Design, Manufacturing and Performance Considerations in Reactor System, Components and Materials

March 2021

Isabella J Van Rooyen
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Design, Manufacturing and Performance Considerations in Reactor System, Components and Materials

Isabella J Van Rooyen

March 2021

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Design, Manufacturing and Performance Considerations in Reactor System, Components and Materials.

Isabella J van Rooyen
National Technical Director: DOE-NE Advanced Methods for Manufacturing

Ohio State University Seminar; March 3, 2021
Advanced Methods for Manufacturing (AMM)

Vision
• To improve and demonstrate the methods by which nuclear equipment, components, and plants are manufactured, fabricated, and assembled by utilizing state-of-the-art methods

Goal
• To reduce cost and schedule for new nuclear plant construction
• To make fabrication of nuclear power plant (NPP) components faster, less expensive, and more reliable
DOE-NE AMM Focus Areas: FY2021

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>Technologies/Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory and Field Fabrication Techniques</td>
<td>Dissimilar Materials Joining, Robotics and advanced automation</td>
</tr>
<tr>
<td>Modular Manufacturing</td>
<td>PM-HIP</td>
</tr>
<tr>
<td>Advances in Manufacturing Processes</td>
<td>Metamorphic Manufacturing, Advanced sensors</td>
</tr>
<tr>
<td>Improved Concrete Inspection, Acceptance, and Construction Methods</td>
<td>Improved methods to facilitate the curing of concrete</td>
</tr>
<tr>
<td>New Advanced Manufacturing Technologies for Qualification and Certification to Accelerate Licensing</td>
<td>Big data, Digital Thread and Digital Twin</td>
</tr>
<tr>
<td>Advanced Integrated Fuel System Concepts</td>
<td>Integrated manufacturing methods</td>
</tr>
</tbody>
</table>

Ohio State University Seminar; March 3, 2021
Funding Vehicles – Competitive Solicitations

- Industry funding opportunities
 - Industry FOA (Advanced manufacturing, fabrication & construction techniques for nuclear parts, components, and full-scale plants, or integrated efforts that could positively impact the domestic nuclear manufacturing enterprise)
 - GAIN Vouchers
- Consolidated Innovative Nuclear Research (FOA)
 - Nuclear Energy University Program (NEUP)
 - NEET
 - NSUF
- Research Reactor Infrastructure (RRI)
- Integrated University Program (IUP)
- Small Business Innovation Research/Small Business Technology Transfer (SBIR/SBTR)
- Technology Commercialization Funds (TCF)
- Direct funded from DOE supported programs
- Direct funded by Industry

FY 2021 CINR FOA Focus Areas
- Factory and Field Fabrication Techniques
 - Surface Modifications and Cladding
 - Modular fabrication and installation
- Qualification Methodologies & Digital footprint

Advanced surface plasma nitriding for development of corrosion resistance and accident tolerant fuel cladding – Texas A&M University (10/1/2015 – 9/30/2018)

AMM Projects: Competitive Funds

Competitively selected projects via Consolidated Innovative Nuclear Research (CINR), Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR), and Industry FOA

➢ Open to universities, national laboratories, and Industry
➢ R&D and irradiation/PIE projects funded
➢ FY2012 – FY 2019: ~$20M
 ▪ In FY 2019 – 57 AMM CINR proposals received
 – 2 CINR projects – awarded - $1.5M
 – 3 Phase I SBIR projects – awarded $450K
 – 3 Phase II SBIR projects – awarded $3M
➢ Established separate Industry FOA in FY 2018
 ▪ 3 projects – awarded ~$18.5M
➢ FY 2020: 10 AMM CINR full proposals (63 Pre-proposals)
 ▪ 3 projects – awarded ~$3M
➢ FY 2021: 11 AMM CINR full proposals (55 Pre-proposals)
Evaluate AMM Program Award Impact (NEET Awards 2011-2019)

AMM Techniques
Materials

Ohio State University Seminar; March 3, 2021

Courtesy Subhashish Meher
Gaps or Technology Challenges

- Performance data in nuclear environments
- How do we measure or gauge applications of new AMM?
 - Technology readiness level
 - Qualification routes
 - Standards/codes
 - Risks
- Determining requirement and performance specifications for different manufacturing-process domains
- How do we measure and communicate the impact of our research (especially earlier TRLs)?
- Cybersecurity in:
 - Digital engineering
 - Machine-learning approaches
 - Big-data/artificial-intelligence applications
 - Automated manufacturing
 - In situ monitoring
 - Embedded sensor
Manufacturing and Fission Battery Needs

- Modular
- Integrated manufacturing
- Factory built?
- On-site built?
- On-site repair

Repeatability
Decrease uncertainties
Predictable and measurable risks

- Digital Twins
- Embedded Sensors
- Containment Technologies
- Gradient Materials
- Coatings
- Topology Optimization
- Supply Chain Sensitivities
- Design for AMM
- Industrialization / Upscale
- Qualification Process Reimagined

Economic

- Modular
- Integrated manufacturing
- Factory built?
- On-site built?
- On-site repair

- Reliable
- Unattended
- Installed
- Standardized

Ohio State University Seminar; March 3, 2021
Manufacturing Process Digital-Twin Conceptual Architecture

Example:

- Only a portion of the product life cycle:
 - Manufacturing process
 - Properties
 - Performance

Major challenge in undertaking a digital twin process:
- Determining optimal level of detail in creating a digital twin model

Only a portion of the product life cycle:
- Manufacturing process
- Properties
- Performance

Source: Deloitte University Press.
Embedded Sensors and Non-Contact Sensors

 - Sapphire single-mode fiber development towards high-temperature radiation resilient sensors
 - Acoustic sensors for in-core measurements
 - Aerosol AM strain gauge
 - Passive and active sensors capable of measuring temperature, thermal conductivity, strain, and neutron flux inside reactor core

• Advanced manufactured dosimeters (AMDs): cost-effective, miniaturized, performance-enhanced alternative to standard dosimetry for characterization of neutron flux in irradiation experiments and demonstration facilities.

• NEEDS:
 - Wireless sensors
 - Embedded
 - Miniaturization
 - Multi-properties
 - Real time

For more information:
Patrick.Calderoni@inl.gov

11
Ohio State University Seminar; March 3, 2021

INL/MIS-21-61798
Technological Innovations in Reinforced Concrete

• Reinforced concrete structures may have to be used as secondary/tertiary containment for fission batteries

• Technologies that provide adequate structural performance, modularity, rapid assembly, and radiation shielding are needed

• Some innovations include:
 − Advanced manufacturing of reinforcement cages, including development of materials that can replace steel and can be additively manufactured
 − Manufacturing “foldable and transportable” reinforced concrete structures?
 − “Smart” concrete with embedded sensors
 − Concrete with superior radiation shielding properties to reduce (or eliminate) EPZs

Current practice in reinforced concrete involves significant field labor

Technologies like precast concrete offer some modularity, but still need improvements for rapid assembly and increased factory production through additive manufacturing

Chandu Bolisetti: chandrakanth.bolisetti@inl.gov
Efe Kurt: efe.kurt@inl.gov
Engineered Gradient Materials and Composition

• Multicomponent replacement with one integrated design (eliminates welding) and thin functional-gradient layer
 – Ni-Alloy N; Zr-Cr; Grade 91-316L
 – Interface behavior

• Thermal barrier coatings

• Material composition for additive-manufacturing processes
 – Materials are designed, for example, to enable the fabrication processes, e.g., flowability for casting compositions
 • Is there a specific minor composition adjustment necessary for additive-manufactured materials?

• Surface behavior, corrosion properties, and irradiation behavior of additive-manufactured components

• AMM provides opportunities to discover and develop new materials

High-Impact Manufacturing Technology Challenges

- Design approaches for manufacturing
 - More qualified materials are needed by reactor developers to allow for design flexibility and to meet performance targets.
 - Optimized process modeling and artificial intelligence
 - Interface design
 - Residual stresses relationships to design features
 - Topology optimization
- Develop and qualify high-strength, corrosion- and radiation-resistant materials for molten-salt reactors
- Accelerate qualification (new paradigm?)
 - Verification of quality and validation of modeling tools: specific manufacturing process modeling
 - New material discovery (or is it adoption of lessons learned from other disciplines?)
 - High-throughput testing and characterization
 - Verification of quality and validation of modeling tools: specific manufacturing process modeling
 - Acceptance protocols for high-temperature reactor components fabricated by advanced-manufacturing methods
 - Integrated shared databases
- Compact heat exchangers
 - Develop scientific understanding of processing-properties relation for enhanced diffusion-bond properties
- Large component fabrication and welding, size limitations (scalability—size, volume)
- Sensors
 - Radiation-tolerant sensors
 - Miniaturization of sensors
 - Integrated manufacturing processes
- Thermal barrier coatings: Interface designs to prevent scaling, functional materials, isolation
Fuel Technologies: What is the AMAFT Technology?

Case Study 1
Technology Commercialization Funding (TCF)

AMAFT process: Integrated Modular Additive Manufacturing
- directly transforming various U-based input materials
 - final form accident tolerant nuclear fuel
 - multiple integrated reactions

Reactants
- UF_6
- UF_4
- UF_4
- UO_2
- U_3O_8
- U-metal

AMAFT

Final Product
- U_3Si_2

Secondary Products
- U_3Si_2

Waste

Market

Benchtop Experimental Display

BA-894 March 2016,
Provisional Patent March 2017
Patent filed March 1, 2018
Experiments to Establish AMAFT Process

Example how universities can contribute towards research projects

Approach: Divide AMAFT process in sub-reactions to test each aspect’s feasibility
Independent Qualification Review

Case Study 2
Strategic Partnership Project Funding (SPP)

Advancement of state-of-the-art in additive manufacturing (AM) for naval applications

Objectives

- Independent evaluation on testing documentation supplied for an approach for product qualification.
- Comparative independent characterization and corrosion testing were performed on one AM and one forged 316SS valve.

Generally, the AM valve evaluation showed similar or better properties than the forged product (for parameters tested)
A Metamodel for Predicting Effective Thermal Conductivity of Porous Materials

Case Study 3
Laboratory Directed Research and Development Funding (LDRD)

- Additively manufactured materials typically contain lack-of-fusion porosity, or technique is used to fabricate pre-designed porous or lattice structures.
- Effect of geometric configurations of porosity on overall thermal conductivity is important for energy applications, which calls for numerical modeling analyses.

- Sparse data from experiments can be used for validation and if the required accuracy is not met, a multi-fidelity Gaussian process can be used to incorporate the experimental data with the simulation data from the ROMs and hence build a more accurate. This mitigates the problem of sparsity of the experimental data while leverages insights from the finite element modeling and machine learning models.

- Advanced microscopy with laser-optical imaging can give quick insight to topographical properties such as geometry and surface roughness and resulting microstructures.

- WAAM deposition parameters

Laser-optical LENS clad Tracks. High powder feed rate, power, scan speed

Digital light photoluminescence (DLP)
- Photo polymer-based additive that used UV light that cures resin with suspended particles

LENS Single-track beads

WAAM deposition parameters

INL/CON-20-58911
AM Modeling

- Modeling is needed to better predict the effect of porosity and on processing and material properties
- Process Modeling
 - Determination of processing maps with physics based numerical modeling
 - Reduced iterative experimentation
- Property modeling
 - Predict microstructural growth, residual stresses, and mechanical strength based on coupled thermal-fluid process modeling
- Artificial Intelligence / Machine learning
 - Predicting porosity effects on bulk thermal properties with experimental and material modeling
 - Input from physics-based models as a better determination of final part properties

Current Focus of TRISO Advanced Microscopy and Micro-Analysis

- Characterize Effects of Radiation upon:
 - Kernel porosity
 - Layer degradation or corrosion,
 - Layer debonding,
 - Fission product precipitation,
 - Microstructure; grain characteristics.
- Determine microstructural differences between particles exhibited high and low releases of Ag-110m
Effect of defect size on Ag retention

Ag-110m retention in the SiC layer appears to have an inverse relation with void sizes.

HTR-2018, 8-10 October, 2018, Warsaw, Poland

- The void sizes are larger in SiC layer adjacent to region where buffer layer is broken.
- The observed void size variation with integrity of buffer layer can potentially affect the fission product retention.
Irradiated Microstructure of AGR-1 Fuel Kernel

- Fuel matrix consists of UC and UO$_2$, and UO$_2$ presents as the dominating phase.
- Zr forms carbide in the solid solution of UC
- Mo, Ru and Tc also enrich in UC phase, and Nb tends to enrich at pore surface.
- Ultra-fine Fission gas bubbles located in UC phase, while UO$_2$ is free of fission gas bubbles.

[Advanced Reactor Technologies Gas-Cooled Reactor Program Review, July 14-16, 2020, GoToWebinar]
What Next?

- Update Strategic Plan
- Mining previous awards
- Implement FY21 priorities

Examples of Different Advanced Reactor Designs Being Developed By Industry

Fast Reactors
- GE Hitachi PRISM
- TerraPower TMR
- Westinghouse LFR
- Advanced Reactor Concepts LLC AR-100
- Ohio AEC

Gas Reactors
- General Atomics ENO
- (Gas-cooled Fast Reactor)
- X-Energy Xe-100
- Terrestrial Energy USA MGFR
- X-energy USA MCFR

Molten Salt Reactors
- General Atomics ENO
- Ultra Safe Nuclear MMR
- Terrestrial Energy USA MGFR
- Moltex Power MFGR

Heat Pipe Reactor
- Westinghouse
- Molten Salt Reactor Design

Energy.gov
Advanced Manufacturing Methods Pertinent to Nuclear Power Plants

Most Interest for Near Term Deployment

- **AMM ADDITIVE MANUFACTURING**
 - Powder Bed
 - Directed Energy Deposition
 - Binder Jetting

- **NEAR NET SHAPE MANUFACTURING**
 - Powder Metallurgy - Hot Isostatic Pressing
 - Investment Casting

- **JOINING/CLADDING**
 - Adaptive Feedback Welding
 - Diode Laser Cladding
 - Electron Beam Welding with High PWHT
 - Friction Stir Welding (FSW)
 - Hybrid Laser Arc Welding
 - Hybrid Laser-GMAW
 - Laser Cladding Technology (LCT)

- **SURFACE MODIFICATION/COATING**
 - Chemical Vapor Deposition (CVD)
 - Cold Spray Additive Manufacturing
 - Physical Vapor Deposition (PVD)
 - Laser Peening

Interest for Longer Term Deployment

[Notes from NuScale Power, 2017]

- **ADDITIVE MANUFACTURING in NPM**
 - Reactor Vessel Internals
 - HCSG Tube Supports
 - CRDS Supports
 - CRA Cards
 - Fuel Pins
 - Integral Safe Ends
 - Sub Supplier Components
 - Fuel Assembly
 - Valve Internals
 - Latch Mechanisms

- In 10 years
 - Traditional forgings
 - PM-HIP complex shapes
 - Additive Manufactured parts
 - Traditional welds
 - Advanced joining techniques
 - Laser clad components

Integration and keep abreast of current needs, while preparing for the new generation designs

Qualification Processes

Categorization of manufacturing processes?
Why is it advanced manufacturing?

- Additive Manufacturing
- Coatings
- Powder Metallurgy
- Welding
- Casting
Current Research & Collaboration Opportunities

- New process modelling
- Surrogate applicability and property behavior
- Irradiation behavior prediction
- Process parameter optimization
- Process automation (novel hybrid processes)
- Energy Source
- Handling of U-compounds in the novel hybrid processes
- Scale up optimization
- Supply chain of powders
- AMAFT process for other material/system concepts for commercialization