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An Introduction to Word Embeddings and Language 
Models 

1. Introduction 

Language models have advanced at a phenomenal pace over the past decade [1]. This document provides 

a short introduction to terminology, word embeddings (aka low-dimensional representations), and popular 

large-scale language models (LMs). Word embeddings are used to represent words as numerical vectors 

and are context-independent, meaning a word can only have a single representation (e.g., club can only be 

club sandwich, not golf club). Language models can determine the probability of a given sequence of 

words occurring in a sentence and can provide context to distinguish between words and phrases that 

sound similar. LMs are context-dependent (e.g., club can be club sandwich or golf club) and largely fall 

in two main classes – autoregressive and autoencoding models.  

Autoregressive models are pretrained on the classic language modeling task: guess the next token having 

read all the previous ones. Those models can be fine-tuned and achieve great results on many tasks, the 

most natural application is text generation. A typical example of such models is GPT, but others include 

GPT-2, GPT-3, CTLR, TRANSFORMER-XL, REFORMER, XLNET. 

Autoencoding models are pretrained by corrupting the input tokens in some way and trying to reconstruct 

the original sentence. They can be fine-tuned and achieve great results on many tasks such as text 

generation, but their most natural application is sentence classification or token classification. A typical 

example of such models is BERT, but others include ROBERTA, ALBERT, XML, XML-ROBERTA, 

FLAUBERT AND LONGFORMER. 

2. Pretrained Word Embedding Models 

Language is an extremely high-dimensional space to operate in and encode for modeling purposes. Word 

embeddings are a popular representation of language through learning vector representations of a specific 

word (or a phrase, a sentence, or the whole document), also known as text data vectorization. These 

vector representations are used to facilitate association of context to words numerically. The first pre-

trained, widespread word embeddings model was WORD2VEC in 2013 [2]. Other popular models include 

GLOVE, FASTTEXT [3, 4].  

Word embeddings capture word context relative to other words and are used to generate predictions of 

nearby words. They are key to text analysis in natural language processing (NLP) tasks, such as sentiment 

analysis, topic extraction, topic classification. A key limitation of a word embedding is that it is context 

independent. For example, a word embedding can only have a single context representation for the word 

club, whereas club could mean golf club, clubhouse, club sandwich [5-7]. The simplest method of text 

data vectorization, in the pre-word embedding learning era, is one-hot encoding. The one-hot encoding 

for “brown” and “fast”, as the second and fifth words in the sentence “the brown dog ran fast” would be 

[0,1,0,0,0] and [0,0,0,0,1].  

Two popular architectures for learning word embeddings are skip-gram and continuous bag of words 

(CBOW) [8]. Each loop on words in a text corpus and makes predictions. Skip-gram uses the current 

word to predict its neighboring words while CBOW uses its neighboring words to predict the current 

word. Skip-gram works well with a small amount of training data and instances of rare words while 

CBOW is much faster to train with better performance for frequent words. To encode context 

information, ELMO [7] embeddings emerged in 2018 and have been widely used to initialize NLP 

models. 
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3. Autoencoding Language Models: BERT and Transformer Models 

Language models can determine the probability of a given sequence of words occurring in a sentence and 

can provide context to distinguish between words and phrases that sound similar. WORD2VEC is context 

independent while language models are context dependent. Language models can distinguish between 

golf club and club sandwich based on the context of the sentence. 

The Bidirectional Encoder Representations from Transformers (BERT) language model was released in 

2017 [9, 10]. Bidirectional means contextual information about a word is learned simultaneously from 

both left-to-right and right-to-left directions. Until transformers, language models were uni-directional.  

Key observations about the BERT model: 

• Model size is critical, more parameters equal superior model accuracy. 

• More training steps with more training data correlates to higher model accuracy.  

• BERT’s bidirectional approach converges slower than left-to-right.   

Several terms are key to understanding language models. Pretrained means the language model has been 

trained on a large text corpus and can understand the language; in effect, creating a well-read person. 

Fine-tuning a model is used when the model needs to represent a specialized dataset (e.g., BioBERT). 

General purpose models, like BERT and GPT-3, are models trained with large numbers of parameters 

(millions to billions) and are expected to perform close to fine-tuned models.   

4.  Autoregressive Models: GPT-3 and Next-Gen Transformers 

In May 2020, OpenAI released a paper on Generative Pre-trained Transformer 3 (GPT-3) with 175 billion 

parameters, making it the largest transformer-based language model in the world at the time [11]. The 

following chart shows the relative size of GPT-3 versus prior language models; note, the largest BERT 

architecture (BERT-Large) has 340 million parameters [12].   

In contrast to BERT, GPT-3 does not require substantial fine tuning; however, there are a lack of studies 

for specialized datasets (e.g., nonproliferation). GPT-3 generates output with few-shot learning, one-shot, 

and zero-shot learning [13]. Few-shot learning is defined as fine tuning with few data examples, one-shot 

is fine tuning with one example, and zero-shot is no fine-tuning at all. GPT-3 demonstrated an unexpected 

proficiency across a range of tasks, including software code generation. It is believed GPT-3 will work 

well on multiple non-text data types. GPT-3 is not available open source.  DALL-E, a recent GPT-3 

variant, can draw images from text descriptions [14]. Other multimodal models include CLIP [15], and 

UniT [16]. 

https://openai.com/blog/clip/
https://syncedreview.com/2021/02/26/facebook-ais-multitask-multimodal-unified-transformer-a-step-toward-general-purpose-intelligent-agents/
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5.  Switch Transformer 

Google announced a 1.6 trillion parameter model in January 2021, based on the switch transformer 

architecture [15-17]. The architecture is more computationally efficient that BERT or GPT-3 and initial 

benchmarking performance data shows promise, stay tuned for further information.  

6.  Comparison: BERT, GPT-3 

The following table summarizes a comparison of BERT versus GPT-3. 

Attribute Autoencoding: BERT Autoregressive: GPT-3 

Number of Parameters 340 Million 175 Billion 

Required Fine Tuning Substantial Few- to Zero-Shot Learning 

Access Availability Open Source Commercial 

Run Model Size (Memory) 1.4 GB 700 GB 

Cost 
• Free Access 

• Moderate Labor  

• Moderate Compute 

• Pay for Use 

• Minimal Labor Required 

• High-End Compute 

Capability (Language Tasks) 
Very Good 
Requires fine tuning 

Excellent 
May not require fine tuning 

Capability (Beyond Languages) No 
Images (DAL-E), Software, 
Unknown 
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The DNN R&D AI and Data Science portfolio drives the development of next-generation AI methods and 
technologies to detect early indicators of nuclear weapons proliferation and reveal insights about the 
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technologies and practices to accelerate the use of AI-enabled technologies for national security missions 
across the U.S. government. 
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