
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/MIS-21-62652-Revision-0

Evolution of MOOSE and
MOOSE-Based Tools to
Address Analysis Challenges
May 2021

Mark D DeHart, Vincent M Laboure, Sebastian Schunert

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/MIS-21-62652-Revision-0

Evolution of MOOSE and MOOSE-Based Tools to
Address Analysis Challenges

Mark D DeHart, Vincent M Laboure, Sebastian Schunert

May 2021

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Evolution of MOOSE and MOOSE-
Based Tools to Address Analysis
Challenges
Presented to the NASA Digital Transformation Working Group

Presented by Vincent Labouré, Sebastian Schunert and Mark DeHart

INL/MIS-21-62652

May 11, 2021

MOOSE History and Purpose
• Development started in 2008
• Open-sourced in 2014
• Designed to solve computational

engineering problems and reduce the
expense and time required to develop
new applications by:

− being easily extended and
maintained

− working efficiently on a few and
many processors

− providing an object-oriented,
pluggable system for creating all
aspects of a simulation tool

− Not written specifically for any
specific type of physics

− In theory, applicable to any form of
physics expressed as a set of PDEs

2

What is MOOSE?
• MOOSE is the Multiphysics Object-Oriented Simulation Environment
• Written in C++, is an objected-oriented framework that exists as a set

of linkable libraries.
• MOOSE uses the finite element method and takes physics equations

(specifies in an equation-like format) and internally develops the FEM
equivalent

• To solve a specific physics equation, that equation is written in its weak
form (a FEM requirement) and the equation (or set of equations) are
written in the form of MOOSE Kernels. A kernel is a “piece” of physics.

• It’s convenient to think of a kernel as a mathematical operator, such as
a Laplacian or a convection term in a PDE.

• A kernel is typically composed of single lines of C++ code for the
mathematical operator, the exact or approximate Jacobian, and one for
each boundary condition.

• In MOOSE, kernels may be swapped or coupled together to achieve
different application goals.

3

What is MOOSE?
“To solve a specific physics equation, that equation is written in its weak form and the
equation(s) are written in the form of MOOSE Kernels”

• where:
− _k is the conductivity
− _grad_u is the

gradient of the
temperature

− _grad_test is the FEM
test function

• A kernel is generated for each term in the equation
• Given properties (k, Cp, r), BC and a mesh, this C++ expression can essentially

be linked to MOOSE and run (1, 2 or 3-D)
• MOOSE is only a framework including a solver – MOOSE can’t do anything by

itself. Each new “animal” is compiled with and contains MOOSE

4

What is MOOSE
(continued)

• Many kernels (e.g., conduction equation)
are already built into MOOSE in the form of
modules that don’t need to be re-
developed

• MOOSE is really good for solving
uncommon physics where no off the shelf
algorithms exist – a complete application
can be developed literally in hours rather
than weeks/months.

• MOOSE leverages scientific matrix solvers in PETSc and meshing
toolset in libMesh

− PETSc really helps for code parallelization as users typically only
have to specify the desired number of procs/threads – the high-
performance solution is inherited largely from PETSc. Almost all of
the mathematical solution is done in PETSc and is very high-
performance

− libMesh provides mesh-related tools that we use for generating
meshes and data translation

5

MOOSE Multiphysics
• MOOSE was originally developed to solve all equations at the

same time for multiple physical phenomena (“physics”)
• This approach is extremely powerful as all coupled variables are

solved all at the same time in a single large matrix
− This is known as an implicit or strongly coupled solution
− Griffin solutions with thermal feedback are often solved implicitly

when flow is not included (e.g., TREAT)

• This also allows different forms of a given equation to coexist on
one solution mesh

− Different equations applied for different mesh regions
− It is possible for a low order and a high order approximation to be

used simultaneously to focus high fidelity only where needed.

• MOOSE employs the preconditioned Jacobian-Free Newton
Krylov (JFNK) approach to allow solutions for very large matrices

− JFNK doesn’t require inversion of the very large matrix
− Allows solution of matrices that are VERY costly and impractical to

solve otherwise.
6

MOOSE Considerations
• MOOSE is not as strong in head-to-head comparison to

applications where specialized codes exist and use custom solution
algorithms.

− You would not write a neutron transport solver with the current version of
MOOSE if all you wanted to do was to solve for neutron transport.

• MOOSE's focus is on flexible coupling.
− If you want to couple said transport with T/H, conduction, radiative heat transfer

and structural mechanics (for example) MOOSE will significantly accelerate the
process.

− In MOOSE, even when solved independently, the variables are common and
shared (if on the same mesh)

− MOOSE can handle conservative transfer between different meshes.

• Fuel/materials analysts use MKS units; neutronics analysts use
CGS.

− MOOSE is unit agnostic – it uses whatever units are provided
− This can cause issues if user is not aware of differences in units
− Allows user to use units consistent with form of data (neutronic data is always

provided in CGS)
− Codes need to be written to make unit conversions when coupling to other

codes using different units.
7

Early Challenges in Using MOOSE

• By design, the original MOOSE approach solved all variables at
one time then advanced in time, all on same time scale

− Not all physics evolve on the same time scale
• For strongly coupled systems all equations are on the same mesh

− Not all physics require or should use the same mesh
• Mesh generation is simple for simple configurations, and more

difficult for complex configurations
− INL and others primarily use Cubit (scripted using Python)
− INL is now partnering with Coreform (a commercial Cubit

spinoff) and plans to improve this process
• The generality of the framework induces an overhead (both

memory and speed) that can be non-negligible, especially for
physics that are not typically solved with FEM (e.g., thermal-fluids)
or not solved strongly (e.g., neutronics).

8

Preconditioning when using JFNK in MOOSE
• A JFNK solver requires an appropriate preconditioner to accelerate

convergence
− MOOSE provides a number of preconditioning options; however, the appropriate

preconditioner can be difficult to find at times
• The ideal preconditioning operator is problem dependent
• Elliptic/parabolic (aka diffusion-like) equations typically perform well

with AMG preconditioner (standard in MOOSE)
• Harder problems in MOOSE often rely on brute force (e.g., LU solve)

but does not scale well as the problem gets bigger
• MOOSE has introduced Automatic Differentiation (AD) to help

mathematically build an appropriate Jacobian preconditioner.
• AD does have an associated time and memory cost.
• For neutron transport (hyperbolic), building the full Jacobian is too

expensive for large problems so physics-based preconditioning is
often needed.

• For other physics (e.g., mechanics with contact), preconditioning
remains an issue.

• More on preconditioning later.
9

How to Make a Multiphysics Model Efficient?

• Key #1: efficiency of each physics (speed, robustness,
memory, …)
Ø Example A: neutronics
Ø Example B: thermal-hydraulics

• Key #2: efficient convergence of coupling terms between
physics
Ø Strong vs tight coupling
Ø Dealing with different time scales

10

Example A: Neutronics

• 3 dimensions in space (often >106

elements/cells)
• 2 in neutron direction (100 or more directions),
• 1 in neutron energy (10s to 100s of groups)
• Time scales (from µs to years)
• Highly nonlinear cross sections
• Overhead with Griffin due to solving all the

groups simultaneously

High-fidelity solutions are bound
to take time

11

Physics-based Reduced Order Model: Super-
Homogenization (SPH) Diffusion Approach

SPH-corrected library

Numerical
Model

Reference
Flux

Multigroup
cross-

sections

Monte-Carlo corrected
cross sections to use
an accurate diffusion
scheme for transients

on a coarse mesh

12

Example B: Thermal-Hydraulics

• Originally implemented continuous Finite
Element Method (FEM) in RELAP-7

• Recently replaced with discontinuous
FEM with Finite Volume option

• Single phase performance is decent but
suffers from solving all the equations
(mass, momentum, energy)
simultaneously and on the same mesh
(MOOSE overhead)

• Alternative could be to “MOOSE-Wrap” a
non-MOOSE tool

13

Tightly coupled

• Picard iterations may converge
slowly

• Much greater flexibility when
using intrinsically different
tools (discretization, time
scales, etc…)

Strongly coupled

• Ideal to efficiently converge
(off-diagonal terms easily included
in Jacobian)

• Assumes comparable scales

Coupling Approaches

14

𝐴 𝛼
𝛽 𝑀

!
" = #

$

Which one is more efficient?
It all depends…

Flexibility by MultiApps
• MOOSE supports loose coupling

(operator split) & Picard via
MultiApps

• MOOSE supports strongly coupled
solves

• Picard Iterations via MultiApp
• Master app owns a sub-app
• Recursive: sub-app can own its

own sub-app tree
• Information transfer via flexible

MOOSE transfers
• Different meshes & dimensionality
• Sub-cycling
• Mixing eigenvalue & transients

Loose

Tight/Picard

Strong

MultiApp

15

Dealing with Different Time Scales: Sub-Cycling

Griffin Griffin

16

Example – Coupled NTP Full-Core Model

5 Fuel Element Heat Conduction: sub-app 2
5 TH channels: sub-app 3

Full-core Neutronics:
primary app Full-core Heat Conduction:

sub-app 1

Power density

Trefl

Tfuel, Tmod

Heat removal

Boundary
condition

17

Picard iterations give a lot of flexibility but…
can take time to converge coupling terms

Improvement of Picard Iteration Convergence

• Strong coupling (single nonlinear problem) is often impractical
(memory consumption, time/length scales, different meshes)

• Picard iterations convergence slowly:
− Neutronics, heat conduction, thermal-hydraulics (~200k DoFs)
− One evaluation is 1 minute, 600 times steps, 10 Picard
− Runtime is 10 hours

• Acceleration:Secant’s,
Steffensen’s methods (Anderson’s
method TBD)

• Promising work done by
Guillaume Giudicelli @ INL

• Previous work in the DOE CASL
program by Alexander Toth

Iterations for 2D/1D fluid flow coupling
(courtesy G. Giudicelli)

“In general, we noted that Anderson provides
a significant improvement in robustness.”
- from A. Toth’s dissertation

18

Data Transfer Between Apps

• When meshes are identical, transfer of quantities
is straightforward

• Otherwise, it can
become complicated
to preserve energy

• Options exist but
usually geometry specific
(hexagonal, cylindrical, etc.)

BISON representative pin
Height: 58 cm
562 elements
5 stacked on top of each other in
each fuel column (30)
BISON mesh z-axis is scaled by 1/5 on picture

RELAP-7 representative channel
Height: 522 cm
300 elements
One for each fuel column (30)
and for each CR column (16) Homogenized mesh (clipped to show the location of

a fuel block) for MAMMOTH (15,552 elements)
The MOOSE modules mesh is identical, with one
more level of refinement (124,416 elements)
Height: 522 cm

19

MOOSE Solver Strategy (1)

• MOOSE is pluggable for physics, kernels, etc
but not for the solver machinery

• This is significant shortcoming that needs to
be improved

• MOOSE solution algorithm:
− PETSc Newton/PJFNK
− MOOSE computes Jacobian/residuals
− PETSc matrix inversion (AMG)
− Custom preconditioner can be implemented

• MOOSE was developed for implicit time-
stepping

• Explicit time-stepping exists but framework
overhead makes it inefficient!

• The MOOSE “External problem” is a path
forward to make MOOSE solves more flexible!
(more later)

MOOSE residual

& Jacobian

PETSc matrix
inversion

LU, AMG, ASM

Solution via PETSc

PFJNK or NEWTON

Custom
preconditioner

20

MOOSE Solver Strategy (2)
Advantage:
• Existing solvers remove burden from users
• Some problems have efficient off-the-shelf solvers (parabolic

problems, AMG)
• With an intermediate level of effort, custom preconditioners can be

implemented (if you can cast a custom solver as preconditioner)
Disadvantage:
• PJFNK/Newton requires a good Jacobian (memory + compute

heavy) & decent estimate of Jacobian inverse to converge fast
• Jacobians for many problems are either large or hard to invert

efficiently without resorting to LU (e.g., fluid dynamics)
• Custom solution algorithms (e.g., SIMPLE in fluid dynamics) are

difficult to implement when compared to other frameworks (e.g.,
openFOAM)

• Semi-implicit or efficient explicit schemes hard to implement and
make efficient

21

Native Communication among MOOSE Apps(1)
• MOOSE Apps share a lot of infrastructure

− Common mesh object
− Common pluggable system such as: Variables, Kernels,

Materials
− Inheritance and polymorphism are used to make the objects

usable across

MSR application (Example)

Preconditioned by
custom sweeper

Variable
object

Griffin Neutronics
Solve

Variable
object

MOOSE Fluids solve
with precursor drift

MultiAppTransfer

For example
scalar flux

22

Native Communication among MOOSE Apps(2)
• Concept of code reuse leveraging submodules
• MOOSE apps are built on the same system & inherit from the same

basic objects
• You can generally combine two MOOSE apps by “loading” the

objects residing in the two apps into a third app

Sabertooth (Example)

Sabertooth

Griffin BISON RELAP-7 Fluid props

Sabertooth = neutronics + fuel performance + TH

Sabertooth is a superset of the submodule capabilities!

23

MOOSE-Wrapped Apps
• MOOSE-Wrapped Apps are MOOSE-based executable

applications that are designed to couple external or legacy
applications

• Key system 1: external mesh
− MOOSE external mesh

replicates the external code
mesh

− External mesh hooks into
MOOSE functionality

• Key system 2: ExternalProblem
• Key system 3: MultiAppTransfers

24

ExternalProblem

• ExternalProblem offers a lot of flexibility to couple existing codes
or develop new custom codes that talk to MOOSE

• syncSolutions ensures that information from an external code
is transferred to the external mesh (usually writing information to
MOOSE variables)

• externalSolve should either contain a call to the wrapped app
solution algorithm or a custom algorithm can be implemented

• ExternalProblem is used to implement subchannel algorithms into
MOOSE (Note: no existing code is wrapped, but a new code is
written and hooked up with MOOSE)

syncSolutions(Direction::TO_EXTERNAL_APP);
externalSolve();
syncSolutions(Direction::FROM_EXTERNAL_APP);

25

MOOSE Development & Testing (1)
• MOOSE and most native apps follows the continuous

integration workflow
• MOOSE relies heavily on a robust automated testing tool called

CIVET
• Development first merges into next branch, followed by additional

automatic testing and updates to devel and master branches
• MOOSE is hosted on github; export-controlled applications are

hosted in INL internal gitlab servers
• Tests are developed as part of the code and reside in the

repository
• Most tests are executed 60 times with varying compilers, parallel

execution settings, operating systems

26

MOOSE Development & Testing (2)
CIVET test dialogue on github pull-request side

Tests for:
Code formatting, Linux, Mac, Windows 10, Documentation,
dependent internal and external applications, minimum clang & gcc
(compiler) version, parallel execution, multi-threaded execution,
recover & restart, debug, different PETSc & solver configs

27

MOOSE Documentation with MooseDocs
• MOOSE documentation is part of the source code and is version controlled
• Documentation is written in markdown syntax & pulls in source code & test

input syntax
• Documentation must pass tests before code changes are accepted

Incompressible

MOOSE's Incompressible Navier Stokes Finite Volume
(INSFV) implementation uses a
colocated grid. To suppress the checkerboard pattern in the
pressure field,
`INSFV` objects support a Rhie-Chow interpolation for the
velocity. Users can get
a feel for INSFV by looking at some tests.

:
:

!listing modules/navier_stokes/test/tests/finite_volume/ins/lid-
driven/lid-driven-with-energy.i

28

Software Quality Assurance
• INL lays out an NQA-1 compliant process in plan 4005
• MOOSE, Griffin, and many other applications are working towards being

compliant with plan 4005
• MOOSE documentation provides tools to automatically generate and stay up-

to-date on NQA-1 documentation

[Tests]
design = 'Hydrostatic[..]BC.md'
issues = '#249'
[hydrostatic_bc]
type = Exodiff
input = hydrostatic_bc.i
requirement = ”The code shall …"

[]
[]

Input to test harness (single
regression test)

Software Requirement Specification
Entry

Link to design
document (next slide)

The Requirement Traceability Matrix (RTM) captures all requirements and
maps each to the associated design documentation and associated test
case

29

30

Concluding Comments

• MOOSE-based tools have been and are being developed to
support multiphysics simulations of complex systems.

• MOOSE is a game-changing concept and was a recipient of an
R&D 100 Award in 2014. Its open-source distribution has been
retrieved world-wide.

• MOOSE’s original design and application has evolved since its
creation to meet the needs of increasingly complex multiphysics
modeling concepts.

• MOOSE-based tools can be rapidly developed based on the PDEs
that describe a given set of physical phenomena.

• These tools can be developed for standalone needs, but MOOSE
really shines is coupled simulations of different but co-dependent
physics.

31

