

May 6, 2021

Steven D. Herrmann

Principal Investigator Idaho National Laboratory

Outline

- Purpose Discuss outcome of experimental study on used nuclear oxide fuel constituent dissolution in LiCl-KCl-UCl₃.
- Background
 - Electrometallurgical Treatment (EMT) process
 - Oxide Reduction
- Objectives and approach of three-part progressive study
 - Scoping study
 - Electrolytic dissolution study
 - Chemical-seeded dissolution study
- Test conditions, equipment, materials, results, observations, discussion, and conclusions of each study.
- Summary
- Future Work

Background – Electrometallurgical Treatment (EMT) Process

- EMT is a proven process and well-suited for treating sodium-bonded used metallic fuels (e.g., EBR-II).
- Demonstrated in 1996-1999
 - Independent review by a National Research Council (NRC)
 - Selected by DOE for treatment of 26 metric ton (MT) of used fuel
- Continues to operate today for treatment of EBR-II driver and blanket fuel
- Uses electrorefining technology with a molten salt electrolyte of LiCl-KCl-UCl₃ at about 500°C

Note: Not to Scale

EMT Summary Flow Diagram

refined U deposits on cathode rod

Distribution of Fuel Constituents in EMT Process – Thermodynamic Basis

Extension of EMT to Used Nuclear Oxide Fuels

- Background of Oxide Reduction processes
 - Lithium-based metallothermic process to reduce uranium oxide to metal as a head-end step to electrorefining

• 4 Li + UO₂
$$\xrightarrow{\text{LiCI}}$$
 U + 2 Li₂O $\Delta G_{\text{Rx},650C} = -26 \text{ kJ}$

Electrolytic reduction process to convert UO₂ to U

• Cathode:
$$UO_2 + 4e^- \rightarrow U + 2 O^{2-}$$

• Anode:
$$2 O^{2-} \rightarrow O_2(g) + 4 e^{-}$$

• Full Cell:
$$UO_2 \rightarrow U + O_2(g)$$
 $E^\circ = 2.40 \text{ V}$

Simplified electrochemical cell diagram for electrolytic reduction process

Electrolytic Reduction Process Performance

- Typical reduction performance with used oxide fuels
 - >98% reduction of uranium in PWR fuels
 - >87% uranium, >54% transuranium (TRU) in fast reactor MOX
 - Group 1 (Cs, Rb), group 2 (Ba, Sr), group 16 (Te), and group 17 (Iodine) partition and accumulate in LiCl-Li₂O electrolyte.
- Transfer of reduced fuel to a uranium electrorefiner invariably introduces some oxide species.
- Fate of fission products from reduced fuel in electrorefiner
 - Metals: Anodic dissolution or chemical reaction with UCl₃
 - $3/z M + UCl_3 \rightarrow 3/z MCl_z + U$; where M = active metal
 - Oxides: $M_xO_y + UCl_3 \rightarrow MCl_z + UO_2$ (???)
- Prior work* w/ anodic dissolution of partially reduced MOX fuel (29% U, 16% Pu, 2% lanthanide metals) in LiCl-KCl-UCl₃ at 500°C
 - Nearly all TRU and lanthanides dissolved into molten salt.

^{*} S. D. Herrmann, et al., "Separation and Recovery of Uranium and Group Actinide Products from Irradiated Fast Reactor MOX Fuel vie Electrolytic Reduction and Electrorefining," Separation Science and Technology, **47**, 2044 (2012).

Objective and Approach of this Study

- Objective: Investigate parameters and reaction mechanisms associated with dissolution of used nuclear oxide fuel constituents in LiCl-KCl-UCl₃.
- Approach: Series of 3 progressive studies
 - Scoping study compare performance with 3 different fuel types
 - Oxidized EBR-II driver fuel
 - Crushed PWR fuel (UO₂) from Belgium Reactor 3 (BR3)
 - Voloxidized fuel from BR3 (UO₂ → U₃O₈)
 - Electrolytic dissolution study with preconditioned BR3 fuel
 - Create reducing conditions in fuel bed electrolytically
 - Additional effects of temperature and UCl₃ concentration
 - Chemical-seeded dissolution study with preconditioned BR3 fuel
 - Blend fuel with depleted uranium (DU) metal particulate
 - Additional effects of temperature

Summary of Test Conditions

run	[U] as UCI ₃ in LiCI-KCI	Fuel Loadin	DU metal mass	Temp.			
	(wt%)	type	mass (g)	(g)	(°C)		
1. Scoping Study							
1.1		Oxidized EBR-II fuel	24.7				
1.2	9	Crushed BR3 fuel	Crushed BR3 fuel 28.3 50		500		
1.3		Voloxidized BR3 fuel	28.7				
2. El	ectrolytic Diss	olution Study					
2.1	6, 19	Pre-conditioned BR3 fuel 30.6		59.9	500, 650		
3. Chemical-Seeded Dissolution Study							
3.1.		Pre-conditioned BR3 fuel + uranium metal particulate	24.4 oxide, 16.5 metal	Seeded in each	650, 725, 800		
3.2			20.2 oxide, 14.3 metal	basket, then			
3.3		partionato	13.1 oxide, +16.5 metal	deposited on Ta rod			

Equipment

Hot Fuel Dissolution Apparatus (HFDA) in Hot Fuel Examination Facility (HFEF)

Simplified electrochemical cell configuration for series of dissolution studies

Components and Materials

Scoping study baskets – oxide fuel (left), DU metal (right)

Electrolytic dissolution baskets – oxide fuel (left), DU metal (right)

Chemical-seeded dissolution basket and stirrer (center and right), Ta rod (left)

Oxidized EBR-II fuel (top); crushed BR3 fuel (bottom)

Calculations

- Chemical equilibrium model (HSC, Gibbs energy minimization model) was run to identify reaction mechanisms.
 - Assumptions: Unit activities and ideal mixing; lanthanide and transuranium (TRU) oxides were limited to trivalent form due to reducing conditions in salt system, i.e., no tetravalent forms.

Eq.	Reaction Mechanism	ΔG _{Rx} (kJ)			
	Reaction Mechanism	500C	650C	725C	800C
1	$Cs_2O + UCl_3 \rightarrow UOCl + 2 CsCl$	-504	-501	-503	-505
2	$BaO + UCl_3 \to UOCI + BaCl_2$	-266	-265	-264	-264
3	$Nd_2O_3 + 3 UCl_3 \rightarrow 3 UOCl + 2 NdCl_3$	-159	-156	-154	-157
4	$Pu_2O_3 + 3 UCl_3 \rightarrow 3 UOCl + 2 PuCl_3$	-142	-139	-138	-141

Consolidated Results of Salt Sample Analyses (Gamma Spectroscopy, ICP-OES, and ICP-MS)

Sample Analysis Results (cont.)

• Extent of fuel constituent dissolution in LiCl-KCl-UCl₃ at 500°C

Constituent	Run 1.1	Run 1.2	Run 1.3
Alkali	99.5%	21.6%	93.7%
Alkaline earth	93.5%	24.0%	59.3%
Lanthanide	93.9%	14.0%	13.9%
Transuranium	91.5%	19.4%	12.4%

Uranium-235 concentrations in salt and fuel phases

iso%	Run 1.1		Run 1.2		Run 1.3	
	pre-test	post-test	pre-test	post-test	pre-test	post-test
Fuel	57.4	30.2	3.39	4.42	4.93	5.50
Salt	0.356	7.42		7.06		9.45

Scoping Study – Discussion

- Observed stark contrast in extent of fuel constituent dissolution between oxidized EBR-II fuel and BR3 fuels
- Observed appreciable difference between BR3 fuel forms
- Observations prompted subsequent metals analysis of EBR-II fuel, revealing a 30.2% uranium metal fraction – similar to prior work with MOX fuel dissolution (at 29% uranium metal fraction).
- Chemical equilibrium modeling for possible reaction mechanisms
 - $UO_2 + UCI_3 \rightarrow UOCI + UOCI_2$ $\Delta G_{Rx,500C} = +45.1 \text{ kJ}$
 - -3 UO₂ + 2 UCI₃ + U → 6 UOCI ΔG_{Rx,500C} = -26.2 kJ
 - Former is not thermodynamically spontaneous.
 - Latter is thermodynamically favored, creating a system in which U in the salt phase (UCl₃) has the same valency as U in a solid oxychloride phase (UOCl).
 - UOCI stability questionable; reaction reverses >1190°C.
- Conclusions: Reduced U in fuel matrix and preconditioned BR3 fuel promote fuel constituent dissolution.

Electrolytic Dissolution Study – Cyclic Voltammetry

Consolidated Salt Sample Analysis Results

Fuel Sample Analysis Results and Discussion

Extent of fuel constituent dissolution in molten salt

```
- Alkali = 99.6%
```

- Alkaline earth = 82.6%

- Lanthanide = 66.2%

- Transuranium = 62.6%

- Discussion and conclusions
 - Extents of dissolution trended with thermodynamic spontaneity.
 - Higher system temperature and uranium fraction in salt phase promoted alkaline earth, lanthanide, and transuranium constituent dissolution.
 - Run time was substantially longer than in the scoping study, due to operational limitations and low imposed currents.

Chemical-Seeded Dissolution Study – Consolidated Salt Sample Analysis Results

Chemical-Seeded Dissolution Study – Discussion

Extent of fuel constituent dissolution in LiCl-KCl-UCl₃

	Run 3.1	Run 3.2	Run 3.3
Alkali	99+%	99+%	>92%
Alkaline earth	97.7%	97.6%	97.7%
Lanthanide	89.8%	92.9%	93.0%
Transuranium	86.2%	90.4%	90.4%

Uranium-235 concentrations in salt and fuel phases

iso%	Run 3.1		Run 3.2		Run 3.3	
	pre-test	post-test	pre-test	post-test	pre-test	post-test
Fuel	3.55	1.11	3.55	1.09	3.55	1.26
Salt	0.336	0.543		0.723		0.760

Conclusions

- Collectively, the series of progressive studies identified increased rates and extents of used oxide fuel constituent dissolution in LiCl-KCl-UCl₃ by:
 - Imposing a uranium metal fraction of at least 25% in an oxide fuel matrix (3 UO₂ + 2 UCl₃ + U → 6 UOCl);
 - Preconditioning an oxide fuel via voloxidation and pre-heating to 1200°C;
 - Increasing system temperature from 500 to 800°C; and
 - Increasing the uranium fraction in the salt phase from 6 to 19 wt%.
- Application of the above preferred parameters yielded extents of alkali, alkaline earth, lanthanide, and transuranium constituent dissolution above 90%.
- Patent was issued for this dissolution technique.
 - US 8,734,738 B1

Future Work

- Repeat dissolution experiments in FY21 with three successive runs.
 - NaCI-UCI₃ (19 wt% U) electrolyte
 - 800°C
 - Run 1 Preconditioned BR3 fuel
 + sodium metal (chemicalseeded dissolution)
 - Run 2 Preconditioned BR3 fuel
 + DU metal particulate (chemical-seeded dissolution)
 - Run 3 Preconditioned BR3 fuel (electrolytic dissolution)
- Fuel and salt sample analysis results by Oct. 2021

NaCI-UCI₃ phase diagram (above); chemical-seeded basket/stirrer and Ta cathode rod (right)

