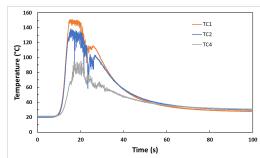
- Fresh fuel for energy injection calibration and instrument qualification
- Novel configuration for nuclear-heated real time transient CHF measurement (CHF-SERTTA)
- First pre-irradiated rods loaded in hot cell (ATF-R)

Transient shapes and energy injections for natural enriched fresh UO₂

Assembled Capsule (capsule bottom not shown)

MARCH-SERTTA Commissioning Test


Nuclear Energy


■ Commissioning Project Test Matrix

- Five tests to follow the Gamma test
- Successfully irradiated ATF-RIA-1-A through D capsules to meet a PEMP notable outcome in FY20
- First safety analysis test in water

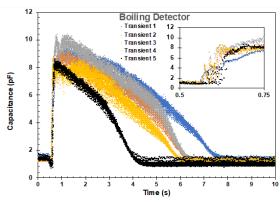
■ ATF-RIA-1-Gamma

- Gamma test utilized 5 4.95% U²³⁵ pellets and 5 0.74% U²³⁵ pellets
 - Provide upper and lower PCF bounds for all UO₂ tests
- Irradiated using a 0.6%Δk/k transient clipped to 100 MJ

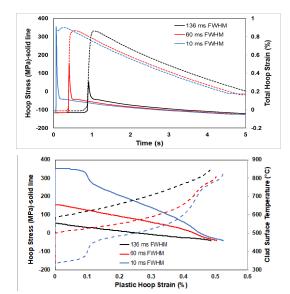
Pellet by pellet PCF and cladding temperature measurements

Test ID	Rodlet Pressure	Capsule Pressure at Temp.	Capsule Temp. (°C)	Step Insertion (%∆k/k)	Specimen Energy Deposition Target (J/g)	Reactor Energy (MJ)	FWHM (ms)	Cladding Temp. Targets (°C)	Anticipated Failure Mechanism	Test Purpose	
ATF-RIA-1-A	Atm.	0.38 MPa	25	4.2	860	1260	90.5	≤ 1200	None	Achieve Film Boiling from RTP Initial Conditions	
ATF-RIA-1-B	Atm.	0.38 MPa	25	4.2	1110	1617	99.4	> 1200	High Temp Embrittlement	Observe Cladding Embrittlement without Burst	
ATF-RIA-1-C	Atm.	1.8 MPa	200	4.2	530	1051	89.8	~850	None	Achieve Film Boiling with slightly subcooled initial conditions	
ATF-RIA-1-D	2 MPa	1.8 MPa	200	4.2	740	1470*	93.8	≤ 1200	Ballooning and Burst	Demonstrate Ballooning and Bursting during Film Boiling	
ATF-RIA-1-E	2 MPa	1.8 MPa	200	4.2	940	1860*	109.2	> 1200	Ballooning and Burst + HT Embrittlement	Demonstrate Cladding Embrittlement with Ballooning and Bursting	
	*Based or	*Based on previous test results the energy deposition may be able to be adjusted down using other transient prescriptions									

RIA Testing Moving Forward


Nuclear Energy

MARCH-SERTTA commissioning tests and CHF-SERTTA tests have demonstrated the capsule is capable for RIA testing in TREAT


- Electro-impedance boiling detector has shown great promise in CHF-SERTTA tests
- First-look at LVDT elongation and plenum pressure show good performance from instruments
- Thermocouple performance has shown some anomalies that are currently being investigated

■ Future test programs include:

- Completing ATF-RIA-1-E test (December 2020-January 2021)
- ATF-R test campaign
 - Demonstrate capability to test previously irradiated fuel rods in TREAT
 - Evaluate post-DNB survivability of Zircaloy clad fuel
 - Plans to test up to 5 ATF-2 rods from ATR
 - FY20 a PEMP notable outcome was completed to demonstrate ability to assembly a rod in a capsule in HFEF
- DNB/AOO testing (short, low temperature transients)
- HERA (international program under the NEA FIDES program)
 - Study impact of transient pulse width on simulated high-burnup fuel rods
 - Pulse width impacts cladding temperature which can determine failure mode

CHF-SERTTA electro-impedance boiling detector data

