

Structural, Criticality, and Radiation Dose Calculations to Support SNF Loading into a DOE Standard Canister

February 2022

Elmar Ferdinand Eidelpes, Gordon M Petersen, Evans Damenortey Kitcher

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Structural, Criticality, and Radiation Dose Calculations to Support SNF Loading into a DOE Standard Canister

Elmar Ferdinand Eidelpes, Gordon M Petersen, Evans Damenortey Kitcher

February 2022

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

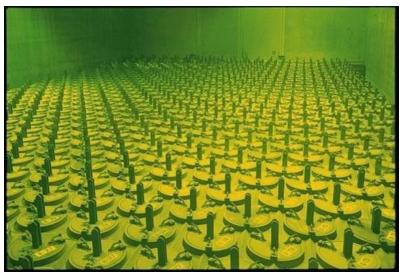
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 March 10, 2021 Virtual Format

E. D. Kitcher

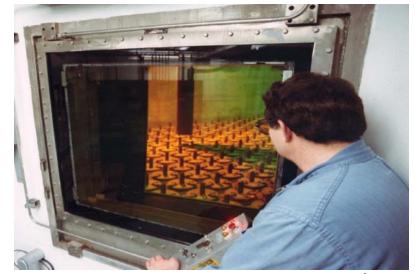
Structural, Criticality, and Radiation Dose Calculations to Support SNF Loading into a DOE Standard Canister – 21113

WM2021 Symposia

E. Eidelpes, G. M. Petersen, E. D. Kitcher



Overview

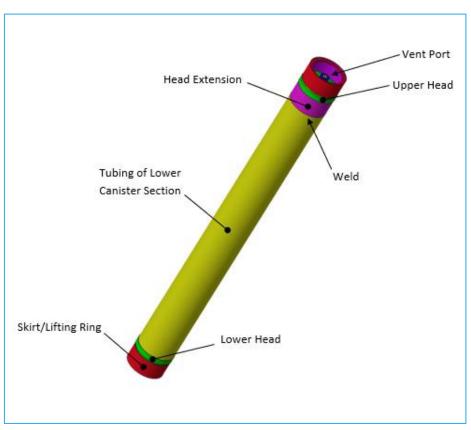

- Introduction U.S. Department of Energy (DOE) spent nuclear fuel (SNF) stored at Idaho National Laboratory (INL)
- Background The DOE Standard Canister Demonstration Project
- Internal Support Structure (ISS) design
- Structural Evaluations
- Criticality Safety Analysis
- Radiation Dose Calculations

Introduction

- A significant amount of DOE SNF is in dry storage at INL's CPP-603 facility
- Includes assemblies from:
 - Training, Research, Isotope,
 General Atomics (TRIGA), ~ 4,330
 - Advanced Test Reactor (ATR), ~ 2,600
 - Fort St. Vrain (FSV), ~790
 - Peach Bottom 1 Core II (PB2), ~
 740
- In canisters in CPP-603 fuel storage area
- Multi-year effort: Transfer SNF to new dry storage system → DOE Standard Canister

CPP-603 Fuel Storage Area¹

Look into CPP-603's Fuel Storage Area³


The DOE Standard Canister and Demonstration Project

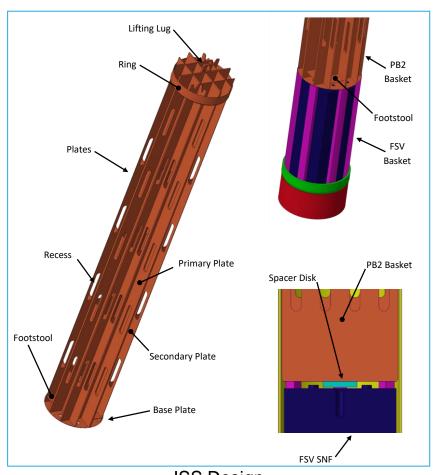
DOE Standard Canister:

- Standardized system to store DOE SNF
- Length L = 3 to 4.6 m
- Outer diameter D = 46 to 61 cm
- Wall thickness t = 0.95 to 1.27 cm
- 316L stainless steel
- Different baskets for different fuel types

DOE Standard Canister Demonstration Project:

- Demonstrate loading of one or more canisters with CPP-603 SNF
- Canister(s) will be placed into dry storage overpack
- → DOE Standard Canister ISS needed

DOE Standard Canister


Internal Support Structure Design

Overview:

- Design of an ISS to support loading of SNF into DOE Standard Canister
- Fits into DOE Standard Canister with D = 46 cm (18 in) and L = 4.6 m (15 ft)
- Made of 316L stainless steel (SS)

Parts:

- Basket for twelve PB2 rods with recesses to improve air circulation
- Basket for one FSV element, welded to the inner canister wall
- Aluminum spacer disk
- After placing of FSV element, PB2 basket is placed on top of FSV basket

ISS Design

Structural Evaluations

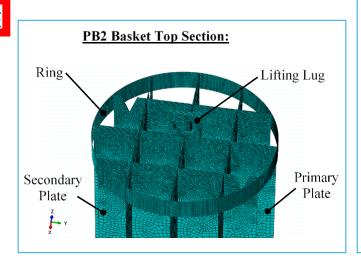
Structural evaluations to support smooth canisters-loading operations:

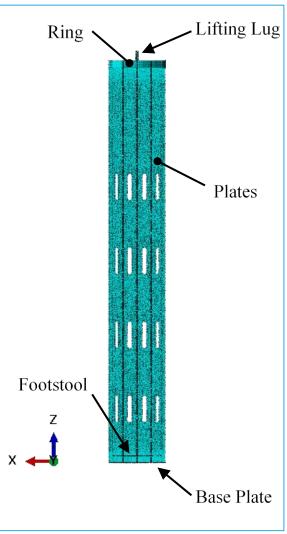
- Note Criticality safety margins tolerate ISS and SNF failure, including reconfiguration
- Evaluations according to ASME BPVC.III.3
- Definition of credible load cases (LCs)
- Relative placement of PB2 Basket on FSV Basket (LC_{3a} to LC_{3d})
- Two scenarios to analyze PB2 Basket wedging in canister (LC_{5a} and LC_{5b})

LC	Loading Type	Service Limits	Loading Situation
LC ₁	Design	Design Load	Empty PB2 Basket Sitting Outside Canister
LC ₂	Normal	Level A	Empty PB2 Basket Lifted
LC _{3a}	Normal	Level A	Full PB2 Basket Sitting Inside Canister
LC _{3b}	Normal	Level A	Full PB2 Basket Sitting Inside Canister
LC _{3c}	Normal	Level A	Full PB2 Basket Sitting Inside Canister
LC _{3d}	Normal	Level A	Full PB2 Basket Sitting Inside Canister
LC ₄	Off-Normal	Level C	Full PB2 Basket Lifted
LC _{5a}	Off-Normal	Level C	Full PB2 Basket and Wedged Canister Lifted
LC _{5b}	Off-Normal	Level C	Full PB2 Basket and Wedged Canister Lifted

Structural Evaluations, Continued

Finite element (FE) simulations of PB2 basket:


- Nonlinear
- Static, assuming up to 2 g to consider shocks
- Shell (S4R) and solid (C3D8R) elements
- Evaluation of the peak stress intensity:


$$S_{\text{max}} = \max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|)$$

- Buckling analyses
- ABAQUS 6.14 CAE

Hand calculations:

- FSV basket
- Welds
- Bolts
- Acceptable deformations

PB2 Basket FE Model

Structural Evaluations – Evaluation of FE Simulation Results

1. Comparison with the General Membrane Stress Intensity Limit:

	Peak Stress Intensity S _{max} [MPa]					General Membrane	
LC	Lifting Lug	Ring	Main Plates	Secondary Plates	Footstools	Base Plate	Stress Intensity Limit [MPa]
LC ₁	0	0	4	0	1	3	115
LC ₂	51	1	25	2	0	0	115
LC _{3a}	0	0	69	104	12	49	115
LC _{3b}	0	0	28	80	20	216	115
LC _{3c}	0	0	69	137	11	49	115
LC _{3d}	0	0	31	113	23	216	115
LC ₄	104	1	52	12	22	13	173
LC _{5a}	169	71	92	14	22	13	173
LC _{5b}	169	110	89	296	22	13	173

2. Closer investigations at locations of exceedance (values in red):

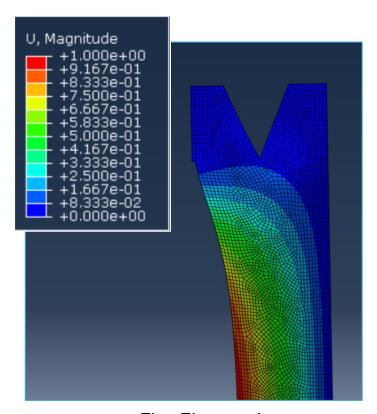
- Contributions of membrane and bending stress to stress intensity
- Improved (more realistic) modeling of boundary conditions
- Acceptance of stress concentrations and local deformations (off-normal loading)
- → Peak stress intensities decrease to acceptable levels
- → Applicable ASME BPVC.III.3 limits are met

Structural Evaluations – Results

Buckling analyses:

- Linear FE
- Secondary basket plate, off-normal condition (LC_{5b})
- → Basket/Canister wedged
- First Eigenmode at Eigenvalue of 18.97
- → No structural instability is expected

FSV basket analyses:


- Hand calculations
- → Meets ASME stress limits
- → No structural instability is expected
- → Meets ASME exceptions for cyclic loading

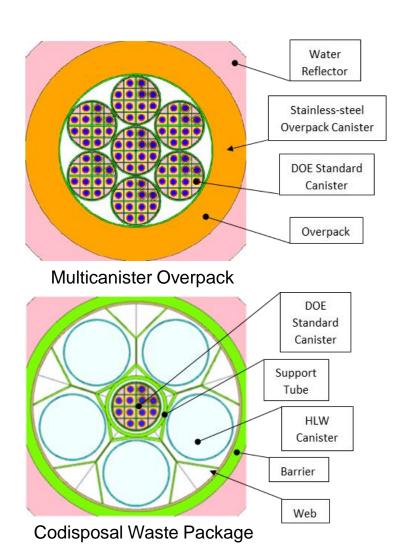
Weld analyses:

- Category A/C, Type I/III full-penetration welds
- Full weld examination → Full load transfer

Bolts analyses:

- ASME B18.3-2012 Size 4 bolts
- → Meets ASME stress limits

First Eigenmode


Criticality Safety Analyses

Generic overpacks and waste packages:

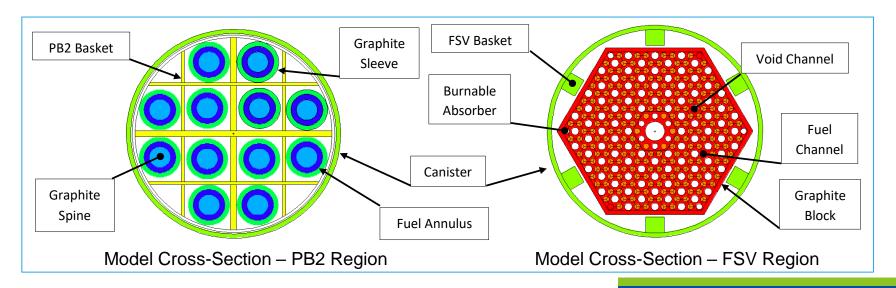
- Single DOE Standard Canister n a
- Multi-canister concrete overpack:
 - Seven DOE Standard Canisters
 - Twelve DOE Standard Canisters
- Codisposal waste package with vitrified SRS glass in five Hanford HLW canister

Evaluated conditions:

- Wet/dry canister(s) and/or overpack
- Variations of water densities
- Effect of SS overpack canister (t = 1.27 cm)
- Intact/degraded package contents
- 30-cm water reflector
- PB2 rod relocation within basket

Criticality Safety Analyses, Continued

Evaluated parameter:


- Maximum effective neutron multiplication factor k_{eff}
- Safety limit: k_{eff} < 0.93 (critical system at k_{eff} = 1.0)

Software:

- Monte Carlo N-Particle (MCNP) Transportation Software Version 6.2
- ENDF/B-V continuous-energy cross section libraries

Modelling assumptions:

- Void replaces air
- Burnable absorbers not credited

Criticality Safety Analyses, Continued

Modeled active fuel compositions

Element/lestone	Mass [g]		
Element/Isotope	Single PB2 SNF Rod	Single FSV SNF Element	
Th-232	1310	10789.97	
U-233	35.2	0	
U-234	0	0	
U-235	232.5	1485	
U-236	0	0	
U-238	17.01	0	
Pu-239	0.27	2.59	
Pu-240	0.09	0	
Pu-241	0.15	0	
Pu-242	0.07	0	

PB2 SNF:

- Maximum documented end-of-life (EOL) U-233 concentration
- Beginning-of-life (BOL) U-235 concentration
- Average EOL Pu concentrations
- U-234 and U-236 disregarded

FSV SNF: BOL U-235 concentration

Criticality Safety Analyses – Results

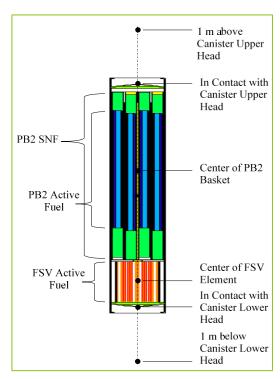
Maximum effective neutron multiplication factor k_{eff}

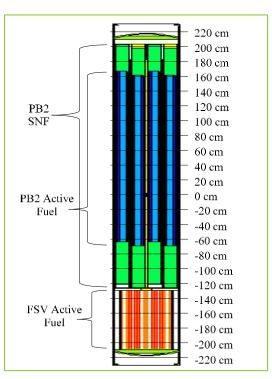
Configuration	Condition	k _{eff}
Single canister	Intact, dry	0.134
	Fully flooded canister, dry overpack, saturated SNF	0.8512
Multicanister	Seven Canisters, fully flooded canisters, dry overpack, saturated SNF, SS overpack canister	0.8989
Codisposal waste package	Intact but flooded DOE Standard Canister, degraded HLW canisters, dry codisposal package	0.9072

- Negligible effect of PB2 rod relocation within basket, or aluminum spacer items
- Rubblized PB2 SNF increases reactivity in dry condition (wet not credible)
- Package reactivity increases with increasing water density
 - Maximum k ~ 0.03
- → Safety limit met

Radiation Dose Calculations

Radiation levels at different DOE Standard Canister locations/distances:


- At 1-m below lower/above upper canister head
- At lower/upper head
- In 20-cm vertical increments at canister surface
- At 1-m radial distance


ORIGEN decay correction:

- Source term from DOE Spent Fuel Database³
- 1974/1980 PB2/FSV discharge
- Canister loading in 2022

MCNP simulations:

- 19/27-group photon/neutron spectrum
- f5 point detector and ring tallies
- ANSI/ANS-6.1.1-1977 flux-to-dose conversion factors

Locations of Dose Rate Calculations

Radiation Dose Calculation – Results

Selected compounded dose-equivalent rates:

Annuavimete DOE Standard Conjeter Aviel	Total Dose-Equivalent Rate [rem/hr]			
Approximate DOE Standard Canister Axial Plane	Centerline	Canister	1-m Radial	
Flatte		Surface	Distance	
1 m below Lower Canister Head/-320 cm	3.01	-	-	
In Contact with Lower Canister Head/-220 cm	57.6	9.29	9.61	
-200 cm	-	448	44.7	
Center of FSV Element/-160 cm	3,820	591	58.2	
Center of PB2 Basket/40 cm	3,920	1,150	150	
200 cm	-	16.5	65.3	
In Contact with Upper Canister Head/220 cm	2.40	-	49.4	
1 m above Upper Canister Head/320 cm	0.15	-	-	

- Peak rates of 3,820 rem/hr and 3,920 rem/hr at SNF element center
- Variations in rates in circumferential canister direction due to radiation streaming paths and areas of maximum source attenuation
- Peak dose is 1,369 rem/hr at canister surface at PB2 basket center
- Peak dose is 710 rem/hr at canister surface at FSV element center
- Convergence of flux tallies and a relative error below 5%

Conclusions and Future Work

Conclusions:

- Structurally sound system → Will support safe and smooth loading of SNF in DOE Standard Canister
- Meets stipulated minimum criticality safety requirements for storage and disposal
- Dose-equivalent rate data provide confidence that sufficient canister shielding is technically achievable with common transportation and overpack designs

Future work:

- Computations are of preliminary nature
- ISS design should be optimized (mass, geometry, structural integrity)
- Reevaluations needs to be completed under consideration of the final design and SNF configuration
- Manufacturing and demonstration

Acknowledgements

- This work was sponsored by DOE-Office of Nuclear Energy (DOE-NE)
- Disclaimer:

"This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof."

Questions?

References

- [1] Energy.gov, "Spent Nuclear Fuel." https://www.energy.gov/em/services/waste-management/nuclear-materials-disposition/spent-nuclear-fuel (current as of January 11, 2021).
- [2] U.S. DOE (2010), "Idaho Site Spent Nuclear Fuel Management." https://www.nwtrb.gov/docs/default-source/meetings/2010/june/hain.pdf (current as of January 14, 2021).
- [3] U.S. DOE (2020), DOE Spent Fuel Database Version 7.0.6., INL, Idaho Falls, ID.