
INL REPORT
INL/EXT-18-44453
Unlimited Release
Printed February 2018

Pronghorn Theory Manual

April J. Novak
Ling Zou
John W. Peterson
David Andrs
Joe Kelly
Rachel N. Slaybaugh
Richard C. Martineau
Hans D. Gougar

Prepared by
Idaho National Laboratory
Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by
Battelle Energy Alliance for the United States Department of Energy
under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for public release; further dissemination unlimited.



Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



INL/EXT-18-44453
Unlimited Release

Printed February 2018

Pronghorn Theory Manual

A.J. Novak∗, L. Zou†, J.W. Peterson†, D. Andrs†,
J. Kelly×, R.N. Slaybaugh∗, R.C. Martineau†, and H.D. Gougar†

∗ University of California, Berkeley
3115 Etcheverry Hall
Berkeley, CA 94708

∗ Idaho National Laboratory
Idaho Falls, ID 83402

× Nuclear Regulatory Commission
Rockville, MD 20852

3



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Preliminary Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The “Math” Behind the Porous Media Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Properties of Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 A Generic Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Porous Media Momentum Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 The Trans-Forchheimer Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Anisotropic Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 The Fluid Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 The Solid Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 The Legacy Pronghorn Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.8 A Unified Approach to Solving the Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.9.1 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.9.2 The Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.9.3 The Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.10 Nondimensionalization of the Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.10.1 The Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.10.2 The Energy Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.10.3 Compressible Versus Incompressible Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.10.4 Definitions of Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.10.5 Expected Values for Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.11 Summary of Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 AuxKernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Interface Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 The Conservative Equation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 The Primitive Equation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1 Barotropic Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Stiffened Gas Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Isentropic Stiffened Gas Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4 Linear Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Ideal Gas Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5.1 Isentropic Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Porosity, Coordination Number, and Tortuosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1.1 OscillatoryPorosityFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.2 ExponentialPorosityFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.3 AnnularExponentialPorosityFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 Coordination Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4



8.3 Tortuosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9 Friction Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.1 Pebble Bed Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.1.1 Friction Coefficients Independent of the Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.1.1.1 ErgunDragCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.1.1.2 PiecewiseLinearDragCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1.1.3 KTADragCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.1.2 Friction Coefficients Dependent on the Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.1.2.1 EisfeldDragCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.2 Pipe Flow Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.2.1 ChurchillDragCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10 Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.1 Pebble Bed Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.1.1 Correlations Independent of Porosity Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.1.1.1 WakaoPebbleBedHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.1.2 Correlations Dependent on Porosity Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.1.2.1 GnielinskiPebbleBedHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.1.2.2 KTAPebbleBedHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.2 Wall-to-Fluid Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.2.1 AchenbachPebbleBedWallHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.2.2 WakaoPebbleBedWallHTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 Effective Solid Thermal Conductivity κs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.1 Models for κs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.1.1 Parallel and Series Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.1.2 Zehner, Bauer, and Schlunder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.2 Models for κradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.2.1 ZBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.2.2 BreitbachBarthels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.3 Models for κfluid conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.3.1 ZBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.4 Models for κsolid conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.4.1 ChanTien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.4.2 ZBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.5 Variation of κs with System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12 Effective Fluid Thermal Conductivity κ f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.1 Axial Effective Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.2 Radial Effective Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13 Fluid Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13.1 Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

13.1.1 Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13.2 Liquid Salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

13.2.1 LiF-BeF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.2.2 NaF-ZrF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2.3 LiF-NaF-KF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2.4 KF-ZrF4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14 Solid Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.1 ElectricGraphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.2 StainlessSteel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5



15 Stabilization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
15.1 An Example: The 1-D Convection-Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
15.2 Upwinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

15.2.1 Petrov-Galerkin Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
15.2.2 Isotropic Diffusion Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.2.3 Modified Quadrature Rules and Weight Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

15.3 Streamline-Upwind Petrov-Galerkin Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
15.3.1 Solution, Inviscid Flux, Diffusive Flux, and Source Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.3.2 Variable Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.3.3 Inviscid Flux Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.3.4 Diffusive Flux Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.3.5 The Stabilizing Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
15.3.6 Shock-Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
15.3.7 Calculation of the Stabilization Parameter τSUPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

15.4 SUPG Stabilization with the Primitive Equation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
15.5 SUPG Stabilization with a Single Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

16 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.1 Weighted Residual Methods and the Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.2 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

16.2.1 The Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.2.2 Shape Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.2.3 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

16.3 The Accuracy of the Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
16.4 The Choice of Mesh Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

17 Solution of Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
17.1 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
17.2 Solution of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

17.2.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
17.2.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

17.2.2.1 Matrix Splitting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
17.2.2.2 The Steepest Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
17.2.2.3 The Conjugate Directions Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
17.2.2.4 The Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
17.2.2.5 The Arnoldi Process and the GMRES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

17.3 The Jacobian-Free Newton-Krylov Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
17.4 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

18 Mathematical Definitions and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.1 The Material Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.3 Suffix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.4 Vectors and Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.5 Essential Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

19 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.1 Ideal Gas SUPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

19.1.1 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.1.2 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.1.3 3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

20 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
20.1 Greek Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
20.2 English Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6



20.3 Math Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
20.4 Subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
20.5 Superscripts and Overbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7



Acronyms

BC Boundary Condition

BCC Body Centered Cubic

BE Backward Euler

CD Conjugate Directions

CE Compressible Euler

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CNS Compressible Navier-Stokes

CPU Central Processing Unit

DEM Discrete Element Method

DG Discontinuous Galerkin

EOS Equation of State

FCC Face Centered Cubic

FD Finite Difference

FE Finite Element

FEM Finite Element Method

FV Finite Volume

GLS Galerkin Least Squares

GMRES Generalized Minimum Residual Method

HCP Hexagonal Close Packing

HTGR High Temperature Gas Reactor

HTR High Temperature Reactor

HTR-PM High Temperature Reactor Power Module

IC Initial Condition

INL Idaho National Laboratory

JFNK Jacobian-Free Newton Krylov

LHS left-hand-side

LOCA Loss of Coolant Accident

LWR Light Water Reactor

8



MOL Method of Lines

MOOSE the Multiphysics Object-Oriented Simulation Environment

ODE Ordinary Differential Equation

PB-FHR Pebble Bed High-Temperature Fluoride-Salt Cooled Reactor

PBMR-400 Pebble Bed Modular Reactor-400

PBWR Pebble Bed Water Reactor

PDF Probability Density Function

PEBFD PEBble Fluid Dynamics

QU Quadrature Upwinding

RANS Reynolds Averaged Navier Stokes

RHS right-hand-side

RMS Root Mean Square

SC Simple Cubic

SD Steepest Descent

SND Symmetric Negative Definite

SOR Successive Over-Relaxation

SPD Symmetric Positive Definite

SUPG Streamline-Upwind Petrov-Galerkin

T/H Thermal-Hydraulic

THTR Thorium High Temperature Reactor

TMSR Thorium Molten Salt Reactor

TRISO TRistructural ISOtropic

9



1 Introduction

This manual is intended to provide a thorough description of the governing equations, the relations used for material,
heat transfer, and fluid flow parameters, and the numerical method utilized in Pronghorn. Detailed derivations of the
governing equations are given, beginning from first principles in order to be as explicit as possible about assumptions
made along the way [1]. Additional explanatory or tangential information that is not required for detailed under-
standing of the governing equations used in Pronghorn is shown in gray boxes in the text. The convention used in
this document is to represent all class names (or file names) in typewriter font. An extensive verification process
is completed for each class; details of this verification process can be found in doc/verification. Pronghorn is
under a continual validation process to expand the range of code applicability; details of this validation process can
be found in the doc/papers directories. The most up-to-date theory manual can be found in doc/manual. Any er-
rors in this manual should be reported to the Pronghorn development team by email (any of novak@berkeley.edu,
ling.zou@inl.gov, or jw.peterson@inl.gov if outside the Idaho National Laboratory (INL) organization).

Knowledge of the assumptions made in the governing equations is crucial to the correct use of any code. The table
below collects the most important of these assumptions to serve as a concise reference for categories of simulations
for which Pronghorn may give erroneous results. Other assumptions that are standard in the computational fluids
community are detailed in the text, but are not included in the table below because they constitute assumptions made
in virtually all choices of fluids simulation tools.

Table 1: Summary of major assumptions made in the governing equations in Pronghorn. The section where each
assumption is discussed is also given for reference.

Assumptions made Do not use Pronghorn if modeling: Section
Continuum approximation is valid Kn� 1 2.1
No isolated voids Non-connected voids of fluid 2.2.1
Single-phase flow Multi-phase flow 2.2.2
All fluxes are differentiable Shock waves or discontinuities 2.3
The only body force is gravity Electromagnetic fluids 2.4
Fluid is Newtonian Certain oils or fluids with internal structure 2.4
Zero viscous dissipation Strong shock waves 2.4
Fluid is pure Chemically-reacting flows 2.5
Local thermodynamic equilibrium Strong shock waves 2.5
Negligible viscous stress in fluid Highly viscous fluid, Re� 1 2.4, 2.10
Negligible viscous heating of fluid Large deformations in the fluid, Br/Pe� 1 2.5, 2.10
Solid velocity is zero Moving solid phase 2.5, 2.10
Porosity independent of time Moving solid phase 2.11
Beds of spherical particles Beds of non-spherical particles or broken pebbles 2, 8
No internal bed structure Beds with inserted control rods 8
Bed to pebble diameter ratio greater than 10 Narrow beds or large particles 8, 9

This document is organized as follows. In Section 2, the governing equations used in Pronghorn are derived and
discussed. These equations rely on closure relationships that are discussed in Sections 7-14. Methods used to stabilize
the governing equations are discussed in Section 15. The numerical method used is discussed in Sections 16 and 17.
Finally, important mathematical definitions and notation are given in Sections 18 and 20.
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2 Physical Models

A porous media consists of a solid matrix with interconnected voids filled with gas and/or liquid. On a spatial scale
on the order of the pore size, the flow characteristics are highly irregular. On the engineering scale, flow properties
are regular and predictable. Porous media models use averaging processes to relate pore features to engineering-scale
phenomena such as pressure drop and average temperature rise. This averaging can be performed in either a spatial
manner, in which case quantities are averaged over a physical volume to give a representative value, or in a statistical
manner such as the ensemble-averaging process commonly used to describe turbulent flows. The spatial averaging
technique is used in Pronghorn because it removes the need to average repeated simulation results and is simpler to
implement. The development of porous media models is primarily motivated by three considerations:

1. The computational cost of modeling the complex solid-fluid structure is prohibitive even for regularly-spaced
voids due to the high number of mesh elements required. For a non-porous simulation, not only is the solid-fluid
structure complex, but resolution of boundary layers is needed. Fig. 1 shows an example of such a finely-refined
mesh required for a Computational Fluid Dynamics (CFD) simulation of a subsection of a Body Centered
Cubic (BCC) lattice. For a steady-state CFD simulation of eight fuel pebbles, roughly 2× 106 elements and
about 40 Central Processing Unit (CPU) minutes of runtime are required. To model the same volume with a
porous media model requires only 20% of the mesh elements and only about 0.5 CPU minutes due to simpler
models [2]. Extrapolating these numbers to a full core containing 470,000 fuel pebbles [3], a full-core CFD
simulation would take 39,000 CPU hours, while a full-core porous media simulation would only require 490
CPU hours. Porous media simulations require only about 1% or less of the runtime of a comparable CFD
simulation. Even compared to subchannel codes, porous media codes are still less expensive [4].

2. Mesh generation for touching solid bodies is difficult, since the meshes at pebble contact points must be made
to share nodes, which often results in highly distorted meshes that can impact convergence [5]. The ”near miss”
method, where the pebble diameter is set to 99.5% of its actual value to avoid the difficulty of mesh contact,
is often used to avoid this issue [5–10]; this method is shown in Fig. 1. For a porous media simulation, the
mesh can be a simple structured mesh, such as the GeneratedMesh feature in the Multiphysics Object-Oriented
Simulation Environment (MOOSE).

3. Even if computational cost were not an issue, the precise knowledge of the physical geometry of the structure
likely cannot be known, and some type of averaging process has to be performed anyways, or else effort spent
on making a guess for the solid geometry and running repeated calculations to determine sensitivity of results
to assumed pebble distribution.

Figure 1: Computational mesh for fluid flow analysis of a subsection of a BCC lattice [7].
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With porous media models, all quantities, such as velocities, densities, and temperatures, are volume-averaged,
which eliminates the need to explicitly mesh the solid (and, technically, the fluid). Without a porous media model,
roughly 1011 elements would be needed for the core. In addition, High Temperature Gas Reactor (HTGR) cores are
often surrounded by large graphite reflectors that are not fully solid, but contain channels for core bypass flows that
further extend the size of the mesh. Porous media models have a huge advantage in terms of mesh simplicity, which
directly translates to a runtime reduction. An example of the difference between a porous and a non-porous mesh is
shown in Fig. 2.

(a) Non-porous media model (b) Porous media model

Figure 2: Difference between a mesh needed for (a) generic CFD calculations (no boundary layer mesh is shown) and
(b) a porous media model.

Despite these substantial advantages of porous media models, porous media codes are not without their disadvan-
tages. Porous media models cannot:

• Provide the exact fuel temperature profiles in the pebbles, since only a volume-averaged solid surface tempera-
ture is known. 1-D conduction solutions can be performed in the pebbles, but this only simulates “representative”
pebbles. Peak fuel temperatures are roughly 100 °C higher than the surrounding gas temperatures [2] or molten
salt temperatures [11]. This makes analysis of reactivity effects that are strongly dependent on fuel temperature
distribution, such as the Doppler effect, challenging. Surface fuel temperature profiles shown in [7] are very
complex, and reveal that temperatures are highest at stagnation points and in the recirculation flows that form
behind the pebbles [8], and lowest at contact points aligned with the flow direction. The surface temperature
on a single pebble varies by about 100-200°C for an ordered packing in flibe at nominal conditions, with the
majority of the surface varying between 50-100°C [10].

• Reveal the locations of stagnation points. Stagnation points usually occur at or near the pebble contact points
that are not aligned with the flow direction due to vortex formation and back flow [7, 12, 13]. Pressure is at a
maximum at these stagnation points [7]. Fig. 3 shows the velocity vectors and fluid temperature for a BCC
lattice. As can be seen, velocities are very low at the tops and bottoms of pebbles. Because convective cooling
is directly dependent on fluid velocity, the lowest cooling occurs at the stagnation points, which may prove
important for assessing fuel integrity and fluid phase change. The highest-temperature regions directly correlate
to the lowest Nusselt numbers. Nusselt numbers typically range between 10 and 150 over the surface of a single
sphere [14] and fuel temperatures vary by about 20 °C [2]. Porous media models cannot fully capture any spatial
variation over pebble surfaces or interiors.
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(a) Velocity vectors (b) Fluid temperature

Figure 3: (a) Velocity vectors and (b) fluid temperature for a BCC lattice [7].

• Show velocity variation within the pores. The velocity in the center of the pores is about an order of magnitude
larger than that on the edges as seen in Fig. 3(a), which like stagnation points, also has important consequences
for heat transfer and drag [13].

Despite these disadvantages, it is generally agreed that porous media codes can reasonably capture global thermal-
hydraulic characteristics like average velocities, temperatures, and pressure drops [2]. High-fidelity multiphysics sim-
ulations of pebble bed reactors usually allocate most of the computational cost to the neutronics solution, while porous
media thermal-hydraulics is an acceptable simplification for the fluid flow and heat transfer provided the neutron mi-
gration length is larger than the porous media averaging length [15, 16]. Fig. 4 shows fluid velocities obtained with
(a) non-porous and (b) porous media CFD. Porous media simulations represent homogenization of the flow results
- multiplying the non-porous velocities by the porosity of about 0.38 according to Eq. (2.31) gives roughly the ve-
locity magnitudes shown in the porous media solution. However, porous media models will not perfectly correspond
to averaged CFD results - porous media models generally overpredict pressure drop relative to CFD models [2, 7].
Provided appropriate error bounds are assumed for the porous media results, porous media codes provide approximate
spatially-averaged solutions.

Figure 4: Velocity simulation results for a regular lattice for (a) non-porous and (b) porous CFD [2]. The porous media
results are constant over the cross-section because constant porosity was used in the model.
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Some of the limitations of porous media models could be partially overcome by coupling Pronghorn with a CFD
code, which would use bulk simulation results from Pronghorn to evaluate more accurate Nusselt numbers and drag
coefficients accounting for the velocity, temperature, and pressure distributions discussed above. However, care must
be taken here, because the pebble packing arrangement in a bed is random, and CFD simulations performed for BCC
and Face Centered Cubic (FCC) lattices actually show substantial variation from one another [8,17]. Due to the tighter
packing, enhanced turbulent mixing, and lack of larger pore spaces to support heat-transport-degrading vortices, FCC
lattices have higher velocities (about 35% higher peak velocities) and better convective cooling (about 50% higher
Nusselt number) than BCC lattices, which may be nonconservative in predicting fuel temperatures [10, 14]. More
tortuous fluid paths in FCC lattices do result in higher pressure drops, which is conservative [10]. However, both
BCC and FCC lattices differ considerably from randomly-generated beds. Pressure drops for a randomly-generated
gas-cooled bed were 5.5 times larger than that in a BCC lattice of nearly equal porosity, while velocities were two
times larger [17]. So, even CFD simulations cannot escape the need to generate many random meshes and evaluate by
ensemble averaging the sensitivity of flow results to the geometry.

The majority of porous media research is found in the chemical, geological, and mechanical engineering fields.
Example application areas include analysis of groundwater flow, heat transfer in tube-in-shell heat exchanges, and
chemical reactions in complicated composite materials. In these fields, there are several common assumptions that are
not valid when applied to nuclear reactors:

• The solid and fluid are in thermal equilibrium (at the same temperature). This is the default assumption in many
codes such as FLUENT, and has been used incorrectly for the analysis of nuclear reactors in the past [7]. This
assumption does not capture convective heat transfer between the solid and fluid.

• The flow is creeping, such that inertial and time dependent effects are neglected. This is an acceptable approxi-
mation for some experiments such as the SANA experiments [18], but is in general not valid.

• The porosity is constant in space. For geological applications, the domain is often so large and without a
bounding, impermeable wall, that porosity can be treated as constant. Porosity variation near walls, discussed
in Section 8, is essential to capturing flow channeling near reflector surfaces.

• The bed consists of fairly small particles on the order of 1 mm (except for the Pebble Bed Water Reactor (PBWR)
design, which uses pebbles on the order of 2-10 mm housed in assemblies [9]). This can have a substantial
impact on the fluid thermal dispersion (Section 12) and convective heat transfer (Section 10) for larger pebbles
such as the 6 cm diameter fuel pebbles proposed for HTGR designs [19]. For example, the number and size of
vortices in the pores generally increases with pore size [13].

These differences are important to keep in mind when borrowing models from these fields. These four assumptions
cannot be made in Pronghorn, and for this reason the governing equations used are more complex than those found
in many chemical and geological engineering papers. However, advantages in Pronghorn relative to the chemical,
geological, and mechanical engineering fields include:

• All particles in the porous media are spherical. This eliminates difficulties associated with finding a repre-
sentative particle diameter for correlations originally developed for beds of packed spheres. Throughout this
document, it is assumed that the particles are spheres, and geometric shape factors appearing in correlations are
neglected for simplicity.

• The particles are not themselves porous; no fluid flow occurs through the solid. Like the assumption of perfectly
spherical particles, this also simplifies correlations.

Pronghorn solves the porous media equivalents of the Euler equations (conservation of mass, momentum, and en-
ergy in the fluid) and the solid conservation of energy equation. The discussion up to this point has focused exclusively
on pebble bed systems. However, the porous media equations are valid for any mixture of solid and fluid provided the
appropriate closure relationships describing interactions between the phases are used. Pronghorn is currently only ap-
plicable to pebble bed reactors. But, with the inclusion of anisotropic drag and effective thermal conductivity tensors,
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Pronghorn may be used for plate and prismatic fuel systems. Porous medial models have been used for non-pebble
bed type reactors in many cases [4]. Future work will involve this extension.

The development of Pronghorn was motivated by the fact that High Temperature Reactor (HTR)s are subject to
different modeling limitations than Light Water Reactor (LWR)s, such as:

• While coolant in LWRs may experience a temperature increase of about 20-50°C across the core, HTRs op-
erate with a several hundred °C increase, making incompressibility and Boussinesq assumptions invalid [20].
Pronghorn does not assume incompressibility.

• Many HTRs contain significant quantities of graphite, a high heat capacity material that greatly extends the time
duration of equivalent transients in LWRs. The time to reach peak temperature in an HTR accident can be on
the order of several days [21]. In addition, the renewed interest in salts, with higher heat capacities than helium,
further increases the effective heat capacity of the core. The longer the transient, the more desirable a fully
implicit solve that eliminates or reduces stability-related time step constraints. MOOSE contains both explicit
and implicit solution methods.

• Pebble bed HTRs are often designed with sloping entrance and exit sections that may require unstructured
meshes. LWR geometries, which always consist of parallel tubes in a cylindrical core, generally can use struc-
tured meshes. Pronghorn uses the Finite Element Method (FEM), which permits use of 3-D unstructured grids.

• HTRs are designed with a larger variety of coolants, such as helium, and fluoride salts. This requires a generic
Equation of State (EOS) capability. Because Pronghorn uses the EOS from RELAP-7 or any custom user-
provided EOS, Pronghorn can easily be used to model any type of fluid.

However, Pronghorn is also applicable to water-cooled pebble bed reactors such as the PBWR [9] provided the
appropriate fluid properties are used and the constitutive laws hold for the range of dimensionless numbers expected.
In this section, the governing equations will be presented by first deriving the non-porous media form of the governing
equations. In order to derive the porous media versions of these equations, Section 2.2 introduces the spatial averaging
theorems used. A summary of the equation set is given in Section 2.11.

2.1 Preliminary Considerations

The derivation of the conservation equations relies on the continuum approximation. As long as the flow length scale
is much larger than the length scale on which atoms/molecules in the fluid exchange momentum, the fluid can be
treated as a continuum. A fluid particle is defined as having a size intermediate to the flow and momentum exchange
length scales, and consists of a group of atoms/molecules.

The validity of the continuum approximation can be quantified with the Knudsen number:

Kn =
λm f p

L
(2.1)

where λm f p is the mean free path on which particles exchange momentum and L is the flow length scale. Using
a highway as an example, small Kn signifies that heavy traffic results in one car influencing the behavior or
another, while large Kn signifies a nearly empty highway where cars behave almost independently. For large
Kn, statistical mechanics should be used to analyze fluid flow. Large Knudsen numbers are most likely to
occur in gases; for gases at atmospheric pressure, λm f p ≈ 10−8 m. For reactor conditions, the mean free path
will be even smaller due to operation at higher pressure.

This separation of scale is necessary in order to classify the types of forces experienced by a fluid particle and how
those forces scale with the volume and surface area of the particle. There are two general types of forces experienced
by a fluid particle:
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1. External forces, or body forces, act on all molecules in the body. It is assumed that these forces, such as gravity,
vary slowly over a fluid particle such that the force is proportional to the particle volume.

2. Internal forces, or surface forces, are exerted on a fluid particle by the surrounding fluid. It is assumed that these
forces, such as shear stresses, are proportional to the surface area of the particle because the fluid particle is
large relative to the length scale on which the atoms/molecules of the flow exchange momentum. This limits the
momentum exchange to a thin surface layer.

The derivation of the governing equations for conservation of mass, momentum, and energy from first principles
leads to the inclusion of terms that are often dropped in reactor applications because certain physics are insignificant.
The ability to neglect terms in the governing equations depends on the magnitudes of certain parameters that can
be obtained by non-dimensionalizing the governing equations. Because Pronghorn is intended to be a general code
applicable to any reactor, it is imperative to ensure that dropping terms from the equations is valid for all classes
of reactors (with single-phase coolant). It will be noted in this manual when terms are being neglected, and then in
Section 2.10.5, representative values will be given for a variety of reactors to justify these simplifications.

Pronghorn can solve the governing equations derived in this section with one, two, or three dimensions. Reduced-
dimension equations are theoretically obtained by averaging the general 3-D equation over one or more dimensions.
This averaging process gives rise to additional terms that reflect averaged flow effects of the collapsed dimension(s)
that must be provided by closure relationships [22] (chapter 1). While solving turbulence models in lower dimensions
may justify including these terms, additional closure terms are neglected in all Pronghorn equations.

2.2 The “Math” Behind the Porous Media Equations

This section presents mathematical properties of averages that are required for the porous media equation derivation.
The porous media equations are obtained by averaging the governing equations over a representative volume that
contains both solid and liquid so that instead of solving for actual fluid and solid fields, we solve for the averaged
fields. While solving for an averaged quantity initially seems easier than solving for the true physical quantity, the
more you average the equations, the more supplementary information is required from experiments to regain lost
information. This averaging approach is nearly equivalent to the temporal averaging of turbulent fluctuations that
yield the Reynolds Averaged Navier Stokes (RANS) equations, except that here the averaging is done in space. This
section presents theorems for relating a field Φ to its spatial average 〈Φ〉. A k subscript is used to denote that a field Φ

pertains to the k phase.

When a differential equation is averaged, the equation becomes an equation for the average of the original equation
variable. For this average value to be a meaningful solution variable, it should not be dependent on the size of the
volume that was used to compute it. For very small volumes, 〈Φk〉 may be zero if there happens to be no phase k in
that volume. As we increase the averaging volume size, 〈Φk〉 will display statistical variation as the fraction of the
phases in the volume varies. For a sufficiently large averaging volume, these variations will tend towards zero and
the average becomes independent of the size of the averaging volume (provided the medium is fairly homogeneous).
This requirement is no different than the requirement we flip a coin enough times to obtain a meaningful estimate
of the fraction of the tosses that yield a heads-up coin. This independence of the average variable on the size of
the averaging volume requires that the averaging volume be much larger than the volume on which the microscopic
solution varies appreciably. This requirement can also be phrased in terms of length scales - if L is the length scale
characterizing the averaging volume and l the length scale characterizing the scale on which the microscopic solution
changes appreciably (often taken to be proportional to the pore diameter), then we require:

l� L (2.2)

The requirement that an average be independent of the volume over which it is averaged is equivalent to the
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requirement that the average of the average simply equals the average:

〈〈Φ〉〉 ≡ 〈Φ〉 (2.3)

Eq. (2.3) also implies that 〈〈Φk〉k〉k = 〈Φk〉k.

Taking the average of the Taylor series expansion of 〈Φ〉 about the centroid of the averaging volume can be
used to estimate the order of accuracy of the assumption made in Eq. (2.3). Denoting the centroid with a
subscript “c”, this Taylor series expansion is:

〈Φ〉= 〈Φ〉c + xi

(
∂〈Φ〉
∂xi

)
c
+

xix j

2

(
∂2〈Φ〉
∂xi∂x j

)
c

+O(xix jxk) (2.4)

Taking the average gives:

〈〈Φ〉〉= 〈Φ〉c +
���

���
���

(
∂〈Φ〉
∂xi

)
c

1
V–

∫
V–

dV– xi +
1
2

(
∂2〈Φ〉
∂xi∂x j

)
c︸ ︷︷ ︸

O(1/L2)

1
V–

∫
V–

dV– xix j︸ ︷︷ ︸
O(l2)

+O(xix jxk) (2.5)

where all terms that have been subscripted with “c” are independent of the averaging volume, and hence can
be brought outside the integrals. The second term on the right-hand-side (RHS) is zero because the coordinate
xi is measured from the centroid of the averaging volume, so the integration represents an integral of an odd
function. So, Eq. (2.3) is valid provided l2/L2� 1, which is the same requirement in Eq. (2.2).

There is no inherent reason why volume integration, as opposed to area integration, would be preferred for the
porous media derivation. Volume and area averages will be equivalent with second-order accuracy provided l � L.
This result is most commonly used to equate porosity computed as a volume average and as an area average.

Express an area average as Φ̄:

Φ̄≡ 1
S

∫
S

ΦdS (2.6)

where S is a surface. Then, a volume average can be defined in terms of the area average by integrating all of
the area averages taken perpendicular to the integration direction over the length l of the averaging volume:

〈Φ〉= 1
l

∫ +l/2

−l/2
Φ̄dx (2.7)

Expand the area average in a Taylor series about the centroid; because the integration is one-dimensional in
space, suffix notation is not needed:

Φ̄ = Φ̄c + x

(
∂Φ̄

∂x

)
c

+
x2

2

(
∂2Φ̄

∂x2

)
c

+
x3

6

(
∂2Φ̄

∂x3

)
c

+O(x4) (2.8)

Substituting this Taylor series into Eq. (2.7), the odd-order terms cancel because they represent integrations of
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an odd function:

〈Φ〉= 1
l

∫ +l/2

−l/2
dx

Φ̄c +

�
�
�
��

x

(
∂Φ̄

∂x

)
c

+
x2

2

(
∂2Φ̄

∂x2

)
c

+
�
��

�
��x3

6

(
∂2Φ̄

∂x3

)
c

+O(x4)


= Φ̄c +

l2

24

(
∂2Φ̄

∂x2
i

)
c︸ ︷︷ ︸

O(1/L2)

+O(l4)
(2.9)

So, area and volume averaging are equivalent provided Eq. (2.2) is valid.

2.2.1 Properties of Averages

In order to characterize the distribution of solid and fluid, a phase function fk is defined to be unity in phase k and zero
elsewhere:

fk =

{
1 in phase k
0 not in phase k

(2.10)

〈Φk〉 is defined to be the average of Φ in the k-phase over the entire volume:

〈Φk〉 ≡
1
V–

∫
V–

Φ( #»x , t) fk(
#»x , t)dV– (2.11)

〈Φk〉 is often referred to as the phase, or extrinsic, average. Likewise, averages can be taken over the volume of
just phase k:

〈Φk〉k ≡
1

V– k

∫
V– k

dV– Φ( #»x , t) fk(
#»x , t) (2.12)

〈Φk〉k is often referred to as the intrinsic phase average. Consider a domain consisting of solid and fluid. The
density of the entire domain is the sum of the fluid density multiplied by the fluid volume and the solid density
multiplied by the solid volume. In this case, 〈Φs〉 represents the solid density averaged over the entire volume (the
density of the volume if the fluid were void), while 〈Φs〉s represents the average solid density (since the solid density
is not necessarily constant in the solid volume). Both 〈Φk〉 and 〈Φk〉k are defined over all space, and are not restricted
to existing in one or the other phase. Combining Eq. (2.12) and (2.11):

〈Φk〉= εk〈Φk〉k (2.13)

where a porosity for phase k is defined as the fraction of the total volume that is made up by phase k:

εk ≡
V– k

V–

=
1
V–

∫
V–

fk(
#»x , t)dV–

(2.14)
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In Pronghorn, the convention is that ε f → ε represents the porosity of the fluid, while εs→ 1− ε is the porosity of
the solid. In general, porosity is a function of space; models for porosity are discussed in Section 8. Isolated voids are
not considered, so porosity is here strictly defined to refer to the ratio of connected void volume to total volume.

ε≡ (connected) void volume
total volume

(2.15)

Taking averages of these averages just introduced gives two important identities for later use:

〈〈Φk〉k〉= 〈Φk〉k (2.16)

〈〈Φk〉〉k = 〈Φk〉 (2.17)

Eq. (2.16) is derived by swapping the order of integration:

〈〈Φk〉k〉=
1
V–

∫
V–
〈Φk〉kdV–

=
1
V–

∫
V–

(
1

V– k

∫
V– k

dV– Φ( #»x , t) fk(
#»x , t)

)
dV–

=
1

V– k

∫
V– k

(
1
V–

∫
V–

dV– Φ( #»x , t) fk(
#»x , t)

)
dV–

=
1

V– k

∫
V– k

〈Φk〉dV–

= 〈Φk〉k

(2.18)

Likewise, the same procedure of swapping the order of integration can be used to give Eq. (2.17).

The porous media equations are derived by taking the spatial average of the governing equations. The goal of the
derivation is to convert the solution variable from the microscopic variable to an averaged version of the same variable.
The governing equation contains gradients, and hence identities to relate the averages of gradients with the gradients
of averages is required. This derivation requires applying the general transport theorem in Eq. (2.44) to a material
volume [23]:

∫
V–

∇ΦkdV– = ∇

∫
V–

ΦkdV– +
∫

Si

Φk
#»n kdS (2.19)

where Si is the phase interface portion of the surface enclosing V–. Then, dividing each term by V–, Eq. (2.19) gives
Eq. (2.20), where equality between the average of a gradient and the gradient of an average is offset by the integral of
the solution over the phase interfacial area [24]. Eq. (2.20) shows two equivalent forms. Φk can be a scalar, vector, or
a second-order tensor, and extension to cases where Φk is a vector simply change the gradients to divergences.

〈∇Φk〉= ∇〈Φk〉+
1
V–

∫
Si

Φk
#»n kdS (2.20a)

= εk∇〈Φk〉k +
1
V–

∫
Si

Φ̂k
#»n kdS (2.20b)
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To derive Eq. (2.19), consider a point in the porous media located on a curve with an arc length s. At each
point on this curve, we can define an averaging volume V–(s) and the surface bounding that volume S(s). By
assuming that there is a continuous and invertible mapping between time t and arc length, t in Eq. (2.44) can
be replaced by s:

d
ds

∫
V– (s)

ΦdV– =
�
�
�
�∫

V– (s)

∂Φ

∂s
dV– +

∫
S(s)

Φ
d #»x
ds
· #»n dS (2.21)

where the velocity of the surface
#»
V = ∂

#»x /∂t also substituted arc length for time. Φ only depends on arc
length implicitly through its dependence on the spatial coordinate, so the first term on the RHS is zero. Due
to the no-penetration condition, which requires that the normal component of velocity at a boundary must be
zero, the nonzero component of ∂

#»x /∂s is perpendicular to the unit normal vector at the solid-fluid interfaces
(giving a zero dot product). Hence, the area S(s) that appears above can be simplified to the total area minus
any solid-fluid interface area Si(s). For simplicity, this non-interface area is denoted as Se(s)≡ S(s)−Si(s):

d
ds

∫
V– (s)

ΦdV– =
∫

Se(s)
Φ

d #»x
ds
· #»n dS (2.22)

Finally, each point along the curve is described by a position vector #»x 0(s) relative to some arbitrary origin. Let
the vector #»p (s) represent the location of the points on the enclosing surface relative to a point on the curve.
The vector representing points on the surface is then the sum of the vector to a point on the curve plus the
vector to the point on the surface:

#»x (s) = #»x 0(s)+ #»p (s) (2.23)

By the chain rule, the directional derivative with respect to the arc length is given as:

d
ds

=
d

dxi

dxi

ds

= ∇ · d
#»x

ds

(2.24)

Using Eq. (2.23) and (2.24) in the transport theorem gives:

d #»x 0

ds
·

(
∇

∫
V– (s)

ΦdV–−
∫

Se(s)
Φ

#»n dS

)
=

∫
Se(s)

Φ
d #»p
ds
· #»n dS (2.25)

where d #»x 0/ds was removed from the integration because it is independent of the area integration variable for
a fixed value of s. As long as V–(s) is translated along the curve without rotation, then any differential change in
#»p is parallel to the surface, and hence the RHS term above is zero. Then, because the vector #»x 0 was arbitrary,
the expression must hold for any vector #»x 0, which means that the remaining multiplied term must be zero:

∇

∫
V– (s)

ΦdV–−
∫

Se(s)
Φ

#»n dS = 0 (2.26)

By the divergence theorem, a volume integral can be related to surface integrals:∫
V– (s)

∇ΦdV– =
∫

Se(s)
Φ

#»n dS+
∫

Si(s)
Φ

#»n dS (2.27)

Substituting Eq. (2.27) into Eq. (2.26) for the surface integral over the non-phase interface Se(s) gives Eq.
(2.20)a.

Define a phase variable to be the sum of its average and a fluctuating component Φ̂k; this is the same technique
used in the derivation of the RANS equations, except that the porous media equations are averaged in space, while the
RANS equations are averaged in time. By definition, the spatial average of the fluctuating component is zero.
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Φk fk = 〈Φk〉+ Φ̂k fk (2.28a)

= 〈Φk〉k + Φ̂k fk (2.28b)

The presence of the phase function fk indicates that Φk and Φ̂k both are zero in the non-k phases, which is why
Eq. (2.28)b is also valid. Taking the average of the advective operator will require taking the average of a product,
giving a term of the form 〈 #»

V kΦk〉. By Eq. (2.14), an average over the entire volume can be related to an average over
the phase volume, giving Eq. (2.29)a. Substituting Eq. (2.28) into Eq. (2.29)a for both

#»
V k and Φk gives Eq. (2.29)b

and (2.29)c, where Eq. (2.29)c reuses Eq. (2.14).

〈 #»
V kΦk〉= εk〈

#»
V kΦk〉k (2.29a)

= εk

(
〈 #»
V k〉k〈Φk〉k + 〈

#̂»
V kΦ̂k〉k

)
(2.29b)

= εk〈
#»
V k〉k〈Φk〉k + 〈

#̂»
V kΦ̂k〉 (2.29c)

For some advective terms, an average of three terms will need to be performed. In this case, Eq. (2.29) becomes:

〈akbkck〉= εk〈akbkck〉 f

= 〈âkb̂kĉk〉+ 〈âkb̂k〉〈ck〉k + 〈âkĉk〉〈bk〉k + 〈ĉkb̂k〉〈ak〉k + εk〈ak〉k〈bk〉k〈ck〉k
(2.30)

According to Eq. (2.29)a, two different velocities can be defined for a porous media. #»v represents the fluid velocity
averaged over the entire medium (over solid and fluid). This velocity is often referred to as the Darcy velocity, the
extrinsic phase velocity, or the superficial velocity.

#»
V represents the fluid velocity averaged over only the fluid, and is

referred to as the intrinsic phase velocity. Note that neither of these velocities are the actual local velocity of the fluid.
These two representations of velocity are related to each other by the Dupuit-Forchiemer relationship, which derives
from Eq. (2.29)a:

#»v = ε
#»
V (2.31)

where the ε f → ε notation has been used. Eq. (2.31) is used extensively in this manual, and is often referred to in
the literature as the Dupuit-Forchheimer relationship.

Enough tools now exist to derive Eq. (2.20)b. Beginning from Eq. (2.14), use Eq. (2.28)a applied to gradients.
Then, use Eq. (2.16) to rewrite 〈〈∇Φk〉〉k and Eq. (2.17) to rewrite 〈〈∇Φ̂k〉〉k. Eq. (2.14) is then used to
transform the last term.

〈∇Φk〉= εk〈∇Φk〉k

= εk

〈
〈∇Φk〉+ 〈∇Φ̂k〉

〉k

= εk

(
〈∇〈Φk〉k〉+ 〈∇Φ̂k〉k

)
= εk〈∇〈Φk〉k〉+ 〈∇Φ̂k〉

(2.32)

Finally, apply Eq. (2.20)a to both terms on the RHS. Because there are no jump discontinuities in 〈Φk〉k across
the phase interface, the integral that arises due to 〈Φk〉k is zero. Then, because the mean of any quantity related
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to the fluctuation is zero, Eq. (2.20)b results.

〈∇Φk〉= εk

[
∇〈〈Φk〉k〉+���

���
�1

V–

∫
Si

〈Φk〉k #»n dS
]
+�
��∇〈Φ̂k〉 +

1
V–

∫
Si

Φ̂k
#»n dS (2.33)

Adding Eqs. (2.20)a and (2.20)b and using Eq. (2.28) gives:

1
V–

∫
Si

〈Φk〉k #»n kdS =−〈Φk〉k∇εk (2.34)

The integrals that appear in the two forms in Eq. (2.20) are specified by various constitutive relationships derived
experimentally or semi-empirically for porous media. There is not general agreement on which form of Eq. (2.20)
should be applied for each gradient and divergence that appears in the governing equations. So, great care must
be taken when using correlations from the literature, since the author must specify whether Eq. (2.20)a or (2.20)b
defines the constitutive relationship definition. Provided the author specifies whether the original or modified gradient
averaging theorem is used, Eq. (2.34) can then be used to relate the author’s correlation form to the other averaging
theorem form. Gray shows this relationship for the mass transfer tortuosity, which is defined according to Eq. (2.20)b
in Gray’s work but according to Eq. (2.20)a in Slattery and Whitaker’s works [25].

Finally, in order to express averages of time derivatives in terms of time derivatives of averages, divide each term
in the general transport theorem in Eq. (2.44) by V– and use the definitions of averages presented earlier [23]:

d
dt

1
V–

∫
V–

ΦkdV– =
1
V–

∫
V–

∂Φk

∂t
dV– +

1
V–

∫
Si

Φk
#»wk · #»n kdS (2.35a)

d〈Φk〉
dt

=

〈
∂Φk

∂t

〉
+

1
V–

∫
Si

Φk
#»wk · #»n kdS (2.35b)

where #»wk is the velocity of the phase interface. Now that all of the mathematical tools for deriving the porous
media version of an equation have been derived, Section 2.2.2 derives the porous media version of a generic transport
equation.

2.2.2 A Generic Transport Equation

Consider a generic transport equation for phase k:

∂Φ

∂t
+∇ · (Φ #»

V ) = ∇ · τ−∇P+S (2.36)

where Φ is the conserved variable,
#»
V the velocity, τ a generic deviatoric tensor, P a general normal tensor, and S a

source. The porous media version Eq. (2.36) is derived by first taking the phase average of each term by multiplying
by fk and integrating over the entire averaging volume:

〈
∂Φk

∂t

〉
+ 〈∇ · (Φk

#»
V k)〉= 〈∇ · τk〉−〈∇Pk〉+ 〈Sk〉 (2.37)

Transform the time derivative using Eq. (2.35)b:

〈
∂Φk

∂t

〉
→ ∂〈Φk〉

∂t
− 1

V–

∫
Si

Φk
#»wk · #»n kdS (2.38)
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Then, use Eq. (2.20) to transform the advective term, normal stress, and deviatoric stress terms. Two equivalent
forms are given for each, and later discussion will select the most appropriate form for each.

〈∇ · (Φk
#»
V k)〉= ∇ · 〈Φk

#»
V k〉+

1
V–

∫
Si

Φk
#»
V k

#»n kdS (2.39a)

= εk∇ · 〈Φk
#»
V k〉k +

1
V–

∫
Si

Φ̂k
#̂»
V k

#»n kdS (2.39b)

〈∇Pk〉= ∇〈Pk〉+
1
V–

∫
Si

Pk
#»n kdS (2.40a)

= εk∇〈Pk〉k +
1
V–

∫
Si

P̂k
#»n kdS (2.40b)

〈∇ · τk〉= ∇ · 〈τk〉+
1
V–

∫
Si

τk
#»n kdS (2.41a)

= εk∇ · 〈τk〉k +
1
V–

∫
Si

τ̂k
#»n kdS (2.41b)

Finally, the source term is transformed using Eq. (2.29)a:

〈S f 〉 → ε f 〈S f 〉 f (2.42)

Combining Eqs. (2.37)-(2.42) provides the generic porous media transport equation. The appropriate version in
Eqs. (2.39)-(2.41) must be selected. It is assumed that the fluid is single phase such that no phase change occurs.
Pronghorn is therefore incapable of explicitly modeling phase change in liquid-cooled systems and several important
transients, such as the pressure increase following water ingress [26]. In the case of no phase change, the velocity of
the phase interface, #»w , will simply equal the velocity at the interface,

#»
V . So, for the advective term, the first form

in Eq. (2.39) is selected because
#»
V k =

#»wk and the integral in Eq. (2.39) cancels the integral in Eq. (2.38). The
next sections in this manual derive the conservation of mass, momentum, and energy equations for the fluid and solid
phases for a porous media, beginning from the equations for a non-porous medium.

2.3 The Continuity Equation

Because mass is conserved, the rate of change of the mass within an arbitrary volume V–(t) consisting of a system must
be zero, because a system is defined such that its boundaries are closed to mass flow.

d
dt

∫
V– (t)

ρdV– = 0 (2.43)

where d(.)/dt represents the material derivative of (.), defined in Eq. (18.1). Taking the time derivative of an
integral whose bounds depend on time requires the use of the general transport theorem:

d
dt

∫
V– (t)

ρdV– =
∫
V– (t)

∂ρ

∂t
dV– +

∫
S(t)

ρ
#»w · #»n dS (2.44)
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where #»w is the velocity of the surface S, which in general does not need to equal the fluid velocity. If the general
transport theorem is applied to a material volume that is enclosed by a material surface, then the velocity of that
surface is simply equal to the fluid velocity. For application to material volumes, the general transport theorem is often
referred to as the Reynolds Transport Theorem. By Eq. (2.44) applied to a material volume, the system perspective is
converted to a control volume perspective:

∫
V– (t)

∂ρ

∂t
dV– +

∮
S(t)

ρ
#»
V · #»n dS = 0 (2.45)

Throughout this manual, the divergence theorem will frequently be used to transform a surface integral into a
volume integral. Inherent in this action is the assumption that the integrand of the surface integral is differentiable,
which is not always true. For shock waves or discontinuities near surfaces, the fluxes that appear in surface integrals
are not differentiable, and the divergence theorem cannot be used. In addition, if convective fluxes are not kept as
surface terms, numerical errors in their volumetric representation will pollute the solution and cause violations of basic
conservation of mass, momentum, and energy [22] (chapter 1). Despite this possibility, it is assumed in Pronghorn
that all fluxes are continuous such that the divergence theorem can be used to convert a surface integral into a volume
integral:

∫
V– (t)

∂ρ

∂t
dV– +

∫
V– (t)

∇ · (ρ #»
V )dV– = 0 (2.46)

Then, because the selection of V–(t) is arbitrary, the integrand must be zero, giving the conservation of mass
equation, often referred to as the “continuity” equation:

∂ρ

∂t
+∇ · (ρ #»

V ) = 0 (2.47)

Like all of the conservation equations to be derived in this manual, there are several mathematically equivalent
forms. For instance, Eq. (2.47) can also be written as:

∂ρ

∂t
+

#»
V ·∇ρ+ρ∇ · #»

V = 0 (2.48a)

dρ

dt
+ρ∇ · #»

V = 0 (2.48b)

All of these forms are not necessarily equivalent once discretized with a numerical scheme [22] (chapter 1).
When possible, all equations in Pronghorn will be solved in conservative form because it is then possible to
exactly conserve mass, momentum, and energy. The conservative form of the continuity equation is given in
Eq. (2.47), while the two above forms are in non-conservative, or “quasi-linear” form.

The porous media version of the continuity equation is derived beginning from Eq. (2.37) by replacing 〈Φk〉k by
〈ρ f 〉 f . The time derivative is transformed with Eq. (2.38) and the advective term is transformed with Eq. (2.39)b. The
deviatoric and normal stress terms are zero for the continuity equation. Because single phase fluid is assumed, there
are no mass sources. The porous media continuity equation becomes:

∂〈ρ f 〉
∂t

+∇ · 〈ρ f
#»
V f 〉= 0 (2.49a)

∂(ερ f )

∂t
+∇ · (ερ f

#»
V ) = 0 (2.49b)
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In Pronghorn’s notation, ρ f represents the intrinsic phase average of the fluid density, and
#»
V the intrinsic phase

average of the fluid velocity.

2.4 The Momentum Equation

The momentum equation is derived in a similar manner as the continuity equation. Throughout the derivation of
the momentum equation, suffix notation is used, which is described in Section 18.3 for those unfamiliar with the
notation. The conservation of momentum equation is derived beginning from a general treatment of a balance of
linear momentum for an arbitrary continuum. Consider a general balance of momentum:

mass · acceleration = body force+ surface force (2.50)

Based on the continuum approximation, the mass-acceleration and body force terms scale as L3, while the surface
force scales as L2. Dividing Eq. (2.50) through by L2, and then taking the limit as L→ 0 shows that at a point, surface
forces are in equilibrium:

lim
L→0

1
L2

∮
S(t)

#»
f ( #»n )dS = 0 (2.51)

where
#»
f is the stress vector. It is the change in the stress, not the absolute value, that produces forces. Applying

the principle of local stress equilibrium in Eq. (2.51) to a generic shape in a coordinate frame with mutually orthogonal
axes #»ei will show that the surface force acting on the fluid particle is a linear, homogeneous function of the component
of the unit normal #»n . The coefficient of proportionality, which is independent of the surface normal, is defined to be
the stress tensor σ:

fi(
#»n ) = fi(

#»e j)n j

= σi jn j
(2.52)

To illustrate Eq. (2.52), consider the tetrahedron in Fig. 5 with surface dS on the slanted face and unit normal
#»n on the slanted face.

Figure 5: Tetrahedron defined in Cartesian space.

A stress vector
#»
f produces a net force on this tetrahedron. The force acting on the slanted face must balance

the forces acting on the other three faces. The area of one of the non-slanted faces is given by projecting the
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slanted area onto the unit normal vector in that direction (i.e. the face perpendicular to the x-direction has area
nxdS).

#»
f ( #»n ) ·dS+

#»
f (− #»e 1) ·nxdS+

#»
f (− #»e 2) ·nydS+

#»
f (− #»e 3) ·nzdS = 0 (2.53)

By Newton’s third law,
#»
f ( #»n ) =− #»

f (− #»n ). Inserting this above and canceling dS gives:

#»
f ( #»n ) =

#»
f (x̂)e1 +

#»
f (ŷ)e2 +

#»
f (ẑ)e3 (2.54)

In other words, fi(
#»n ) = fi(

#»e j)n j. fi(
#»e j) is defined to be the i-component of the stress vector acting on a

surface of constant e j, though this definition is sometimes reversed in the literature.

A general balance of linear momentum for a system follows the form in Eq. (2.50):

d
dt

∫
V– (t)

ρVidV–︸ ︷︷ ︸
rate of change of momentum

=
∫
V– (t)

ρbidV–︸ ︷︷ ︸
body force

+
∮

S(t)
σi jn jdS︸ ︷︷ ︸

surface force

(2.55)

where
#»

b is the body force vector, which for systems in which gravity is the only body force is #»g , the gravity
vector. The surface integral is converted to a volume integral using the divergence theorem:

d
dt

∫
V– (t)

ρVidV– =
∫
V– (t)

ρbidV– +
∫
V– (t)

∂σi j

∂x j
dV– (2.56)

In order to differentiate under the integral sign, the integral on the left-hand-side (LHS) of Eq. (2.56) is split up
into a finite series of N elements:

d
dt

∫
V– (t)

ρVidV– → d
dt

N

∑
k=1

Vi(ρdV–) (2.57)

Because the mass of each element is constant by the assumption of conservation of mass in a system whose
boundaries are closed to mass flow, the time differentiation can be moved inside the summation to act only on the
velocity. Extending this argument to the continuous form in Eq. (2.56), and since Eq. (2.56) must apply for any
arbitrary volume:

ρ
dVi

dt
= ρbi +

∂σi j

∂x j
(2.58)

Eq. (2.58), often called the Cauchy equation, represents a balance of linear momentum for an arbitrary continuum,
where the only assumption is that mass is conserved in that continuum. In its most general form the stress tensor
contains nine unknowns (i = 1,2,3 and j = 1,2,3). The stress tensor is symmetric if the only moments on the fluid
particle are due to the resultant body and surface forces. It is rare that a fluid experience moments in excess of the
body and surface force moments, and symmetry of the stress tensor is assumed in virtually all fluids codes, reducing
nine unknowns to six.

The conditions under which the stress tensor is symmetric can be shown by applying conservation of angular
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momentum to a fluid particle:

d
dt

∫
V– (t)

( #»x ×ρ
#»
V )idV– =

∫
V– (t)

( #»x ×ρ
#»

b )idV– +
∮

S(t)
( #»x ×σklnl)idS (2.59)

The divergence theorem is used to convert the surface integral to a volume integral, and the cross product on
the LHS is expanded after assuming conservation of mass as in Eq. (2.57) such that the time integration only
acts of #»x × #»

V :

∫
V– (t)

(
d #»x
dt
× #»

V + #»x × d
#»
V

dt

)
i

ρdV– =
∫
V– (t)

( #»x ×ρ
#»

b )idV– +
∫
V– (t)

∂

∂xl
( #»x ×σkl)idV– (2.60)

The material derivative of #»x is expanded as follows, where ∂
#»x /∂t is zero due to the assumption of a fixed

reference frame:

d #»x
dt

=
�
��∂
#»x

∂t
+Vi

∂x j

∂xi

= Viδi j

= Vi

(2.61)

After inserting suffix notation for cross products according to Eq. (18.4), where εi jk is the permutation symbol
defined in Eq. (18.5), and recognizing that the selection of the volume is arbitrary:

ρεi jkx j
dVk

dt
= ρεi jkx jbk +

∂

∂xl
(εi jkx jσkl) (2.62)

The stress tensor is symmetric if the only moments in the material are due to the body and surface forces.
Because Eq. (2.58) represents a balance of linear momentum due to only body and surface forces, inserting
Eq. (2.58) into the LHS of Eq. (2.62) for ρdVk/dt satisfies this assumption:

εi jkx j

(
ρgk +

∂σkl

∂xl

)
= εi jkx jρbk + εi jk

(
x j

∂σkl

∂xl
+

∂x j

∂xl
σkl

)
(2.63)

Canceling terms, and recognizing that ∂x j
∂xl

= δ jl , Eq. (2.63) reduces to:

εi jkσ jk = 0 (2.64)

A useable form of the momentum equation is obtained by inserting a constitutive relation for σi j into Eq. (2.58).
To understand this constitutive relation, the kinematics of deformation must be understood. The motion of a material
element can be decomposed into three contributions - 1) translation, 2) rigid rotation, and 3) stretching. To understand
the form of each of these components, consider two points in a fluid that are sufficiently close such that their separation
#»

δr can be approximated by a one-term Taylor series:

Vi(
#»r +

#»

δr, t)−Vi(
#»r , t) =

d
dt
(δri)

≈ δr j
∂Vi

∂x j

(2.65)

The≈ symbol is replaced by = for the remainder of this discussion. Translation of a fluid particle is simply related
to the magnitude of the velocity. The other two components require more explanation. Any tensor can be written as
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the sum of symmetric and antisymmetric parts:

∂Vi

∂x j
=

1
2

(
∂Vi

∂x j
+

∂Vj

∂xi

)
︸ ︷︷ ︸

symmetric

+
1
2

(
∂Vi

∂x j
−

∂Vj

∂xi

)
︸ ︷︷ ︸

antisymmetric

(2.66)

where the symmetric and antisymmetric components are denoted as:

ei j =
1
2

(
∂Vi

∂x j
+

∂Vj

∂xi

)
(2.67)

ξi j =
1
2

(
∂Vi

∂x j
−

∂Vj

∂xi

)
(2.68)

Within the applicability of a one-term Taylor series, ξi j represents a rigid rotation of the fluid particle.

To understand ξi j, assume for the time being that ei j = 0. Combining Eqs. (2.65) and (2.68):

d
dt
(δri) = δr jξi j (2.69)

Taking the scalar product with δri gives:

δri
d
dt
(δri) = δriδr jξi j (2.70)

δriδr j is symmetric, while ξi j is antisymmetric. The product of any symmetric tensor with an asymmetric
tensor must be zero by Eq. (18.10), so the above becomes:

1
2

d
dt

(δri)
2 = 0 (2.71)

Hence, if only the antisymmetric component ξi j is present, because δr2
i is constant in time, δri is also constant

in time, and ξi j cannot represent stretching, since stretching would change δri. Because translation is accounted
for simply by the magnitude of the velocity Vi, ξi j therefore represents a rigid rotation.

To determine the angular velocity characterizing this rigid rotation, Eq. (2.68) can be rewritten as:

ξi j =−
1
2

εi jkωk (2.72)

where ω is the vorticity:

ω = ∇× #»
V (2.73)

Hence, the angular velocity of the rigid rotation is ω/2. Because the symmetric component must be associated with
stretching, the vorticity can also be interpreted as twice the instantaneous angular velocity of a material line element
that is originally aligned along one of the eigenvectors of ei j (in which case ei j does not contribute anything to the
angular velocity).
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Within the limits of the one-term Taylor series, ei j, which is often referred to as the “deformation tensor,” represents
stretching of the fluid particle along the principal axes (eigenvectors) of ei j. The rate of stretching along an eigenvector
is given by the eigenvalue corresponding to that eigenvector. When both ei j and ξi j are nonzero (a material line not
parallel to one of the principal axes of ei j), the fluid particle is both stretched and rotated.

To understand ei j, consider for the time being that ξi j = 0. Then, Eq. (2.65) reduces to:

d
dt
(δri) = δr jei j

= δr j
∂Vi

∂x j

(2.74)

Apply the chain rule to the velocity gradient term, and in the last step switch the dummy index i with k:

d
dt
(δri) = δr j

∂Vi

∂xk

∂xk

∂x j

= δr j
∂Vi

∂xi
δi j

(2.75)

where λe are the eigenvalues and δr j are the eigenvectors. Because ei j is a 3 × 3 symmetric, real, matrix,
there will be three unique, real, and mutually orthogonal eigenvectors. These eigenvectors are referred to as
the “principal axes,” and the eigenvalues as the “principal strain rates” of ei j. Because the relative velocity is
along δr j, ei j represents stretching with rate λe in three mutually orthogonal directions (along the eigenvectors
of ei j.

The diagonal components of ei j represent stretching, while the off-diagonal components represent rotation of
eigenvectors relative to another eigenvector (as opposed to ξi j representing instantaneous rotation).

In order to interpret the shear components of ei j, consider two material line elements
#»

l and #»m which at t = 0
are orthogonal. Applying Eq. (2.65) to these two line elements gives:

d
dt
(li) = l j

∂Vi

∂x j
(2.76)

d
dt
(mi) = m j

∂Vi

∂x j
(2.77)

Taking the scalar product of each equation with mi and li, respectively, and then adding these two equations
and reversing the chain rule:

d
dt
(limi) = mil j

∂Vi

∂x j
+ lim j

∂Vi

∂x j

= mil j
∂Vi

∂x j
+ l jmi

∂Vj

∂xi

= 2mil jei j

(2.78)

where the indices have been exchanged on the second term because the summation is symmetric with respect
to i and j and Eq. (2.67) has been used to insert ei j. Using Eq. (18.3), and defining

#»

l = ll̂ and #»m = mm̂, the
LHS expands to:

d
dt

(
#»

l · #»m
)
= lm

d
dt

(
l̂ · m̂

)
+
�
�
�(

l̂ · m̂
) d

dt
(lm) (2.79)
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where the fact that
#»

l and #»m are orthogonal at t = 0 cancels the second term. Combining Eqs. (2.79) and
(2.78), and using the properties of a dot product

#»

l · #»m = lmcos(θ):

d
dt

cos(θ) = 2m̂i l̂ jei j→
dθ

dt
=−2m̂i l̂ jei j (2.80)

where again, θ(t = 0) = π/2 has been used. Because
#»

l and #»m are assumed orthogonal, the only nonzero terms
occur for i 6= j. From this result, 2e12 is the magnitude of the angular velocity of

#»

l relative to #»m. Hence, the
off-diagonal components of ei j represent a rotation of eigenvector i relative to eigenvector j.

From Eq. (2.67), the trace of the deformation tensor is equal to the divergence of velocity:

Tr(ei j) = ∇ · #»
V (2.81)

For a small volume, the time rate of change of the volume is approximately equal to the velocity of the surface
dotted with the unit normal, which can be rewritten using the divergence theorem:

dV–
dt
≈
∮

S(t)

#»
V · #»n dS

=
∫
V– (t)

∇ · #»
V dV–

(2.82)

If the volume is sufficiently small such that the divergence of the velocity can be taken as constant over the volume,
the divergence of the velocity can be interpreted as the fractional rate of increase of an infinitesimal volume:

1
V–

dV–
dt
≈ ∇ · #»

V (2.83)

Knowing that ∇ · #»
V represents a volume expansion, the motion at a point described by Eq. (2.65) can be separated

into 1) an isotropic radial expansion (characterized by ∇ · #»
V ), 2) a volume-preserving motion obtained by subtracting

off the volume change from ei j, and 3) a rigid rotation:

Vi(
#»r +

#»

δr, t)−Vi(
#»r , t) = δr j

∂Vi

∂x j

= δr jei j−
1
2

δr jεi jkωk

=
1
3

δri∇ ·
#»
V︸ ︷︷ ︸

radial expansion

+δr j

(
ei j−

1
3

∇ · #»
V δi j

)
︸ ︷︷ ︸

constant-volume motion

− 1
2

δr jεi jkωk︸ ︷︷ ︸
rigid rotation

(2.84)

A factor of 1/3 appears to cancel the 3 that results from summation over i and j in δi j. To formulate the Navier-
Stokes equations requires a constitutive relation for the stress tensor σi j. The Navier-Stokes equations assume a
Newtonian fluid constitutive relationship. A fluid is defined to be Newtonian if σi j is a linear, isotropic, function of the
deformation tensor ei j. Because ξi j causes a rigid rotation, but no deformation, there is no contribution in the stress
tensor due to ξi j. For simple fluids, the Newtonian approximation is an excellent assumption over a wide range of
strain rates, but for molecules consisting of long chains of atoms, or with suspended solid particles, shearing the fluid
breaks down an internal structure that can align the molecules such that the shear stress is not a linear function of the
velocity gradient. For example, paint on a brush has high enough viscosity to not drip off the paint brush, but once
sheared on a wall, viscous forces decrease such that it can be easily applied. Conversely, quicksand becomes more
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viscous the more it is sheared. Neither paint nor quicksand are well-described as Newtonian fluids. The constitutive
relationship for a Newtonian fluid is, in its most general form:

σi j =−Pδi j + ci jklekl (2.85)

where P is the thermodynamic pressure determined from an equation of state and ci jkl is a fourth-order tensor. The
first term on the RHS represents isotropic shear stresses due to pressure forces, a requirement to match hydrostatic
observations.

A decomposition of the stress vector into normal and shear components is:

#»
f =

#»
f · #»n #»n︸ ︷︷ ︸
normal

+(
#»
f − #»

f · #»n #»n )︸ ︷︷ ︸
shear

(2.86)

In the absence of deformation, the shear stress is zero, so
#»
f must be parallel to #»n , and hence the hydrostatic

term in Eq. (2.85) is multiplied by δi j to reflect the fact that pressure only acts normal to a fluid particle surface
when there is no motion.

In order to reduce the 81 components of ci jkl to a fewer number of unique parameters, isotropy of the stress is
assumed. If the axes of a rectangular prism of fluid are aligned with the eigenvectors of ei j, then the fluid element
will not rotate, but will experience a stretching along the eigenvectors of ei j. For an isotropic fluid, the stresses on the
faces of that prism should be purely normal - if this were not the case, then the fluid would have a preferred direction
of deformation, a characteristic that is anisotropic. In order to show that selecting axes along the principal axes of ei j
for an isotropic fluid produces a diagonal ei j (since a diagonal ei j means that there are only normal stresses inducing
stretching, and no shear stresses inducing rotation), it must be required that when the principal axes of σi j coincide
with the principal axes of ei j, σi j is diagonal (no shear stresses).

In order to demonstrate that the principal axes of ei j coincide with those of σi j for an isotropic fluid, and that
both are therefore diagonal, consider a change of axes that gives the following transformation rule:

ai j =
#»ei′ · #»e j =

+1 0 0
0 −1 0
0 0 −1

 (2.87)

where ai j is a transformation matrix given by Eq. (18.8). By the transformation rule for tensors given in Eq.
(18.9),

σi j′ = aika jlσkl (2.88)

For the test problem in Eq. (2.87), due to Eq. (2.88), σ12 =−σ12. By applying the vector transformation rule
in Eq. (18.8) to ei j, the components of ei j are unchanged by the coordinate transformation. Hence, from Eq.
(2.85):

σ12 = c12klekl (2.89a)
−σ12 = c12klekl (2.89b)

The only way these can simultaneously be satisfied is if σ12 = 0. Similar arguments can be made for each
component of σi j.

This requirement gives c12kl = 0 for all k and l. Physically, this means that the same stress rate in different
coordinate frames does not give rise to different shear stresses. This reduces the 81 components of ci jkl to nine.
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Isotropy also requires that c1122 = c1133, since rotation of axes by 90° should not change the fluid response. With these
requirements, the constitutive relationship for a Newtonian fluid is:

σi j =−Pδi j +2µei j +λ∇ · #»
V δi j (2.90)

where µ is the dynamic viscosity and λ is a second parameter that is in general very difficult to measure. By
investigating the form of σ11, 2µ = c1111− c1122 and λ = c1122; hence, µ and λ just represent combinations of the
entries of the ci jkl tensor. For Newtonian fluids, the dynamic viscosity is only a function of pressure and temperature,
while for non-Newtonian fluids, there is a nonlinear relationship between µ and pressure, temperature, and the rate of
shearing strain (assuming that the Newtonian constitutive law is still used).

The viscosity of gases is commonly described by Sutherland’s model, where µ ∝ T 3/2/(T + 110). That is,
for gases, viscosity increases with temperature. For liquids, viscosity decreases with temperature. While
Newtonian fluids in general allow viscosity to also be a function of pressure, the dependence is generally very
weak [22] (chapter 1).

Interpreting the significance of each of the terms in Eq. (2.90) is difficult unless the equation is rearranged similar
to Eq. (2.84) by subtracting out the component associated with a volume change:

σi j =−Pδi j +2µ
(

ei j−
1
3

∇ · #»
V δi j

)
︸ ︷︷ ︸

deviatoric stress tensor

+

(
λ+

2µ
3

)
∇ · #»

V δi j︸ ︷︷ ︸
volume dissipative term

(2.91)

The deviatoric stress tensor τ, also known as the viscous shear stress tensor, represents volume-preserving defor-
mation (no volume change), which can be represented in both suffix and vector notation as:

τ≡ 2µ
(

ei j−
1
3

∇ · #»
V δi j

)
≡ µ

(
∇Vi +(∇Vi)

T
)
− 2µ

3
∇ · #»

V I
(2.92)

Due to competing effects of volume change and isochoric deformation, measuring λ is virtually impossible. The
Navier-Stokes equations are therefore usually posed in terms of µ and ζ, the bulk viscosity:

ζ = λ+
2µ
3

(2.93)

The second law of thermodynamics requires µ and ζ to be positive, while nothing can be said of the sign of λ.
The bulk viscosity, also referred to as the second coefficient of viscosity, is only important for highly compressible
fluids (very high temperatures and pressures) [22] (chapter 1). In compression or expansion, internal processes act
to restore thermodynamic equilibrium. These restoration processes usually act very quickly such that they almost
exactly coincide with the change in volume of the fluid particle. However, if there is a significant discrepancy between
the attainment of thermal equilibrium and the change in volume, then ζ may be much larger than µ, and cannot be
neglected. The term proportional to ζ is often referred to as the viscous dissipation term. This term is only present if
∇ · #»

V 6= 0, and hence is zero for incompressible fluids. In situations with significantly nonzero ∇ · #»
V , the physics are

often so different that an entirely different constitutive equation should be used.

Substituting Eq. (2.91) into Eq. (2.58) gives the Navier-Stokes equations, where Eq. (2.67) is used to insert the
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definition of ei j and Eq. (2.93) for the definition of ζ:

ρ
dVi

dt
= ρbi +

∂

∂x j

−Pδi j +2µ

1
2

(
∂Vi

∂x j
+

∂Vj

∂xi

)
− 1

3
∇ · #»

V δi j

+ζ∇ · #»
V δi j


= ρbi−∇P+∇ ·

[
µ
(

∇Vi +(∇Vi)
T
)
− 2µ

3
∇ · #»

V I
]
+∇ ·

(
ζ∇ · #»

V
) (2.94)

The volume dissipative term is commonly neglected by setting λ =−2µ/3, i.e. setting ζ = 0 [27]. This gives the
conservation of momentum equation most commonly used:

∂(ρ
#»
V )

∂t
+∇ · (ρ #»

V
#»
V ) = ρ

#»

b −∇P+∇ · τ (2.95)

where
#»
V

#»
V is short-hand notation for

#»
V ⊗ #»

V =ViVj, which represents an outer product of
#»
V with itself.

Eq. (2.95) has been expressed in conservative form by using the chain rule such that the time rate of change
term acts on momentum, instead of velocity.

∂

∂t
(ρ

#»
V )+∇ · (ρ #»

V
#»
V ) = ρ

∂
#»
V

∂t
+

#»
V ·

������∂ρ

∂t
+∇ · (ρ #»

V )︸ ︷︷ ︸
continuity

+ρ
#»
V ·∇ #»

V (2.96)

Conservation of mass is assumed in the Cauchy momentum equation, and hence can be canceled. This same
process can be performed for any material derivative of the form ρdΦ/dt, where ρΦ is a conserved variable
and mass is conserved, and will be used frequently throughout this manual.

Many equivalent forms of Eq. (2.95) can be derived through manipulations of mechanical and thermodynamic
relations. The Crocco-Vazsonyi and Bernoulli forms are derived here for later use in specifying stagnation Boundary
Condition (BC)s. By expressing ∂Vi/∂x j in terms of ei j defined in Eq. (2.67) and ξi j defined in Eqs. (2.68) and (2.72),
and taking the inner product with Vj, gives:

Vj
∂Vi

∂x j
= ∇

(
1
2

V 2
)
+ #»

ω× #»
V (2.97)

Inserting the above result and the enthalpy differential defined in Eq. (2.167) into Eq. (2.95) gives the Crocco-
Vazsonyi form of the Navier-Stokes equations:

∂
#»
V

∂t
+∇

(
1
2

V 2 +h+gz
)
−T ∇s− #»

V × #»
ω− 1

ρ
∇ · τ = 0 (2.98)

where it was assumed that
#»

b = #»g and gravity was moved inside the gradient by assuming that #»g = −g #»e z such
that ∇(gz) = g #»e z. Eq. (2.98) reveals that steady flow will be rotational in a stationary reference frame unless the
flow is isentropic, frictionless, isoenergetic (term in parentheses is constant), and the inlet BC is irrotational. The
Bernoulli equation can be derived from Eq. (2.98) using two different approximations. If the flow is isentropic, steady,
irrotational, and frictionless:

∇

(
1
2

V 2 +h+gz
)
= 0 (2.99)
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Eq. (2.99) applies anywhere in the flow field. The second approach for deriving the Bernoulli equation takes the
scalar product of Eq. (2.98) with velocity to obtain a form of the equation that only applies along a streamline in
isentropic, steady, and frictionless flow:

#»
V ·∇

(
1
2

V 2 +h+gz
)
= 0 (2.100)

Eq. (2.100) does not require the irrotational assumption made in Eq. (2.99). It is also frequently assumed in the
Bernoulli equation that the flow is incompressible, in which case e = e(ρ,s) is constant, and h in Eqs. (2.99) and
(2.100) could be replaced by P/ρ. These equations will be revisited in Section 7 for defining stagnation BCs for the
ideal gas EOS.

The incompressible form of Eq. (2.94) is derived by expanding all terms and setting ∇ · #»
V = 0. This gives, in

vector notation, the Navier-Stokes equation for an incompressible fluid:

ρ
d

#»
V

dt
= ρ

#»

b −∇P+∇ · (µ∇
#»
V ) (2.101)

For constant viscosity, the Laplace operator ∇ ·∇(.) can be seen to represent isotropic diffusion. Assuming
#»

b = #»g , Eq. (2.101) is sometimes written without the gravitational term by bundling gravity into the pressure
term by assuming incompressible flow. Assume that gravity is equal #»g = g #»e 3 and introduce a reduced pressure
P′:

P′ = P+ρgz (2.102)

Then, as long as ρ is uniform (incompressible flow), the gravitational term appearing in Eq. (2.101) can be
represented as:

ρ
#»g → ρg #»e z→ ∇(ρgz) (2.103)

Then, gravity can be bundled in with the pressure term in Eq. (2.101):

ρ
d

#»
V

dt
=−∇P′+∇ · τ (2.104)

If there are no free surfaces in the domain, then pressure will not appear as a BC, and within the constraints
of incompressible flow, gravity does not impact the solution. The thermodynamic pressure P must be used in
force calculations, but you can compute forces using the reduced pressure provided a buoyancy term is added
to compensate.

By nondimensionalization arguments, the Navier-Stokes equations will only provide a good representation of a
fluid if both the normalized velocity and surface force (drag) are dependent only on the scaled spatial and time scales
and Re. This is often referred to as “Reynolds number similarity.”

Nondimensionalize Eq. (2.104) with the following nondimensional variables:

V+ =
V
Vo

, x+ =
x
L
, t+ =

t
L/Vo

, P
′+ =

P
′ −P∞

ρV 2
o

(2.105)

where the pressure is scaled such that it balances ρ d
#»
V /dt. After dividing by the coefficient on the advective

term:

dV+

dt+
=−∇P

′++
1

Re
∇

2V+ (2.106)
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An alternative nondimensionalization of P
′+ = (P

′ −P∞)/(µVo/L) could have been selected had the problem
been expected to be dominated by viscous forces. With this selection, Re would appear on the advective term
instead of on the viscous term. By inspection, the nondimensional solution depends only on the nondimen-
sional spatial and time scales and Re:

V+ = f
(
x+, t+,Re

)
(2.107)

For a fluid to satisfy the Navier-Stokes equations, Reynolds number similarity requires that the above observa-
tion must hold. The solution

#»
V /Vo should be the same for geometrically similar bodies on a nondimensional

time scale with the same Reynolds number. However, pressure need not be the same between two physical
scenarios that match the terms on the RHS of Eq. (2.107). Reynolds number similarity can be extended to
show how the surface force on a body should scale with nondimensional quantities. The surface force on a
body is:

Fi =
∮

S(t)
σi jn jdS (2.108)

Introducing the following nondimensional quantities:

dS+ =
dS
L2 , σ

+
i j =

σi j

ρV 2
o

(2.109)

Then, the force on a body is nondimensionalized such that it is only a function of nondimensional time and
Re:

Fi

ρV 2
o L2 =

∮
S(t)

σ
+
i jn jdS+ = f (x+, t+,Re) (2.110)

For geometrically similar objects, the resultant surface force is only a function of the nondimensional time and
length scales and Re. Some fluids that have different viscosities when being stretched or sheared may appear to
be Newtonian at low shear stresses, but fail to satisfy Reynolds number similarity. This provides an additional
method of verifying that a fluid is Newtonian.

To derive the porous media version of Eq. (2.95), replace Φk by ρk
#»
V k in Eq. (2.37). The time derivative term is

rewritten using Eqs. (2.38) and (2.29):

〈
∂(ρ

#»
V )

∂t

〉
→

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+

∂〈ρ̂ f
#̂»
V f 〉

∂t
− 1

V–

∫
Si

ρ f
#»
V f

#»w f · #»n f dS (2.111)

The advective term is rewritten using Eq. (2.39)a and Eq. (2.29):

〈∇ · (ρ f
#»
V f

#»
V f )〉 → ∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f + 〈ρ̂ f

#̂»
V f 〉〈

#»
V f 〉 f

]
+

∇ ·
[
〈ρ̂ f

#̂»
V f 〉〈

#̂»
V f 〉 f + 〈ρ f 〉 f 〈 #̂»

V f
#̂»
V f 〉+ 〈ρ̂ f

#̂»
V f

#̂»
V f 〉

]
+

1
V–

∫
Si

ρ f
#»
V f

#»
V f · #»n f dS

(2.112)

The normal stress term is P= P, and is transformed using Eq. (2.40)b:

〈∇Pf 〉 → ε f ∇〈Pf 〉 f +
1
V–

∫
Si

P̂f
#»n f dS (2.113)

This averaging theorem, rather than Eq. (2.40)a, is the form used by many authors because the correct zero-velocity
physics are obtained using the porous media closure relations readily available in the literature [28]. If Eq. (2.40)a
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were used instead, then for a zero-velocity, non-constant porosity system, the gradient in porosity would induce a
nonphysical flow. The deviatoric stress term is transformed using Eq. (2.41)a:

〈∇ · τ f 〉 → ∇ · 〈τ f 〉+
1
V–

∫
Si

τ f
#»n f dS (2.114)

Finally, the source term is S f = −ρ f ∇φg, f , where it has been assumed that
#»

b = #»g and φg, f is the gravitational
potential function:

∇φg, f ≡−g #»e z (2.115)

Using Eq. (2.29), then Eq. (2.20)b, gives:

〈S f 〉 → −〈ρ f ∇φg, f 〉 (2.116a)

→ −〈ρ f 〉 f 〈∇φg, f 〉−���
��〈ρ̂ f ˆ∇φg, f 〉 (2.116b)

→ − ε f 〈ρ f 〉 f
∇〈φg, f 〉 f −

〈ρ f 〉 f

V–

∫
Si

φ̂g, f
#»n f dS (2.116c)

where the fluctuating product is zero because the gravitational acceleration is assumed constant. Combining all of
these terms gives:

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+

∂〈ρ̂ f
#̂»
V f 〉

∂t
+∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f + 〈ρ̂ f

#̂»
V f 〉〈

#»
V f 〉 f

]
1
V–

∫
Si

ρ f
#»
V f

(
#»
V f − #»w f

)
· #»n f dS+∇ ·

[
〈ρ̂ f

#̂»
V f 〉〈

#̂»
V f 〉 f + 〈ρ f 〉 f 〈 #̂»

V f
#̂»
V f 〉+ 〈ρ̂ f

#̂»
V f

#̂»
V f 〉

]
=

∇ · 〈τ f 〉+
1
V–

∫
Si

τ f
#»n f dS− ε f ∇〈Pf 〉 f − 1

V–

∫
Si

(
P̂f −〈ρ f 〉 f

φ̂g, f

)
#»n f dS− ε f 〈ρ f 〉 f

∇〈φg, f 〉 f

(2.117)

where 〈ρ f 〉 f has been moved inside the surface integral of the gravitational force for later illustration. Assuming
no phase change between the fluid and solid,

#»
V f − #»w f = 0. For flows in which thermal and pressure gradients are not

very large, density gradients will be much smaller than velocity gradients at the microscopic level. Therefore, terms
containing ρ̂ f can be neglected [23]. This simplifies Eq. (2.117) to:

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f + 〈ρ f 〉 f 〈 #̂»

V f
#̂»
V f 〉

]
=

∇ · 〈τ f 〉+
1
V–

∫
Si

τ f
#»n f dS− ε f ∇〈Pf 〉 f − 1

V–

∫
Si

(
P̂f −〈ρ f 〉 f

φ̂g, f

)
#»n f dS− ε f 〈ρ f 〉 f

∇〈φg, f 〉 f
(2.118)

Assuming a Newtonian fluid such that τ is given by Eq. (2.92), ∇ · 〈τ f 〉 becomes:

∇ · 〈τ f 〉 → ∇ · (µ f ∇〈 #»
V f 〉)+∇ · (µ∇〈 #»

V f 〉)T − 2
3

∇(µ∇ · 〈 #»
V 〉)+

∇ · µ
V–

∫
Si

#»
V f

#»n f dS+∇ · µ
V–

∫
Si

(
#»
V f )

T #»n f dS+
2
3

∇
µ
V–

∫
Si

#»
V f · #»n f dS

(2.119)

where it has been assumed that the dynamic viscosity does not change appreciably over the averaging volume such
that Eq. (2.29) is not needed for products of viscosity with velocity gradients and divergences. Because the no-slip
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condition is satisfied at the phase interfaces, provided the medium does not deform very rapidly, all three integral terms
in Eq. (2.119) are zero.

The τ f
#»n f integral in Eq. (2.118) represents the average viscous drag of the solid on the fluid. This average viscous

stress can be expressed in terms of the difference in intrinsic velocities between the phases, since the viscous stress
should be zero if neither phase is moving. Express the dependence as a second-order Taylor series expansion as a
function of the phase velocity difference:

1
V–

∫
Si

τ f · #»n f dS→ µε fA
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
+µε fB :

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
·
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
(2.120)

where A is a second-order tensor and B a third-order tensor [23]. The 〈 #̂»
V f

#̂»
V f 〉 term will only be zero if the fluid

moves at the same velocity as the fluid-solid interface. This requirement can also be expressed as a two-term Taylor
series, where Eq. (2.14) is first used to obtain an intrinsic phase average:

〈 #̂»
V f

#̂»
V f 〉 → ε f 〈

#̂»
V f

#̂»
V f 〉 f

→ ε fC ·
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
+ ε fL :

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)(
〈 #»
V s〉s−〈

#»
V f 〉 f

) (2.121)

where C is a third-order tensor and L is a fourth-order tensor. Because 〈 #̂»
V f

#̂»
V f 〉 f is symmetric, both of these

tensors must be symmetric in their first two indices, and L also in the last two indices. Only one more constitutive
relationship is required to fully express the momentum equation. This can be reasoned by showing that the fluctuating
pressure and gravitational field are nonzero perturbations that can still satisfy ∇〈Pf 〉 f + 〈ρ f 〉 f ∇〈φg, f 〉 f = 0, such as in
cases where the fluid is hydrostatic. Therefore, using a second-order Taylor series in terms of the known quantities,

1
V–

∫
Si

(
P̂f + 〈ρ f 〉 f

φ̂g, f

)
#»n f dS→ ε fE ·

(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)
+

ε fM :
(

∇〈Pf 〉 f + 〈ρ f 〉 f
∇〈φg, f 〉 f

)(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
) (2.122)

where E is a second-order tensor and M is a third-order tensor that is symmetric in its second and third indices.
A factor of ε f arbitrarily appears for later convenience. Combining Eqs. (2.119)-(2.122) into Eq. (2.118) gives the
porous media momentum equation for a Newtonian fluid:

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f

]
+∇ ·

[
ε f 〈ρ f 〉 fC ·

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)]
+

∇ ·
[

ε f 〈ρ f 〉 fL :
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)(
〈 #»
V s〉s−〈

#»
V f 〉 f

)]
=

∇ · (µ f ∇〈 #»
V f 〉)+∇ · (µ∇〈 #»

V f 〉)T − 2
3

∇(µ∇ · 〈 #»
V 〉)+

µε fA
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
+µε fB :

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
·
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
−ε f (I+E) ·

(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)

−M :
(

∇〈Pf 〉 f + 〈ρ f 〉 f
∇〈φg, f 〉 f

)(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)

(2.123)

At this point, experimentally-determined values for all of the tensors that appear in Eq. (2.123) do not exist.
But, simplifications can be made for isotropic flows or slow flows such that advection and the time rate of change of
momentum can be neglected.
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M, C, and B are third-order tensors that are symmetric in two of their indices. There are no isotropic symmetric
third-order tensors, so all of these tensors must be zero for isotropic media [23]. The only symmetric second-
order tensor is a multiple of the identity matrix, such that A= AI, where A is a constant. Likewise, ε f (I+E) =
EI. Therefore, Eq. (2.123) becomes for isotropic flows:

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f

]
+

∇ ·
[

ε f 〈ρ f 〉 fL :
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)(
〈 #»
V s〉s−〈

#»
V f 〉 f

)]
=

∇ · (µ f ∇〈 #»
V f 〉)+∇ · (µ∇〈 #»

V f 〉)T − 2
3

∇(µ∇ · 〈 #»
V 〉)+

µε f A
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
−E ·

(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)

(2.124)

Eq. (2.124) can be further simplified. A generic fourth-order isotropic tensor can be written in component
form as:

Li jkl = Lδi jδkl +
l
2
(
δikδ jl +δilδ jk

)
+(((

((((
(

q
(
δikδ jl−δilδ jk

)
(2.125)

where L, l, and q are constants. Because L is symmetric in its first two indices, as well as in its last two indices,
the last term above is zero. This only requires the definition of the constants L, l, and A. So, the momentum
equation for an isotropic porous media is [23]:

∂(ε〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+∇ ·

[
ε〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f

]
+

∇ ·
[

ε f 〈ρ f 〉 f L
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
·
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)]
+

∇ ·
[

ε f 〈ρ f 〉 f l
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)(
〈 #»
V s〉s−〈

#»
V f 〉 f

)]
=

∇ · (µ f ∇〈 #»
V f 〉)+∇ · (µ∇〈 #»

V f 〉)T − 2
3

∇(µ∇ · 〈 #»
V 〉)+

µε f A
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
−E ·

(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)

(2.126)

For slow flows where the advection and time rate of change of momentum is negligible, Eq. (2.123) instead
simplifies to:

∇ · (µ f ∇〈 #»
V f 〉)+∇ · (µ∇〈 #»

V f 〉)T − 2
3

∇(µ∇ · 〈 #»
V 〉)+µε fA

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
+

µε fB :
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
·
(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
− ε f (I+E) ·

(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)

−M :
(

∇〈Pf 〉 f + 〈ρ f 〉 f
∇〈φg, f 〉 f

)(
∇〈Pf 〉 f + 〈ρ f 〉 f

∇〈φg, f 〉 f
)
= 0

(2.127)

The second-order Taylor series terms and the viscous stress terms are also negligible for slow flows [23]. Eq.
(2.127) then reduces to Darcy’s law:

K
(

∇〈Pf 〉 f + 〈ρ f 〉 f
∇〈φg, f 〉 f

)
= µε f

(
〈 #»
V s〉s−〈

#»
V f 〉 f

)
(2.128)

where the second-order permeability tensor K is defined as:

K≡ ε f (I+E)A−1 (2.129)

The permeability depends only on the geometry of the medium (i.e. not on any fluid properties)

38



In Pronghorn, mechanical effects of the solid on the fluid are neglected such that C= 0 and L= 0. Second-order
effects of the pressure and gravitational forces are also neglected such that M = 0. Both of these approximations are
valid for relatively slow flows [23]. Viscous effects are neglected such that all terms in Eq. (2.119) are assumed zero.
This approximation is valid for porous media because the length over which the deviatoric stress acts is on the order of
several pore diameters, and hence can be neglected [28]. The solid is assumed stationary. Finally, ε f µ fA(I+E)−1 and
ε f µ fB(I+E)−1 are approximated as vectors, instead of tensors. The sum of these two terms (with A divided by 〈ρ f 〉 f

to obtain the proper units) is denoted as W . W represents a combined Darcy and Forchheimer friction coefficient. This
gives the porous media momentum equation used in Pronghorn:

∂(ε f 〈ρ f 〉 f 〈 #»
V f 〉 f )

∂t
+∇ ·

(
ε f 〈ρ f 〉 f 〈 #»

V f 〉 f 〈 #»
V f 〉 f

)
= −W 〈ρ f 〉 f 〈 #»

V f 〉 f + ε f ∇〈Pf 〉 f + ε f 〈ρ f 〉 f
∇〈φg, f 〉 f (2.130a)

∂(ερ f
#»
V )

∂t
+∇ ·

(
ερ f

#»
V

#»
V
)
= −Wρ f

#»
V + ε∇P+ ερ f

#»g (2.130b)

In Pronghorn’s notation, ρ f represents the intrinsic phase average of the fluid density,
#»
V the intrinsic phase average

of the fluid velocity, and P the intrinsic phase average of the pressure. It has been argued that in porous media, because
the flow of the fluid is continually disrupted by the presence of solid particles, the transfer of momentum is severely
impeded such that the advective term can be neglected. This is not done here, however, because Pronghorn is intended
to model nuclear reactors that have much higher velocities than the groundwater flows for which porous media models
were initially developed. Eq. (2.130) could also have been derived by assuming directly in the Cauchy momentum
equation balance in Eq. (2.58) that:

#»

b ≡ #»g +W
#»
V (2.131)

In other words, the body force on a fluid particle is the sum of the gravitational force and the distributed friction
force.

2.4.1 Porous Media Momentum Losses

Eq. (2.130) contains W , a friction coefficient that accounts for additional drag on the fluid caused by solid flow
obstructions. The Navier-Stokes equations by themselves do not contain any friction factor terms, because in principle
the Navier-Stokes equations are exact (within the limitations of a Newtonian fluid constitutive law). But, to accurately
capture the momentum losses experienced by a fluid flowing in the presence of a solid, whether this solid be pipe
walls or a porous solid matrix, the solid material must be modeled in complete detail. All of the surface roughness
and pocks and grooves in the solid surface must be modeled exactly if the Navier-Stokes equations are to correctly
account for momentum losses due to friction and form drag at the solid surfaces. Because this level of modeling is
not possible, especially when considering a porous media, the most common approach to account for this microscopic
effects is through the use of a friction factor. In other words, the effect of shear stresses on the fluid is assumed to be
distributed - this type of model is often referred to as a distributed loss model [22] (chapter 2). When included in the
Euler equations, the equations are no longer isentropic because energy is always dissipated along the fluid path.

The previous section showed how this friction factor arises from the spatial averaging technique; this section
describes the physical meaning of the components of W . While the title of this section refers to porous media, the
discussion here is actually of a more general nature - the use of friction factors in non-porous media is also very
common to capture the engineering-scale effects of shear stresses on fluid flow. With the use of an anisotropic friction
factor for pipe flow and a porosity of 1, Pronghorn can also be used to model channel flows, such as present in holes
in reflector blocks or pipes. These anisotropic friction factors are provided at the end of Section 9.

Friction factors are provided in the literature by dimensionless semi-empirical correlations in terms of the solid
surface roughness, the Reynolds number, and the packing of the solid for porous media. Friction factors represent a
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normalized pressure drop. At low flowrates, the pressure drop is linearly proportional to velocity (a viscous effect):

∇P ∝
µV
D2 , (2.132)

while at high flowrates, the pressure drop is proportional to the square of velocity (a kinetic effect):

∇P ∝
ρV 2

D
(2.133)

For steady, laminar, fully-developed, and incompressible flow with negligible gravitational forces, the momen-
tum equation reduces to:

ρ
#»
V ·∇ #»

V =−∇P+∇ ·µ∇
#»
V (2.134)

Assuming unidirectional flow (Vθ = Vr = 0) along an axis z aligned with the length of the circular pipe, and
fully-developed flow such (Vz 6= f (z)), all advective terms cancel, giving:

∂P
∂z

=
µ
r

∂

∂r

(
r

∂Vz(r)
∂r

)
(2.135)

The above equation could also have been obtained for a generic 1-D system if the advective effects were
neglected (in which case the following results are interpreted as viscous effects). Integrating twice and assum-
ing that the pressure drop per unit length is constant for fully-developed flow, a parabolic velocity profile is
obtained. By symmetry, the velocity profile satisfies Vz(R) = 0 and ∂Vz(0)/∂r = 0:

Vz(r) =
1
4µ

∂P
∂z

(r2−R2) (2.136)

In order to relate the friction drag to the velocity in the pipe, an average velocity V̄z must be defined by
integrating the velocity over the cross-sectional area of the pipe.

V̄z ≡
∫ 2π

0 dθ
∫ R

0 ρVz(r)rdr
ρπR2

= − 1
32µ

∂P
∂z

D2
(2.137)

At high Reynolds numbers, viscous effects can be neglected, in which case the momentum equation instead
simplifies to:

ρ
#»
V ·∇ #»

V =−∇P (2.138)

While analytic solution to this nonlinear equation is more difficult than for the linear equation encountered for
viscous flows, the proportionality of pressure drop to the square of velocity for 1-D flows is clear. Expressing
the gradient ∇

#»
V as

#»
V /D, where D is a characteristic length of the system, gives Eq. (2.133). These results

also hold in the presence of gravitational effects, in which case the reduced pressure defined in Eq. (2.102) is
used.

The total momentum loss can be approximated well as the sum of the viscous and kinetic losses [29]:

∇P = A
µV
D2 +B

ρV 2

D
(2.139)

where A and B are constants of proportionality. Two different normalizations are possible for defining the friction
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factor, by normalizing the pressure drop per unit normalized length by either the dynamic pressure ρV 2/2 or the
viscous shear stress µV/D:

∇P
2D
ρV 2 = A

1
Re

+B (2.140a)

∇P
D2

µV
= A+BRe (2.140b)

where the coefficients A and B in Eqs. (2.140)a and (2.140)b are not the same. The normalization shown in Eq.
(2.140)a is used almost exclusively in the literature, for both porous and non-porous flows, though Eq. (2.140)b is
sometimes plotted in order to make evaluation of A and B simpler.

For a cylindrical body of fluid in steady, fully-developed, unidirectional flow, a balance of pressure and viscous
shear stresses on the surface of the body reveals that:

−∇P =
4τwall

D
(2.141)

where τwall is the viscous shear stress at the wall. Inserting Eq. (2.141) into Eq. (2.140)a shows that a friction
factor defined as the normalized pressure drop normalized by the dynamic pressure is equivalent to the wall
shear stress normalized by the dynamic pressure:

∇P
2D
ρV 2 =

8τwall

ρV 2 (2.142)

The proportionality of the viscous and inertial pressure drops with porosity is different, though many earlier re-
searchers did not recognize this, which severely limited the ranges of applicability of their friction factor correla-
tions [30]. The most common method for expressing these friction effects uses the hydraulic radius model, in which
case appropriate scalings of velocity and characteristic length D for spherical porous media are introduced. For Eq.
(2.132), V can be transformed to v using Eq. (2.31), and D can be interpreted as the hydraulic diameter in Eq. (2.289),
neglecting the factor of 4/6:

∇Pviscous ∝
(1− ε)2

ε3
µ
d2

p
v (2.143)

Likewise, the kinetic term proportionality on porosity is:

∇Pkinetic ∝
(1− ε)

ε3
ρ f

dp
v2 (2.144)

These scalings are valid for beds of spherical pebbles, and must be respected in all friction factor correlations for
porous media, or else the correlation would not be independent of porosity under appropriate transformations to a
non-porous media system [30]. For plate or prismatic solid geometries, Eq. (2.143) and (2.144) have different forms
due to the different interpretation of the hydraulic diameter. Using these proportionalities in Eq. (2.139) gives:

∇P
ε3

1− ε

2dp

ρv2 = A
1− ε

Re
+B (2.145a)

∇P
ε3

(1− ε)2

d2
p

µv
= A+B

Re
1− ε

(2.145b)
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With the scaling in Eq. (2.145)a, at Re > 6×104 (or lower values on the order of 4×103 [6]), the friction factor
becomes relatively independent of Re [31]. At intermediate to low Re, the friction factor scales as (1− ε)/Re [30].

There are a large number of porous media friction factor correlations available in the literature. There is a strong
relationship between these friction factor correlations and the early models for flow in porous media. For example,
Darcy’s law is a simplification of the Navier-Stokes momentum equation for stationary, creeping, and incompressible
flow. The original form derived by Darcy assumes constant porosity, but this can be rearranged to the non-constant
porosity form by multiplying both sides by porosity [32]:

ε∇P =−µK−1
ε

#»v

=−µK−1
ε

2 #»
V

=−D
#»
V

(2.146)

By comparing Eq. (2.146) with Eq. (2.132), it can be seen that correlations for the permeability are proportional to
correlations for the viscous friction factor. So, Darcy’s law is none other than a viscous drag proportionality between
pressure gradient and velocity, because the kinetic friction losses were assumed negligible. The permeability must be
proportional to:

K−1
∝

(1− ε)2

ε3
1
d2

p
(2.147)

For simplicity, the coefficient on
#»
V can be bundled into D, which will be referred to as the “Darcy prefactor” in

this manual. For isotropic media, D simplifies to a scalar. Because Darcy’s law assumes negligible kinetic friction
losses, it is only valid as a model for low Reynolds number flows. As Re increases, the drag transitions from linear to
nonlinear behavior as boundary layers begin to separate, and neglecting the kinetic friction losses is no longer valid.
Darcy could not obtain very high flowrate data because his water source was a hospital - perhaps if he had a reliable
experimental setup, he would have included a kinetic friction loss term [33].

Other early researchers built upon Darcy’s law by recognizing that the kinetic friction component should also be
included. Forchheimer’s law is one such extension, which simply adds the kinetic friction component to Darcy’s
flow model. So, Forchheimer’s law is none other than a balance between pressure gradient and the sum of viscous
and kinetic friction effects. The original form derived by Forchheimer assumes constant porosity, but this can be
rearranged to give the non-constant porosity form by multiplying both sides by porosity [32]:

ε∇P =−µK−1
ε

#»v − εC fK
−1/2

ρ f | #»v | #»v

=−µK−1
ε

2 #»
V − εC fK

−1/2
ε

2
ρ f |

#»
V | #»V

=−D
#»
V −Fρ f |

#»
V | #»V

(2.148)

where C f is a form drag coefficient. By comparing Eq. (2.148) with Eq. (2.144), it can be seen that correlations
for C fK

−1/2 are equivalent to correlations for the kinetic friction factor! This term must be proportional to:

C fK
−1/2

∝
(1− ε)

ε3
1
dp

(2.149)

In a porous media, Forchheimer’s law accounts for nonlinear flow effects that are not necessarily present because
of turbulence. Forchheimer’s law accounts for streamline bending around particles and expansion/contraction be-
tween the large and small pore spaces [34]. The analytical proportionalities for sudden expansions/contractions from
fundamental fluid mechanics also scale as ρv2.
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To simplify later description of these kinetic friction factor correlations, the coefficient on ρ f |
#»
V | #»V will be bundled

into F, which will be referred to as the “Forchheimer prefactor” in this manual. For isotropic media, F simplifies to a
scalar. Correlations for D and F are provided in Section 9. With the hydraulic radius model, D and F scale as:

D ∝
(1− ε)2

dp
2
ε

µ (2.150)

F ∝
(1− ε)

dp
(2.151)

From these definitions it can be seen that the friction drag scales as the inverse of the pebble area, while the form
drag scales as the inverse of the length of the wake region (on the order of dp since the next pebble in the flow field
disturbs the wake). Based on the definition of W , it is clear that:

W ≡ D

ρ f
+F| #»V | (2.152)

In addition to Darcy and Forchheimer models, other researchers have suggested alternative ε∇P scalings. For
example, Brinkman extended Darcy’s law to include a viscous term similar to the traditional Laplacian found
in the incompressible Navier-Stokes equations in order to enforce the no-slip condition at solid walls [32]:

ε∇P =−µK−1
ε

#»v + εµ̃∇
2 #»v (2.153)

where µ̃ is an effective viscosity. There is substantial disagreement on the correct selection of µ̃, though
several researchers have obtained experimental fits as a function of Re [35]. Generally, µ̃ increases with Re
due to enhanced mixing, though some particle shapes show no dependence on Re. The selection of µ̃ only
impacts the flow field in the vicinity of the wall (within about a half pebble diameter), since Brinkman’s model
is only used to capture the near-wall maxima of velocity [35, 36]. Most porous media codes do not include a
Brinkman term, but Auwerda et. al select m̃u somewhat arbitrarily as 100µ for helium-cooled HTGRs due to
a lack of experimental correlations; variation by two orders of magnitude results in fairly similar temperature
profiles [36]. Brinkman’s model is essentially an attempt to capture additional wall shear stress [37].

Brinkman’s equation does not have the same experimental validation basis as either Darcy’s or Forcheimer’s
laws, and is generally thought to only be applicable for ε > 0.8. At low porosities, the solid matrix impedes
direct transfer of momentum due to viscous forces and the majority of stresses are communicated via pressure
[32]. The Brinkman model is not used in Pronghorn, but is shown here for perspective on how a no-slip
condition could be obtained in an inviscid flow model. Some authors staunchly defend Brinkman’s hypothesis,
however [38].

2.4.2 The Trans-Forchheimer Regime

The quadratic drag effect modeled by the Forcheimer relationship is only applicable for laminar flow. That is, Forch-
heimer’s law only applies to inertia-dominated laminar flows, and represents fundamentally different physics than the
quadratic velocity dependence that is also observed for turbulent flows [39]. Researchers have observed six general
flow regimes in porous media, which are shown pictorially in Fig. 6 [28, 39, 40].

1. Pre-Darcy regime - non-Newtonian fluid behavior causes small countercurrents to form at the pore walls. In
this regime, the pressure drop actually increases as the flow is reduced, and a finite pressure drop exists for
zero Re. Fand estimates this pre-Darcy regime to occur in an exceptionally narrow Reynolds number range, but
Kececioglu estimates the pre-Darcy regime width to be the same as the Darcy regime [28, 40].
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2. Darcy regime - the flow is dominated by viscous forces.

3. Transitional regime - transition from Darcy to Forchheimer flow; this flow regime is often referred to as the
“weak inertia” regime.

4. Forchheimer regime - steady, nonlinear laminar flow, characterized by the onset of boundary layer separation.
The Forchheimer regime is often referred to as the “inertial” regime.

5. Transitional regime - oscillations and vortices begin to develop.

6. Turbulent regime - highly unsteady and chaotic flow that is dominated by eddies.

Figure 6: Flow regimes in porous media [40]. Solid lines represents friction coefficients normalized by the viscous
friction component according to Eq. (??). If a single Darcy-Forchheimer relationship with a single set of A and B
coefficients were viable over the entire range of Reynolds numbers, then a single straight line would be observed.

The Reynolds numbers defining the bounds of these flow regimes as determined by several researchers is shown in
Table 2. A complication associated with characterizing flows with a Reynolds number is that the length and velocity
scales used in the Reynolds number can vary widely. The Reynolds number used to characterize the onset of various
flow regimes must take into account the sphere diameter, because the largest spheres trigger turbulence as the fluid
must travel a longer path length without boundary layer separation if the flow is to remain viscous-dominated. Rek, the
Reynolds number based on the square root of the permeability as a length scale, shows the smallest variation between
researchers. Sources that reported bounds in terms of other Reynolds numbers are approximately converted to Rek
assuming a porosity of 0.4.

Table 2: Differences in flow regime boundaries as computed by various researchers. The transitional regimes are not
shown, and are inferred to complete the range gaps between the regimes in the table.

Source Darcy Forchheimer Turbulent
[28, 40] Rek < 0.26 0.57 < Rek < 9.00 Rek > 13.5
[28] 0.06 < Rek < 0.12 0.34 < Rek < 2.30 Rek > 3.40

44



The Darcy-Forchheimer flow model in Eq. (2.148) is technically only applicable up to and including the Forch-
heimer regime. There is not general agreement on how to model the Trans-Forchheimer regime characterized by
Rek > 10. Some researchers propose that Eq. (2.148) be used throughout all ranges in Reynolds number using a
single set of proportionality constants, while others believe that a different model is required. Researchers have even
taken data thought to demonstrate a continuous Darcy-Forchheimer regime, and shown that a different interpretation
of the data clearly illustrates a Trans-Forchheimer regime [41]. Among the researchers who believe a new model is
required, there is not consistent agreement on what that model should look like, let alone what physical behavior is to
be expected in the Trans-Forchheimer regime.

Of the researchers that believe a new model is required for the Trans-Forchheimer regime, there is disagreement
on how the viscous and kinetic friction components differ between the Darcy-Forchheimer and Trans-Forchheimer
regimes. Many authors report a drag-reduction effect in the fully turbulent regime, whereby the Darcy prefactor tends
to increase, but the Forchheimer prefactor decreases [28,33,40,42]. At the high velocities characteristic of turbulence,
the Forcheimer term dominates, and the overall effect is to observe a reduction in drag. Drag reduction effects might
be explained by:

• At higher flowrates, the fluid follows streamlines more efficiently, reducing inertial losses in circulating motions
in the bed [33].

• At low flowrates, only the largest flow channels contribute to the overall flow. At higher flowrates, the resistance
of the smaller flow channels becomes less important, and more flow channels contribute to the overall flow so
that the flow becomes more evenly distributed [33].

• The separated boundary layer region in a porous medium cannot grow unbounded, so at very high velocities the
drag effect is limited by the solid obstacles [43].

A drag reduction effect for turbulent flows is not in agreement with trends observed for internal pipe flows, how-
ever. From the Moody diagram, extrapolation of the friction factor for laminar flows to higher Re would be lower,
not higher, than that actually observed in the turbulent regime [44]. Lage states that the Forchheimer prefactor can
either increase or decrease relative to its laminar value upon reaching the turbulent regime, which would explain the
disagreement amongst researchers on this effect. Whether the coefficient increases or decreases generally depends on
whether the transition to turbulence is triggered by viscous or kinetic effects. If the transition is dominated by kinetic
effects, then the Forchheimer prefactor should decrease, but if the transition is dominated by viscous effects typical
of transitions in internal pipe flows, the Forchheimer prefactor should increase [44]. Because porous media consist of
many closely-packed bodies, rather than a single body for which the transition is well-known to be kinetic-dominated,
it is unclear immediately if the Forchheimer prefactor change upon the onset of turbulence can be well-characterized.
Most researchers report a decreased Forchheimer prefactor, so it can be inferred that a porous media transitions to
turbulence due to kinetic transitions, though this is not always supported by experimental evidence. For example,
Lage reported a Forchheimer prefactor increase, which was attributed to the use of a non-conventional porous media
where the flow transition is controlled by viscous drag effects [44].

Considering all of the different interpretations of how the drag coefficients should change upon turbulence, there
are four common approaches for modeling the Trans-Forchheimer regime:

1. Use a single Darcy-Forchheimer correlation for the entire range in Re [29, 30, 45]. When the Darcy and Forch-
heimer prefactors are only generated according to low Re data, an order or magnitude higher deviation is ob-
tained than when the coefficients are fit with a wider range of Reynolds number data, illustrating the error in
extrapolating too far between regimes [44].

2. Modify the Darcy and Forcheimer coefficients once reaching the turbulent regime to a different set of constants.
This approach is performed in [28, 40].

3. Add a term proportional to v3 to Eq. (2.148). Forchheimer’s was the first to suggest such a cubic dependence
[33]. From Reynolds number similarity requirements, the drag must scale as ρv2 at high Re, so this approach

45



is theoretically only valid in the transitional flow regime between Forchheimer and fully turbulent flows. This
transitional regime is very narrow for 3-D flows, and can effectively be neglected [39]. Nevertheless, Lage added
a cubic velocity proportionality to his correlation, and found that when low-Reynolds number data is used to
obtain the Darcy and Forchheimer prefactors, that this method provided the best experimental fit [44].

4. Use non-constant Darcy and Forchheimer prefactors. Researchers using this method have reported drag reduc-
tion effects [33, 42].

Turbulence is expected in nuclear reactor systems, so the correlations for W discussed in Section 9 will provide
one or more of the four options listed above.

2.4.3 Anisotropic Porous Media

The drag models discussed up to now are almost always reduced to isotropic forms due to a lack of modeling informa-
tion for how to properly treat anisotropies. However, anisotropy may prove critical for accurate modeling of porous
media [34]. Anisotropy arises from the geometry and the flow field itself. Anisotropic geometries will cause the flow
to have preferred directions of motion that do not perfectly align with the pressure gradient. Anisotropies in the flow
field, such as different heating rates in different sections, will cause natural anisotropies in the flow.

The error in approximating the Darcy and Forchheimer drag coefficients as constants depends on the degree of
anisotropy in the system. In spherical particle porous media, the largest anisotropies exist at the walls, where the wall
significantly retards flow perpendicular to the wall, but the high-porosity region aligned with the walls encourages flow
parallel to the walls. The porosity appears greater looking at the wall, but is much lower looking parallel to the wall.
The establishment of natural circulation can be sensitive to anisotropy, since boundary layer thickness at the walls can
severely retard circulation flows [46]. Depending on the core design, the presence of thermalizing graphite reflectors
at the bed edges may further contribute to the importance of anistropic effects. A proper anisotropic treatment should
also consider the anisotropy of the heat transfer coefficient and effective thermal conductivities.

Anisotropic porous media have most frequently been studied for banks of cylindrical tubes due to modeling sim-
plicity [46,47]. These researchers have concluded that correctly accounting for anisotropy can yield as large as a 100%
change in the heat transfer and fluid flow. There are generally two approaches pursued to model anisotropic porous
media -

1. Use a tensorial D and F, heat transfer coefficient, and effective thermal conductivities.

2. Approximate anisotropy by replacing | #»V | in Eq. (2.148) by the vector velocity. Likewise, any time a Reynolds
number appears in a drag/heat transfer coefficient/effective thermal conductivity correlation, the velocity in the
Reynolds number should be the component velocity. In other words, use correlations developed for isotropic
porous media, but apply them in a vectorized form.

This second approach is the easiest to implement, but is inaccurate in that isotropic correlations are used to ap-
proximate anisotropy. However, to a first order approximation, the use of component-wise velocities should be used
to account for the fact that the smallest velocity components do not experience the same drag as the large compo-
nents [46,47]. Using a vectorized drag coefficient would likely have a large impact in Pronghorn, because the majority
of flow is oriented upwards. A vectorized drag coefficient is not the standard, however, and the majority of researchers
use velocity magnitudes, rather than components, in Reynolds numbers and in the Forchheimer prefactor [48].

Wang et. al shows that F responds very strongly to anisotropy, increasing by a factor of 17 for some systems
as anisotropy is increased. D is less sensitive to anisotropy (though it also increases with anisotropy). By varying
anisotropy in only one direction, all components of the D and F tensors are affected because fluid becomes forced
through other regions. However, the magnitude of the anisotropy is greatest in the directions with greatest anisotropy.
Anisotropic models for friction and heat transfer are not yet implemented in Pronghorn, so all friction coefficients
discussed in Section 9 use an isotropic treatment.
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2.5 The Fluid Energy Equation

This section presents two derivations of the conservation of energy equation. One of these equations will be an
equation for total energy (a conserved quantity), while the other equation will be an equation for temperature (not a
conserved quantity). Therefore, these two versions of an “energy” equation will be referred to as “conservative” or
“non-conservative,” referring specifically to the fact that energy, but not temperature, is physically conserved.

The first law of thermodynamics relates the rate of change of energy in a volume to the rate of energy and heat
addition. The total energy is the sum of internal energy and kinetic energy. The internal energy per unit mass, e,
represents the potential energy due to bond stretching plus the mean kinetic energy of molecules when moving in a
frame of reference moving with the center of mass velocity (i.e. vibratory motion). The total energy per unit mass, E,
is the sum of this internal energy and kinetic energy of the body per unit mass.

E = e+
1
2

ViVi (2.154)

Conservation of total energy requires a balance between the power supplied by the contact and body forces and
the heat addition. This balance is obtained by multiplying all the forces in the momentum balance in Eq. (2.56) by
velocity, since power equals force times velocity.

d
dt

∫
V– (t)

ρEdV–︸ ︷︷ ︸
rate of change of total energy

=
∫
V– (t)

ρbiVidV–︸ ︷︷ ︸
power from bpdy forces

+
∮

S(t)
Viσi jn jdS︸ ︷︷ ︸

power from viscous forces

−
∮

S(t)
qinidS+

∫
V– (t)

q̇dV–︸ ︷︷ ︸
heat addition

(2.155)

where #»q is the heat flux vector representing heat flow out of the fluid particle and q̇ is a volumetric heat source
in the fluid particle that has been included in addition to the forces present in the general momentum balance. The
divergence theorem is applied to convert surface integrals to volume integrals:

d
dt

∫
V– (t)

ρEdV– =
∫
V– (t)

ρbiVidV– +
∫
V– (t)

∂

∂x j

(
Viσi j

)
dV–−

∫
V– (t)

∂q j

∂x j
dV– +

∫
V– (t)

q̇dV– (2.156)

By the same argument that was used to bring the time differentiation under the integral in Eq. (2.57) and by
recognizing that the choice of the volume is arbitrary, Eq. (2.156) simplifies to:

ρ
dE
dt

= ρ
#»

b · #»
V +

∂

∂x j

(
Viσi j

)
−∇ · #»q + q̇

= ρ
#»

b · #»
V + Vi

∂σi j

∂x j︸ ︷︷ ︸
contact power

+ σi j
∂Vi

∂x j︸ ︷︷ ︸
deformation power

−∇ · #»q + q̇ (2.157)

By inserting the constitutive relation for σi j from Eq. (2.91) into Eq. (2.157), a form useful for implementation is
obtained in Eq. (2.158)a. Eq. (2.158)b uses the continuity equation to rewrite the material derivative in terms of the
conserved total energy.

ρ
dE
dt

= ρ
#»

b · #»
V −∇ · (P #»

V )+∇ · (τ #»
V )−∇ · #»q + q̇ (2.158a)

∂(ρE)
∂t

+∇ · ((ρE +P)
#»
V ) = ρ

#»

b · #»
V +∇ · (τ #»

V )−∇ · #»q + q̇ (2.158b)
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The enthalpy per unit mass h and total enthalpy per unit mass H are defined as:

ρh = ρe+P (2.159)

ρH = ρE +P (2.160)

where a differential in h is provided, where ν is the specific volume. Inserting Eq. (2.160) into Eq. (2.158)b,
neglecting the ∇ · (τ #»

V ) viscous heating effects, and assuming that #»q = −k∇T represents the conduction heating, the
conservative energy equation becomes:

∂(ρE)
∂t

+∇ · (ρH
#»
V )−ρ

#»

b · #»
V −∇ · (k∇T )− q̇ = 0 (2.161)

where k is the thermal conductivity. The body force
#»

b in the above equation can have two different forms,
depending on the interpretation of the derivation of the porous media equations. Eq. (2.131) was derived by averaging
the momentum equation in space. Whether

#»

b in Eq. (2.161) should be interpreted as #»g or as #»g +W
#»
V depends on

whether the porous media version of the energy equation should be derived by using a) the non-porous or b) porous
Cauchy equation in the derivation of the energy equation. In other words, should the process used to obtain the Wρ f

#»
V

term for the momentum equation be carried through to the energy equation? Another simple example of this issue is
obvious for incompressible flows. The microscopic continuity equation is ∇ · #»

V - should the porous media version of
this equation by ∇ ·(ε #»

V ) = 0 or ∂ε/∂t+∇ ·(ε #»
V ) = 0? PEBble Fluid Dynamics (PEBFD) assumes the latter form [49].

Nield suggests that Eq. (2.131) be used for
#»

b ; he refers to the ρ
#»

b · #»
V term as the “viscous dissipation” [43]. While

the Forchheimer drag term is independent of µ, ρF| #»V | #»V · #»
V still represents a viscous loss because form drag arises due

to the interaction of inertial, viscous, and pressure forces. Without viscosity, there is no boundary layer, and hence no
boundary layer separation to result in form drag.

This issue in selecting
#»

b only arises in the use of the conservative energy equation. However, it appears that most
porous media codes using the conservative energy equation neglect the W

#»
V component in

#»

b [50]. Whether the W
#»
V

portion can be neglected for different reactor designs will be addressed in Section 2.10.5.

The thermal conductivity of gases generally increases with temperature, while it is nearly constant for liquids.
Both gases and liquids show very weak dependence of thermal conductivity with pressure [22] (chapter 1).

The derivation of the non-conservative energy equation is more lengthy. Equilibrium thermodynamics is used to
relate total energy to entropy, and then entropy to temperature to transform Eq. (2.157) to an equation entirely for
temperature. In order to obtain the entropy equation, the mechanical energy component of Eq. (2.157) is subtracted
out by first forming the mechanical energy equation by taking the scalar product of the Cauchy momentum equation
in Eq. (2.58) with velocity (since power equals force multiplied by velocity).

ρbiVi +Vi
∂σi j

∂x j
= Viρ

dVi

dt

= ρ
d
dt

(
1
2

V 2
i

) (2.162)

Recognizing that Vi∂σi j/∂x j appears in the total energy equation in Eq. (2.157), a balance of internal energy
equation is obtained by subtracting Eq. (2.162) from Eq. (2.157):

ρ
de
dt

= σi j
∂Vi

∂x j
−∇ · #»q (2.163)
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Consider a simple shear flow with
#»
V = kx2

#»e 1 with
#»

b = #»g =−g #»e 2. Eq. (2.162) simplifies to Vi∂σi j/∂x j = 0.
Recognizing that Vi∂σi j/∂x j appears in Eq. (2.157), the total energy balance becomes:

ρ
dE
dt

= σi j
∂Vi

∂x j
−∇ · #»q (2.164)

Hence, σi j∂Vi/∂x j represents deformation work, and is often referred to as the “viscous dissipation rate.” It is
this phenomenon that causes heating of boundary layers, and represents the conversion of mechanical energy
to thermal energy. Because this deformation work is present in the internal energy equation in Eq. (2.163),
this term contributes to an increase in internal energy, but not kinetic energy, producing heat.

In order to obtain equations for temperature and entropy, relations from equilibrium thermodynamics are needed.
But, the dissipative terms on the RHS of Eq. (2.157) do not represent equilibrium conditions at all. Hence, local
thermodynamic equilibrium must be assumed. While in a global sense the system is not in thermodynamic equilibrium,
each fluid particle is assumed to be in equilibrium, a valid approximation provided a fluid particle reaches equilibrium
with its surroundings quickly. The time scale on which a fluid particle reaches equilibrium with its surroundings can
usually be cast as some multiple of the collision frequency. Provided this time scale is much smaller than the time
scale characterizing the problem, local thermodynamic equilibrium can be assumed. In other words, local equilibrium
is attained when local changes in pressure and temperature are relatively small with respect to the far-field values of
pressure and temperature.

The classification of a system depends on the number of available energy transfer modes. Any system always has
at least two modes of energy transfer - work and heat. Simple systems only experience pressure-volume work, and
are not subject to work by electromagnetic fields or other means. Hence, there are two ways by which to change the
energy of a simple system - by pressure-volume work and by heat transfer. One thermodynamic property is needed to
fix the state of a system for each mode of energy transfer, so the state of a simple, pure system can be fixed with two
properties. From the first law of thermodynamics, for a simple, pure system:

de = δq+δw (2.165)

where q represents heat addition and w represents work done on the body. δ indicates a change that is not dependent
solely on the beginning and end states. For an internally reversible process, δq = T ds, where s is the entropy of the
fluid. For a pure fluid, the only mode of energy transfer besides heat addition is pressure-volume work, so δw =−Pdν,
where ν is the specific volume. While no fluid is truly pure, a fluid can be approximated as pure as long as 1) the
components are well-mixed, 2) there is no significant reaction between the components, and 3) the components do not
break apart in the flow. Inserting these definitions into Eq. (2.165), the Gibbs identity is obtained:

de = T ds−Pdν (2.166)

Because local thermodynamic equilibrium is assumed, the Gibbs identity also applies for irreversible processes.
The Gibbs identity is an exact differential, meaning that any form of a differential in e, s, and ν produce the form
above. Substituting Eq. (2.159) into Eq. (2.166) gives a differential for enthalpy:

dh = de+Pdν+νdP

= T ds+νdP
(2.167)

Using Eq. (2.166), the internal energy equation in Eq. (2.163) can be formulated into an equation for entropy
conservation.

ρ

(
T

ds
dt
−P

dν

dt

)
= σi j

∂Vi

∂x j
−∇ · #»q (2.168)
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The second term on the LHS can be related to the velocity using the continuity equation, Eq. (2.47):

d
dt

(
ρ
−1
)
=
−1
ρ2

dρ

dt

=
∇ · #»

V
ρ

(2.169)

Inserting this into Eq. (2.168), and using the constitutive relation for a Newtonian fluid from Eq. (2.90):

ρT
ds
dt
−P∇ · #»

V =
(
−Pδi j +2µei j +λ∇ · #»

V δi j

)
∂Vi

∂x j
−∇ · #»q

ρT
ds
dt

= 2µei j
∂Vi

∂x j
+λ(∇ · #»

V )2−∇ · #»q
(2.170)

Using the definition of ∂Vi/∂x j in Eq. (2.67), Eq. (2.170) can be rephrased using the property of the multiplication
of the symmetric tensor ei j with the antisymmetric tensor ξi j given in Eq. (18.10).

ρT
ds
dt

= 2µei j(ei j +ξi j)+λ(∇ · #»
V )2−∇ · #»q

= 2µe2
i j +λ(∇ · #»

V )2−∇ · #»q

= 2µ

[(
τ

2µ

)2

+
��

���
���2

3
∇ · #»

V
(

τ

2µ

)
δi j +

(
1
3

∇ · #»
V δi j

)2
]
+λ(∇ · #»

V )2−∇ · #»q

=
τ2

2µ
+ζ(∇ · #»

V )2−∇ · #»q

(2.171)

and τδi j = Tr(τ) = 0 because the volume change has been subtracted out in the definition of the deviatoric stress
tensor. In addition, δi jδi j = 3. Eqs. (2.171) and (2.170) show that the flow is nearly isentropic (along streamlines) for
1) low-viscous-dissipation, 2) minimally compressive (no shock waves), and 3) adiabatic (no heat conduction) flows.

The classical Euler equations are a simplification of the Navier-Stokes equations for inviscid flow with no external
heat sources or conductive heating. Based on the equations derived previously, several analytical tools can be used
to assess numerical errors made in solving the Euler equations. For the steady Euler equations with no external body
forces, Eq. (2.161) shows that H should be constant along streamlines. If the inflow BCs specify a constant H, then
the entire flow field is characterized by a constant H. Eq. (2.171) shows that for initially continuous flow variations
(such that ζ≈ 0 can be assumed without significant loss of accuracy), s should also be constant along streamlines. If
the inflow BCs specify a constant s, then the entire flow field is characterized by a constant s. Therefore, for totally
uniform inflow BCs, the classical Euler equations are equivalent to the potential flow equations, and the entire flow
field has constant entropy and total enthalpy.

Divide Eq. (2.171) by T and then integrate over a volume:

∫
V– (t)

ρ
ds
dt

dV– =
∫
V– (t)

τ2

2µ +ζ(∇ · #»
V )2

T
dV–−

∫
V– (t)

∇ · #»q
T

dV– +
∫
V– (t)

q̇
T

dV– (2.172)

where a generic q̇ is added for completeness. Apply the chain rule to ∇ ·( #»q /T ) term to introduce an equivalent
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expression for the (∇ · #»q )/T term, and then apply the divergence theorem:∫
V– (t)

ρ
ds
dt

dV–︸ ︷︷ ︸
entropy generation

+
∮

S(t)

#»q · #»n
T

dS︸ ︷︷ ︸
entropy with heat flow

−
∫
V– (t)

q̇
T

dV–︸ ︷︷ ︸
heat production

=

∫
V– (t)

τ2

2µ +ζ(∇ · #»
V )2

T
dV–−

∫
V– (t)

#»q ·∇T
T 2 dV–

(2.173)

The second law of thermodynamics can be phrased in many equivalent manners. The Clausius-Duhem in-
equality is one manifestation of the second law of thermodynamics, and requires that the entropy generation
be greater than or equal to sum of the entropy with heat flow and heat production. This is equivalent to re-
quiring that the RHS in Eq. (2.173) be greater than or equal to zero. For the Clausius-Duhem inequality to
hold:

1
2µ

τ
2 +ζ(∇ · #»

V )2 ≥ 0 (2.174a)

#»q ·∇T ≤ 0 (2.174b)

For the case of incompressible flow, ∇ · #»
V = 0, so µ ≥ 0. For a spherically-symmetric radial expansion,

ei j = 0, so ζ ≥ 0. The second requirement shows that k ≥ 0. The second law of thermodynamics therefore
places restrictions on allowable constitutive laws. Performing a change of variables according to the procedure
described in Section 2.8 to entropy variables discretely satisfies the second law of thermodynamics without
the need to include additional dissipative mechanisms such as the stabilization schemes discussed in Section
15 [51].

Equilibrium thermodynamics is now used to provide a relationship between entropy, temperature, and one other
state variable. Pressure is selected as this state variable because it is directly related to the BCs and forces. A choice
such as ρ would complicate the equation, since it itself is a function of the other state variable, temperature. With this
choice, the derivative of entropy is given by the chain rule as:

ds
dt

=

(
∂s
∂T

)
P

dT
dt

+

(
∂s
∂P

)
T

dP
dt

(2.175)

Specific heats are defined according to the amount of heat required to increase temperature, where several equiva-
lent forms are obtained using Eqs. (2.166) and (2.167):

Cp ≡
(

δq
δT

)
P

(2.176a)

=

(
∂h
∂T

)
P

(2.176b)

= T
(

∂s
∂T

)
P

(2.176c)
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Cv ≡
(

δq
δT

)
ν

(2.177a)

=

(
∂e
∂T

)
ν

(2.177b)

= T
(

∂s
∂T

)
ν

(2.177c)

Hence, the coefficient on the first term on the RHS of Eq. (2.175) is Cp/T . The second coefficient in Eq. (2.175)
can be determined by manipulating the Gibbs identity in Eq. (2.166). This manipulation gives a thermodynamic
relationship known as the Maxwell identity:

−
(

∂s
∂P

)
T
=

(
∂ν

∂T

)
P

(2.178)

The Gibbs function G is defined as:

G≡ e−T s+Pν (2.179)

The derivative of G is, by the chain rule:

dG = de−T ds− sdT +Pdν+νdP

= − sdT +νdP
(2.180)

where Eq. (2.166) has been used. Because the Gibbs identity is an exact differential, Eq. (2.180) can be
manipulated to provide the following relationships:

−s =
(

∂G
∂T

)
P

(2.181)

ν =

(
∂G
∂P

)
T

(2.182)

Combining Eqs. (2.181) and (2.182) gives Eq. (2.178).

The expansivity, or volumetric coefficient of thermal expansion, is defined as:

β≡ 1
ν

(
∂ν

∂T

)
P

= − 1
ρ

(
∂ρ

∂T

)
P

(2.183)

where ∂ν/∂T = ∂(1/ρ)/∂T was expanded to give the second form. Combining Eqs. (2.183), (2.178), (2.176), and
(2.175) gives:

ds
dt

=
Cp

T
dT
dt
−βν

dP
dt

(2.184)

Substituting Eq. (2.184) into Eq. (2.171), assuming #»q = −k∇T , and including a volumetric heat source q in the
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same manner as was done in Eq. (2.155) gives the nonconservative energy equation:

ρCp
dT
dt︸ ︷︷ ︸

stored energy

− T β
dP
dt︸ ︷︷ ︸

compression work

=
τ2

2µ︸︷︷︸
viscous heat

+ ζ(∇ · #»
V )2︸ ︷︷ ︸

volume viscous heat

+∇ · (k∇T )+q︸ ︷︷ ︸
heat source

(2.185)

An alternative form of the temperature equation is sometimes seen in the literature. Instead of taking entropy
as a function of pressure and temperature as in Eq. (2.175), the entropy could alternatively have been taken as
a function of specific volume and temperature.

ds
dt

=

(
∂s
∂T

)
ν

dT
dt

+

(
∂s
∂ν

)
T

dν

dt
(2.186)

From Eq. (2.177), the first coefficient on the RHS is Cν/T . The second coefficient can be expanded:(
∂s
∂ν

)
T
=

(
∂s
∂P

)
T

(
∂P
∂ν

)
T

(2.187)

An isothermal bulk modulus is defined as:

KT =−ν

(
∂P
∂ν

)
T

(2.188)

From Eq. (2.178), Eq. (2.183), and Eq. (2.186):

ds
dt

=
Cν

T
dT
dt

+βKT
dν

dt

=
Cν

T
dT
dt
−βKT

1
ρ2

dρ

dt

(2.189)

Then, the entropy equation in Eq. (2.171) becomes:

ρCν

dT
dt
− T βKT

ρ

dρ

dt
=

τ2

2µ
+ζ(∇ · #»

V )2−∇ · #»q +q (2.190)

This is an equivalent expression of nonconservative equation, except that some authors erroneously conclude
that for negligible viscous heating and for incompressible flow, the equation reduces to ρCνdT/dt = −∇ · #»q .
This is incorrect, however, since the condition for incompressible flow given in Eq. (2.267) is not the same as
(1/ρ)dρ/dt = 0.

By neglecting compression work, viscous heating, and volumetric viscous heating, the non-conservative form of
the energy equation is:

ρCp
∂T
∂t

+ρCp
#»
V ·∇T −∇ · (k∇T )−q = 0 (2.191)

The porous media versions of Eqs. (2.161) and (2.191) can be derived using properties defined in Section 2.2.
Both versions of the energy equation will be derived simultaneously because there is some overlap.

Eq. (2.191) has neglected compression work. Some accuracy could be regained by using a low Mach num-
ber model [20, 52]. Low Mach number models are based on splitting the pressure into a spatially uniform
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thermodynamic pressure P and a nonuniform hydrodynamic pressure Pd � P:

P∗( #»r , t) = P(t)+Pd(
#»r , t) (2.192)

where P∗ is the total pressure. A pressure term appears in both the momentum equation in Eq. (2.94) and the
energy equation in Eq. (2.185). Low Mach models split the pressure such that the thermodynamic pressure
is used in the energy equation, while the hydrodynamic pressure is used in the momentum equation. This
decouples variations in density from acoustic waves, and essentially filters them out. The pressure EOS is
assumed to refer to the thermodynamic pressure. Substituting the EOS into the continuity equation provides
the additional equation needed to close the system. Two common additional simplifications are the 1) variable
density model, in which P is assumed constant, and 2) the Boussinesq model, where in addition to a constant
P, ρ is constant except in the buoyancy term in the momentum equation. Application of the Boussinesq model
and the more general low Mach model to an HTR suggests that a compressible model needs to be used for gas
reactor applications [20].

The time derivative in Eq. (2.161) is rewritten using Eqs. (2.38) and (2.29), giving Eq. (2.193)a. If fluctuations in
density are neglected, and no phase change occurs and the solid is stationary such that #»w f = 0, Eq. (2.193)a simplifies
to Eq. (2.193)b.

〈
∂(ρE)

∂t

〉
→

∂(ε f 〈ρ f 〉 f 〈E f 〉 f )

∂t
+

∂〈ρ̂ f Ê f 〉
∂t

− 1
V–

∫
Si

ρ f E f
#»w f · #»n f dS (2.193a)

→
∂(ε f 〈ρ f 〉 f 〈E f 〉 f )

∂t
(2.193b)

The time derivative term in Eq. (2.191) is first expanded using Eq. (2.30) to give Eq. (2.194).

ρCp

〈
∂T
∂t

〉
→

〈
ρ̂ f Ĉp f

ˆ∂Tf

∂t

〉
+

〈
ρ̂ f

ˆ∂Tf

∂t

〉
〈Cp f 〉 f +

〈
Ĉp f

ˆ∂Tf

∂t

〉
〈ρ f 〉 f+

[
ε f 〈ρ f 〉 f 〈Cp f 〉 f + 〈ρ̂ f Ĉp f 〉

]〈
∂Tf

∂t

〉 f
(2.194)

Then, neglecting fluctuations in density and specific heat relative to fluctuations in temperature gives Eq. (2.195)a.
Next, Eq. (2.38) is used to rewrite the time derivative, as shown in Eq. (2.195)b. Then, all variables are expressed
in terms of intrinsic averages and no phase change and a stationary solid are assumed such that #»w f = 0, giving Eq.
(2.195)c.

ρCp

〈
∂T
∂t

〉
→ 〈ρ f 〉 f 〈Cp f 〉 f

〈
∂Tf

∂t

〉
(2.195a)

→ 〈ρ f 〉 f 〈Cp f 〉 f
(

∂〈Tf 〉
∂t
− 1

V–

∫
Si

Tf
#»w f · #»n f dS

)
(2.195b)

→ 〈ρ f 〉 f 〈Cp f 〉 f ∂(ε f 〈Tf 〉 f )

∂t
(2.195c)

The advective term in Eq. (2.161) is first rewritten using Eq. (2.20)a, giving Eq. (2.196).
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〈∇ · (ρ f H f
#»
V f )〉 → ∇ · 〈ρ f H f

#»
V f 〉+

1
V–

∫
Si

ρ f H f
#»
V f · #»n f dS (2.196a)

→ ∇ · ε f 〈ρ f H f
#»
V f 〉 f +

1
V–

∫
Si

ρ f H f
#»
V f · #»n f dS (2.196b)

Then, Eq. (2.30) is used to expand the gradient argument. Then, neglect fluctuations in density to give Eq.
(2.197)b.

ε f 〈ρ f H f
#»
V f 〉 f → (ε f 〈ρ f 〉 f 〈H f 〉 f + 〈ρ̂ f Ĥ f 〉)〈

#»
V f 〉 f + 〈ρ̂ f

#̂»
V f 〉〈Ĥ f 〉 f + 〈ρ f 〉 f 〈Ĥ f

#̂»
V f 〉+ 〈ρ̂ f Ĥ f

#̂»
V f 〉 (2.197a)

→ ε f 〈ρ f 〉 f 〈H f 〉 f 〈 #»
V f 〉 f + 〈ρ f 〉 f 〈Ĥ f

#̂»
V f 〉 (2.197b)

Inserting Eq. (2.197) into Eq. (2.196)b, with the assumption of no phase change or moving solid such that
#»
V f = 0,

gives the final form of the advective term for the conservative energy equation:

〈∇ · (ρ f H f
#»
V f )〉 → ∇ ·

(
ε f 〈ρ f 〉 f 〈H f 〉 f 〈 #»

V f 〉 f + 〈ρ f 〉 f 〈Ĥ f
#̂»
V f 〉

)
(2.198)

The advective term in Eq. (2.191) is first rewritten using Eq. (2.30):

〈ρ fCp f
#»
V f ·∇Tf 〉 →〈ρ̂ f Ĉp f

#̂»
V f · ˆ∇Tf 〉+ 〈ρ̂ f Ĉp f ˆ∇Tf 〉 · 〈

#»
V f 〉 f + 〈ρ̂ f

#̂»
V f · ˆ∇Tf 〉〈Cp f 〉 f+

〈Ĉp f
#̂»
V f · ˆ∇Tf 〉〈ρ f 〉 f + 〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»

V f · ˆ∇Tf 〉+ 〈
#»
V f 〉 f 〈Cp f 〉 f 〈ρ̂ f · ˆ∇Tf 〉+

〈ρ f 〉 f 〈 #»
V f 〉 f · 〈Ĉp f ˆ∇Tf 〉+

(
〈ρ̂ f Ĉp f 〉〈

#»
V f 〉 f + 〈ρ̂ f

#̂»
V f 〉〈Cp f 〉 f

)
· 〈∇Tf 〉 f+(

〈 #̂»
V f Ĉp f 〉〈ρ f 〉 f + ε f 〈ρ f 〉 f 〈Cp f 〉 f 〈 #»

V f 〉 f + 〈ρ̂ f Ĉp f
#̂»
V f 〉

)
· 〈∇Tf 〉 f

(2.199)

Then, neglecting fluctuations in density and specific heat simplify Eq. (2.199) to Eq. (2.200)a. Then, apply Eq.
(2.20)b to express the gradient term, giving Eq. (2.200)c.

〈ρ fCp f
#»
V f ·∇Tf 〉 → 〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»

V f · ˆ∇Tf 〉+ ε f 〈ρ f 〉 f 〈Cp f 〉 f 〈 #»
V f 〉 f · 〈∇Tf 〉 f (2.200a)

→ 〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»
V f · ˆ∇Tf 〉+ 〈ρ f 〉 f 〈Cp f 〉 f 〈 #»

V f 〉 f · 〈∇Tf 〉 (2.200b)

→ 〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»
V f · ˆ∇Tf 〉+ 〈ρ f 〉 f 〈Cp f 〉 f 〈 #»

V f 〉 f ·
(

ε f ∇〈Tf 〉 f +
1
V–

∫
Si

Tf
#»n f dS

)
(2.200c)

The integral in Eq. (2.200)c represents the tortuosity advective flux, or the increase in advection caused by me-
chanical effects of the solid on the fluid. It is neglected in Pronghorn. Averaging the heat conduction term first using
Eq. (2.20)b gives Eq. (2.201)a. Then, apply Eq. (2.29) to give Eq. (2.201)b, followed by Eq. (2.20)b to give Eq.
(2.201)c. By neglecting the fluctuation in thermal conductivity, Eq. (2.201)d results.
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〈∇ · k f ∇Tf 〉 → ∇ · 〈k f ∇Tf 〉+
1
V–

∫
Si

k f ∇Tf
#»n f dS (2.201a)

→ ∇ · ε f 〈k f 〉 f 〈∇Tf 〉 f +∇ · 〈k̂ f ˆ∇Tf 〉+
1
V–

∫
Si

k f ∇Tf
#»n f dS (2.201b)

→ ∇ · 〈k f 〉 f
(

ε f ∇〈Tf 〉 f +
1
V–

∫
Si

T̂f
#»n f dS

)
+∇ · 〈k̂ f ˆ∇Tf 〉+

1
V–

∫
Si

k f ∇Tf
#»n f dS (2.201c)

→ ∇ · 〈k f 〉 f
(

ε f ∇〈Tf 〉 f +
1
V–

∫
Si

T̂f
#»n f dS

)
+

1
V–

∫
Si

k f ∇Tf
#»n f dS (2.201d)

The first integral in Eq. (2.201)d is often represented as the tortuosity heat flux (though some authors define the
tortuoisity heat flux based on the use of Eq. (2.20)a, rather than Eq. (2.20)b) [53]. This tortuosity heat flux is often
very small because convection dominates conduction, and hence it can be neglected [53]. The second integral in Eq.
(2.201)d represents the average heat flux from the fluid to the solid at the fluid-solid boundary. This can be expressed
using Newton’s law of cooling as:

1
V–

∫
Si

k f ∇Tf
#»n f dS = α

(
〈Ts〉s−〈Tf 〉 f

)
(2.202)

where α is the convective heat transfer coefficient between the two intrinsic phase averaged temperatures. To
obtain the correct units for the convective cooling term, α represents the heat transfer coefficient hc (which appears in
Nusselt number correlations) multiplied by aw:

α≡ awhc (2.203)

where aw represents the ratio of the wetted area through which heat transfer can occur in a length of δx per unit
volume of length δx, in the limit of δx going to zero. In other words, aw represents the heat transfer area per unit
volume.

aw = lim
δx→0

wetted heat transfer area of length δx
volume of length δx

(2.204)

For spherical particles, aw is defined in terms of the solid area and volume, and then multiplied by (1− ε) to
reflect the portion of the volume that is solid.

aw = 4
π(dp/2)2

(4/3)π(dp/2)3 (1− ε)

=
6(1− ε)

dp

(2.205)

Dixon and Cresswell suggest that aw has an additional component in pebble bed systems that accounts for the
presence and shape of the solid particles [32]:

aw→ aw
ks

10ks +Nuk f
(2.206)

Correlations for Nu are discussed in Section 10. Finally, the source term is S f =−ρ f
#»
V f · #»g −q for the conserva-

tive equation. For the nonconservative equation, the gravitational acceleration term was subtracted out earlier in the
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formation of the internal energy equation, and is not needed. Eq. (2.29) is used to rewrite the product term, giving Eq.
(2.207)b.

〈S f 〉 → −〈ρ f
#»
V f ·

#»

b 〉−〈q f 〉 (2.207a)

→ − ε f 〈ρ f 〉 f 〈 #»
V f 〉 f · 〈 #»

b 〉 f − ε f 〈ρ̂ f
#̂»
V f 〉 · 〈

#»

b 〉 f −〈q f 〉 (2.207b)

For flows in which thermal and pressure gradients are not very large, density gradients will be much smaller than
velocity gradients at the microscopic level. Combining these derivations together gives the porous media versions of
Eqs. (2.161) and (2.191):

∂(ε f 〈ρ f 〉 f 〈E f 〉 f )

∂t
+∇ ·

[
ε f 〈ρ f 〉 f 〈H f 〉 f 〈 #»

V f 〉 f
]
+∇ ·

[
〈ρ f 〉 f 〈Ĥ f

#̂»
V f 〉

]
−∇ ·

(
ε f 〈k f 〉 f

∇〈Tf 〉 f
)
+α

(
〈Tf 〉 f −〈Ts〉s

)
− ε f 〈ρ f 〉 f 〈 #»

V f 〉 f · #»

b −〈q f 〉= 0
(2.208)

〈ρ f 〉 f 〈Cp f 〉 f ∂(ε f 〈Tf 〉 f )

∂t
+ 〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»

V f ˆ∇Tf 〉+ ε f 〈ρ f 〉 f 〈Cp f 〉 f 〈 #»
V f 〉 f

∇〈Tf 〉 f+

−∇ ·
(

ε f 〈k f 〉 f
∇〈Tf 〉 f

)
+α

(
〈Tf 〉 f −〈Ts〉s

)
−〈q f 〉= 0

(2.209)

This equation still leaves one term that needs to be described with a constitutive model. Thermal energy dispersion
arises due to additional mixing caused by the porous media due to 1) changes in flow direction initiated by the solid
particles, 2) recirculation flows within the pores, and 3) eddy diffusion in turbulence. Following a procedure very
similar to the derivation of the Reynolds stress transport equation, it can be shown that this thermal dispersion term
can be approximated with a gradient diffusion hypothesis as [53]:

〈ρ f 〉 f 〈Cp f 〉 f 〈 #̂»
V f ˆ∇Tf 〉 ≈ −∇ · (kd∇〈Tf 〉 f ) (2.210)

where kd is a thermal dispersion conductivity. The thermal dispersion conductivity captures enhanced diffusion
due to velocity and temperature perturbations in the porous media, and only appears in the fluid energy equation. The
thermal dispersion conductivity is in general a second-order tensor. Correlations representing k f + kd are frequently
given in the literature as the “effective fluid thermal conductivity”κ f . Correlations for κ f are discussed in Section 12.
Eqs. (2.208) and (2.209) written in Pronghorn’s notation become:

∂(ερ f E)
∂t

+∇ · (εH f ρ f
#»
V )−∇ · (κ f ∇Tf )− ερ f

#»

b · #»
V +α(Tf −Ts)−q f = 0 (2.211)

ρ fCp f
∂(εTf )

∂t
+ ερ fCp f

#»
V ·∇Tf +∇ · (κ f ∇Tf )+α(Tf −Ts)−q f = 0 (2.212)

Hence, E f , H f , Tf , Cp f , and k f represent the fluid intrinsic average total energy, total enthalpy, temperature, specific
heat, and thermal conductivity, respectively. α represents the extrinsic average convective heat transfer coefficient
(which is the same for both the fluid and solid, and hence can also be interpreted as the intrinsic average convective
heat transfer coefficient). q f represents the fluid extrinsic average heat source.

Eq. (2.212) is sometimes shown in a conservative (but more restrictive) form in terms of ρCpT . The conserva-
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tive time and advection of ρCpT can be expanded as:

∂(ρCpT )
∂t

+∇ · (ρCpT
#»
V )≡CpT

���
���

���
��(

∂ρ

∂t
+ρ∇ · #»

V +
#»
V ·∇ρ

)
+

+ρCp
∂T
∂t

+ρT
∂Cp

∂t
+ρCp

#»
V ·∇T +ρT

#»
V ·∇Cp

(2.213)

where the continuity equation cancels. Provided the specific heat is constant in both space ∇Cp = 0 and
time ∂Cp/∂t = 0, the following equality exists, and the nonconservative energy equation can be written in
conservative form:

∂(ερCpT )
∂t

+∇ · (ερCpT
#»
V )≡ ρCp

∂(εT )
∂t

+ ερCp
#»
V ·∇T (2.214)

where porosity has been inserted as appropriate.

As a final remark, the governing equations in Pronghorn allow for compressibility of the fluid, so long as the
compression is not so large that compression work or volume dissipative effects become important.

2.6 The Solid Energy Equation

To obtain the solid energy equation, simply set
#»
V = 0 in Eq. (2.211) or (2.212) with ε replaced by 1− ε to reflect the

fraction of the volume that is solid. The assumptions made in the derivation of the solid energy equation are therefore
the same as those made in the derivation of the fluid energy equation, except that the solid is also assumed stationary.
Because EOS are often only available for solids in terms of pressure and temperature, the nonconservative energy
equation in Eq. (2.212) is used exclusively for the solid:

(1− ε)ρsCps
∂Ts

∂t
−∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0 (2.215)

where κs is the effective solid thermal conductivity that represents the effective thermal dispersion in the solid
phase, ρs represents the solid intrinsic average density, and Cps represents the solid intrinsic average specific heat.
Correlations for κs are generally more complex than those for κ f , because κs captures the combined effects of solid-
to-solid radiation, solid-fluid-solid conduction, and solid-to-solid conduction. Models for these components of κs are
given in Section 11.

κs = κradiation +κfluid conduction +κsolid conduction (2.216)

Even if there are no heat sources in either phase, the temperatures of the phases will not match at the edges of the
bed if any heat transfer occurs from the bed to the ambient. The velocity channeling effect at the bed edges causes
higher convective heat transfer between the walls and the fluid [54]. Because the fluid has some nonzero heat capacity,
there is a time delay for heat transfer to the solid, by which time the fluid has continued through the bed, resulting in a
temperature difference between the solid and fluid phases. Fig. 7 shows solid and fluid temperatures for flow towards
the right of a 300 K inlet temperature with walls held at 400 K [5]. This effect has also been observed in the SANA
validation tests [55].
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Figure 7: Solid and fluid temperatures for two vertical planes cut through a cylindrical bed [5]. Flow is to the right,
entering with a temperature of 300 K with walls held at 400 K. The slight discontinuity in the temperatures is caused
by neglecting axial conduction.

Similarly, if there is a large ks/k f , differences in conductive heat transport will also produce temperature differ-
ences. So, even if the phases are in approximate thermal equilibrium, using two energy equations will still provide
more accurate results. Fig. 7 also illustrates why radiation heat transfer from the pebbles to the wall can be significant
- despite touching the wall, the solid is not necessarily at the same temperature as the wall.

While the volume averaging approach was used to obtain Eq. (2.215), most porous media codes interpret Ts as a
volume-averaged solid surface temperature, rather than as a volume average over all regions of the solid [10,36,49,50,
56]. This assumption permits a relatively straightforward solution of the solid temperature profile. This approach is
most commonly performed by using an element-wise average or maximum Ts as a Dirichlet BC imposed on the solid
surface. For pebble fuels, because each solid is relatively small, without significant loss of accuracy a single Dirichlet
temperature BC is imposed over the entire surface, reducing the solution of the fuel temperature profile to a 1-D heat
conduction problem in many independent pebbles:

(
ρCp

)
p

∂Tp

∂t
−∇ · (kp∇Tp)− (1− ε)q̇s = 0 (2.217)

where p subscript refers to “pebble,” but strictly speaking the above formulation is also valid for non-spherical
solid shapes. q̇s is the heat source in the solid phase, and to properly conserve energy in the fuel temperature solution,
this quantity must be scaled by 1− ε. No pebbles are explicitly modeled in the flow field, but are rather superimposed
on the problem, i.e. a “representative” pebble is modeled at spatial locations that may or may not actually correspond
to a physical pebble location.

For steady-state 1-D radial conduction with constant thermal properties and uniform q̇s, the analytical solution
for a single-region pebble is linear in q̇s and Tp(Rp) and quadratic in Rp:

Tp(r) =−
(1− ε)q̇s

6kp

(
r2−R2

p

)
+Tp(Rp) (2.218)

Unfortunately, for the TRistructural ISOtropic (TRISO) that is used in pebble fuels, a significant level of hetero-
geneity exists in a single pebble. Fuel kernels on the order of a mm in size are packed in a graphite matrix that is
most often surrounded by a graphite shell, with a pebble diameter on the order of cm. This poses significant problems
for even performing a 1-D conduction solution in a pebble due to the randomness and complicated mesh required.
While Eq. (2.217) can be used in the homogeneous graphite shell, a common simplification of the fuel-graphite matrix
region involves homogenization with spatially-uniform thermal properties. A homogenized fuel temperature Tp f and
graphite matrix temperature Tpm are then solved in this region, with each equation having the form in Eq. (2.217),
with the inclusion of an extra phase coupling term to simulate heat transfer between the TRISO particles and their
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immediately-surrounding graphite matrix [57]:

(ρCp)p f

∂Tp f

∂t
−∇ · (kp f ∇Tp f )+η

(
Tp f −Tpm

)
− (1− ε)q̇s = 0 (2.219)

(ρCp)pm

∂Tpm

∂t
−∇ · (kpm∇Tpm)−η

(
Tp f −Tpm

)
= 0 (2.220)

where p f subscript denotes the homogenized fuel temperature, pm the homogenized graphite matrix temperature,
and η is a coupling coefficient between the phases. Average values for (ρCp)p and kp need to be determined. The
simplest averaging techniques involve parallel and series heat transfer arguments such as sometimes used in evaluating
κs in Eqs. (11.2) and (11.3). Strictly parallel or series heat transfer provide bounds on the actual thermal properties,
but differences in pebble centerline temperatures have been shown to differ by 60°C between these two methods for
gas reactor systems [57]. Even simpler, some have just used graphite thermal properties for the fuel region, since the
graphite matrix constitutes the majority of the region [58]. More advanced Monte Carlo methods have been developed
to solve the conduction problem to provide reference solutions for least-squares fitting of (ρCp)p and kp, but are
relatively expensive [57, 59].

These Monte Carlo methods are based on similarity in the Poisson equation and the neutron diffusion equation
with no fission or absorption. If custom cross sections are defined for the simulation to obtain equivalence be-
tween the thermal conductivity and the neutron diffusion coefficient, then the Monte Carlo results are stochastic
solutions to the heat conduction equation, and tallies can be used to evaluate effective thermal properties [59].
Special treatments are required at boundaries, since the Dirichlet or Neumann-type BCs used in the heat equa-
tion do not have immediate analogues in the neutron diffusion equation and the diffusion equation is invalid
near boundaries. Scaling the problem to obtain a smaller mean free path and/or imposing transport-corrected
BCs on the Monte Carlo output results have both been shown to be effective [59].

It may simply be sufficient to evaluate (ρCp)p and kp as the average of the series and parallel heat transfer bounds
to a first order approximation [59]. Reference solutions or other analytical approximations are required for estimating
η, however. Assuming a method exists for computing a homogenized solid temperature profile, for TRISO fuel, this
homogenized temperature does not correspond to the fuel kernel temperature, which is most often the parameter of
interest for reactivity feedback calculations. To obtain the temperature distribution within a single TRISO particle,
another similar level of multiscale extrapolation is performed. A 1-D heat conduction solution can be performed
within a “representative” TRISO particle by applying a Dirichlet temperature BC obtained from either the fuel region
average or peak temperature, depending on the metric of interest. This multi-level superposition of pebble in a bed
and fuel particle within a pebble has been frequently used [11,57], and is very straightforward to implement within the
MOOSE MultiApp system. Each MOOSE “animal” is a MultiApp that has many capabilities in place to exchange
information with other MOOSE MultiApps. The tree-level coupling hierarchy between MOOSE applications permits
straightforward multiscale analysis of pebble bed reactors.

A MasterApp controls the execution of a coupled simulation of any number of applications. A multiscale core
Thermal-Hydraulic (T/H) simulation can be performed by setting Pronghorn as the MasterApp that controls many par-
allel instances of a fuels performance MultiApp such as BISON [60]. This fuels performance MultiApp receives fuel
surface temperatures from Pronghorn and solves many fuel pebbles independently. Each of these fuels performance
MultiApps would then each control a TRISO performance MultiApp that solves for a representative TRISO particle
in each fuel pebble. This multiscale coupling capability is available in Pronghorn and all other MOOSE applications,
and will be described in more detail in the user manual.
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2.7 The Legacy Pronghorn Equations

In order to compare physical results with the legacy version of Pronghorn circa 2008, additional kernels and BCs
are included that represent additional assumptions that are more restrictive than the governing equations discussed
in Sections 2.3, 2.4, 2.5, and 2.6 [61]. Pronghorn includes capabilities for using the same equations as the legacy
Pronghorn, except that density may come from any EOS (i.e. the ideal gas law is no longer hard-wired into the source
code). The remainder of this section presents the mass, momentum, fluid energy, and solid energy equations for
backwards compatibility.

The legacy version of Pronghorn neglected the advection and time terms in the momentum equation and set
#»

b ≡ #»g ,
giving the following momentum equation [61]:

ε∇P− ερ f
#»g +Wρ f

#»
V = 0 (2.221)

Eq. (2.221) is solved for momentum. Substituting ρ f
#»
V in Eq. (2.221) into the continuity equation in Eq. (2.49)

gives a Poisson equation that can be solved for density or pressure:

ε
∂ρ f

∂t
+∇ ·

[
ε

W

(
ερ f

#»g − ε∇P
)]

= 0 (2.222)

The legacy fluid energy equation was Eq. (2.212), written in conservative form according to Eq. (2.214), which is
only valid if the specific heat is constant. Because the legacy Pronghorn always assumed the ideal gas law, the specific
heat was always constant (this is an inherent assumption in this EOS), which is why the conservative form was valid.
However, the modern Pronghorn removes this restriction, and in general the conservative form is not valid. Eq. (2.215)
was used for the solid energy.

2.8 A Unified Approach to Solving the Navier-Stokes Equations

The previous sections have described the derivation of the conservation of mass, momentum, and energy equations for
the fluid and solid phases for a general compressible fluid and a stationary solid. Because the coupling of the fluid and
solid energy equations only occurs through the convective heat transfer term, the solid energy equation is not tightly
coupled to the fluid equations, and is excluded from the discussion in this section.

The Navier-Stokes equations, on the other hand, must be solved in terms of the three components of velocity (or
momentum) and two thermodynamic state variables, such as P and T or ρE and ρ. One choice of solution variables
will not necessarily be ideal for all flows. For example, flibe is a nearly incompressible fluid, since it’s variation with
pressure is very small. If the Navier-Stokes equations were solved for velocity, density, and temperature, determining
pressure from the EOS as a function of density and temperature would require a very large number of significant
digits (and would introduce stiffness and contamination of the solution), since density varies so little with pressure.
For molten salts, (∂ρ/∂P)T ≈ 1.73× 10−7, giving a compressibility αT = 8.66× 10−11, a very small number [62]!
Numerical error in the density will result in very inaccurate pressure calculations, requiring an incompressible model
[15, 49]. Solving the governing equations for some other variable besides density would be a wise choice. Gases
are often treated as compressible, in which case density varies strongly with both pressure and temperature, and the
best choice of solution variables are often the conserved quantities of mass, momentum, and energy [63]. There is no
clean dividing line between compressible and incompressible flows, so some approach for unifying these flows under
a single set of solution variables would be desirable.

Section 2.5 showed the derivation of the fluid energy equation in terms of a conservative variable (ρE) and a primi-
tive variable (Tf ). Similar derivations could be performed to transform the mass, momentum, and energy equations for
the conserved variables to equations for any choice of solution variables. However, Hauke and Hughes have developed
a unified approach to solving the Navier-Stokes equations for any choice of solution variables that does not rely on
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direct manipulation of each equation. This unified approach is obtained by multiplying the conservative form of the
compressible Navier-Stokes equations by matrices representing the derivatives of the conserved quantities with respect
to a new set of variables. This permits the solution of both incompressible and compressible flows, for any solution
variables, with only minor modifications to the source code and no lengthy by-hand derivations that use thermody-
namic relationships to transform equations of one variable to equations of a different variable [64]. See the derivation
of Eq. (2.212) from Eq. (2.211) in Section 2.5 for the alternative (but not conducive to easy implementation) approach
to what is described in this section.

The unified solution method is best described by writing the system of fluid equations to be solved in Pronghorn
in condensed form as:

∂(ε
#»
U )

∂t
+

∂(ε
#»
F i)

∂xi
− ∂

#»
Gi

∂xi
+

#»
S =

#»
0 (2.223)

where
#»
U is the vector of unknowns,

#»
F is the inviscid flux vector,

#»
G is the diffusive flux vector, and

#»
S is the source

vector:

#»
U =


ρ f

ρ fV1
ρ fV2
ρ fV3
ρ f E

 ,
#»
F i =


ρ fVi

ρ fV1Vi +Pδ1i
ρ fV2Vi +Pδ2i
ρ fV3Vi +Pδ3i

H f ρ fVi

 ,
#»
Gi =


0
0
0
0

κ f
∂Tf
∂xi

 ,
#»
S =


0

−ερ f g1 +Wρ fV1−P ∂ε

∂x1

−ερ f g2 +Wρ fV2−P ∂ε

∂x2

−ερ f g3 +Wρ fV3−P ∂ε

∂x3
−ερ f biVi +α(Tf −Ts)− q̇ f

 (2.224)

where for simplicity ε is kept within the time differentiation term, though it should be noted that it is assumed
time-independent in Pronghorn. ε∇P has been expanded as ∇(εP)−P∇ε such that εP could be moved inside the flux
term. This equation can be written in quasi-linear form using the chain rule:

∂(ε
#»
U )

∂t
+ εAi

∂
#»
U

∂xi
+

#»
F i

∂ε

∂xi
− ∂

∂xi

(
Ki j

∂
#»
U

∂x j

)
+

#»
S =

#»
0

≡ #»
R(

#»
U )

(2.225)

where Ai are the inviscid flux Jacobian matrices:

Ai ≡
∂

#»
F i

∂
#»
U

(2.226)

and Ki j are the diffusive flux Jacobian matrices:

Ki j
∂

#»
U

∂x j
≡ #»

Gi (2.227)

and
#»
R(

#»
U ) is the strong residual vector.

#»
F i is homogeneous of degree 1 in the conservative variables

#»
U if

#»
F i(α

#»
U )=

α
#»
F i(

#»
U ), which occurs if P(αρ,e) = αP(ρ,e), where α is a positive constant. If this homogeneity property holds, then:

#»
F i = Ai

#»
U (2.228)

While Eq. (2.228) does not hold for a generic EOS, it holds for the ideal gas EOS.
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Eq. (2.228) for the ideal gas law can be shown for
#»
F 1 by simply performing the multiplication:

A1


ρ

ρV1
ρV2
ρV3
ρE

=



ρV1

ρV1V1 +(γ−1)
[
ρE− 1

2 ρ(V1V1 +V2V2 +V3V3)
]

ρV1V2
ρV1V3

V1ρE +V1(γ−1)
[
ρE− 1

2 ρ(V1V1 +V2V2 +V3V3)
]


(2.229)

Recognizing the ideal gas EOS for pressure from Eq. (7.10)b and the definition of total energy from Eq.
(2.154) and total enthalpy from Eq. (2.160) the above becomes:

A1


ρ

ρV1
ρV2
ρV3
ρE

=


ρV1

ρV1V1 +P
ρV1V2
ρV1V3
V1h

 (2.230)

which matches
#»
F 1 defined in Eq. (15.26). A similar procedure can be performed for A2

#»
U and A3

#»
U .

Eq. (2.223) is an equation for the set of variables in
#»
U given in Eq. (2.224), and has the following weak form:

∫
Ω

(
#»
W · ∂(ε

#»
U )

∂t
− ε

∂
#»
W

∂xi
· #»
F i +

∂
#»
W

∂xi
·Ki j

∂
#»
U

∂x j
+

#»
W · #»

S

)
dΩ =

∫
∂Ω

(
−ε

#»
W · #»

F i +
#»
W ·Ki j

∂
#»
U

∂x j

)
nidΓ (2.231)

Instead, the governing equations can be solved for an arbitrary set of variables
#̃»
U by replacing ∂

#»
U/∂ξi by M ∂

#̃»
U/∂ξi,

where ξ is either the spatial or time derivatives. Then, in order to retain the same type of weak form structure, multiply
all terms in the weak form by M−1 from the left, giving:

∫
Ω

 #»
W · ∂(ε

#̃»
U )

∂t
− ε

∂
#»
W

∂xi
· #»
F i +

∂
#»
W

∂xi
· K̃i j

∂
#̃»
U

∂x j
+

#»
W · #»

S

dΩ =
∫

∂Ω

−ε
#»
W · #»

F i +
#»
W · K̃i j

∂
#̃»
U

∂x j

nidΓ (2.232)

#»
F i and

#»
S are then evaluated at the new solution variables

#̃»
U . M is a matrix representing the partial derivative of

the conservative set of variables to the new set of variables:

M≡ ∂
#»
U

∂
#̃»
U

(2.233)

and K̃i j is defined as:

K̃i j ≡M−1Ki jM (2.234)
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In order to evaluate the strong residual in Eq. (2.225), reverse-integrate Eq. (2.232) by parts:

∂(ε
#̃»
U )

∂t
+ εÃi

∂
#̃»
U

∂xi
+

#»
F i

∂ε

∂xi
− ∂

∂xi

Ki jM
∂

#̃»
U

∂x j

+
#»
S = 0 (2.235)

where Ãi is defined as:

Ãi ≡M−1AiM (2.236)

To solve the Navier-Stokes equations for any set of variables simply requires determining Eq. (2.233) and forming
the above matrices. M will depend on the EOS. Not only is this method clean and easy to implement, but by beginning
from the conservative Navier-Stokes equations, incompressbile flows can be simulated while retaining two important
features of compressible Finite Element (FE) formulations [63]:

1. A conservative method, which is important for obtaining correct shock structure;

2. Flexibility to use equal-order interpolation functions. FE simulations of incompressible flows are often subject
to strict requirements to use different interpolation orders for the solution variables that are not present for
compressible flows.

For incompressible fluids, density is constant, so αT = β = 0. If density is selected as a solution variable for a
nearly incompressible system, entries in the inviscid flux Jacobian matrices defined in Eq. (2.226) for the new system
of variables will tend to infinity as αT and β tend to zero. This condition would certainly be met for molten salts, with
αT being on the order of 10−11. In other words, the condition number of the Ai gets increasingly large, and the system
stiffer and stiffer, as the system becomes less and less compressible [63]. Using the conserved variables ρ, ρV , and
ρE will also not behave well in the incompressible limit.

By using either entropy variables or P-V -T variables, both compressible and incompressible flows can be simu-
lated, with the incompressible limit well-behaved [51, 63]. In addition, the use of entropy variables yields symmetric
Ãi, K̃i j, and M matrices, which generally improves the iterative solution [51]. The matrices involved may become
rank deficient as αT and β tend to zero, so the inverses should always be computed analytically. A challenge with this
unified approach is defining a stabilization scheme that works well for both compressible and incompressible flows,
since the stabilization parameter is often defined separately for these regimes. A simple interpolation scheme has been
proposed [63]:

τSUPG =
τSUPG,inc +

(
Ma
Mo

)ko
τSUPG,comp

1+
(

Ma
Mo

)ko
(2.237)

where τSUPG,inc and τSUPG,comp are the Streamline-Upwind Petrov-Galerkin (SUPG) stabilization matrices derived
for incompressible and compressible flows, respectively; Ma is the Mach number; and Mo and ko are constants.

The following sections provide derivations of the M matrices for several choices of solution variables. Work is
currently ongoing to implement this change-of-variables approach to solve for incompressible flows. All choices of
variables give results of comparable accuracy as the mesh is refined, but differences are present for coarser meshes [63].
In taking the derivatives of variables with respect to one another, derivatives of velocity with respect to thermodynamic
properties are zero because velocity is strictly a flow property that is only influenced through the governing equations,
rather than through thermodynamic relationships. In addition, when taking derivatives of a variable with respect to one
thermodynamic quantity (such as the derivative of density with respect to pressure), the other thermodynamic variable
in

#̃»
U must be held constant. Throughout the derivations that follow, the Gibbs identity in Eq. (2.166) and the Maxwell
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identity in Eq. (2.178) are used, along with definitions of specific heats in Eqs. (2.176) and (2.177), the volumetric
thermal expansion coefficient in Eq. (2.183), and the enthalpy and total enthalpy in Eqs. (2.159) and (2.160). The
compressibility αT will be used, and is defined as:

αT ≡
1
ρ

(
∂ρ

∂P

)
T

=− 1
ν

(
∂ν

∂P

)
T

(2.238)

Density Primitive Variables - ρ, V , and T

For a transformation from the solution variables in Eq. (15.25) to the following primitive variables,

#̃»
U =

[
ρ V1 V2 V3 T

]T
(2.239)

M and its inverse become [63]:

M =


1 0 0 0 0

V1 ρ 0 0 0
V2 0 ρ 0 0
V3 0 0 ρ 0

H−βT/(αT ρ) ρV1 ρV2 ρV3 ρCν

 (2.240)

M−1 =



1 0 0 0 0
−V1

ρ

1
ρ

0 0 0
−V2

ρ
0 1

ρ
0 0

−V3
ρ

0 0 1
ρ

0
‖ #»

V ‖22−[H−βT/(αT ρ)]
ρCν

− V1
ρCν

− V2
ρCν

− V3
ρCν

1
ρCν


(2.241)

Pressure Primitive Variables - P, V , and T

For a transformation from the solution variables in Eq. (15.25) to the following primitive variables,

#̃»
U =

[
P V1 V2 V3 T

]T
(2.242)

M and its inverse become [63]:

M =


ραT 0 0 0 −ρβ

ραTV1 ρ 0 0 −ρβV1
ραTV2 0 ρ 0 −ρβV2
ραTV3 0 0 ρ −ρβV3

ραT H−βT ρV1 ρV2 ρV3 ρCp−ρβH

 (2.243)
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M−1 =
1
ρ



ρCp−ρβH+ρβ‖ #»
V ‖22

ραT Cν
− βV1

αT Cν
− βV2

αT Cν
− βV3

αT Cν

β

αT Cν

−V1 1 0 0 0
−V2 0 1 0 0
−V3 0 0 1 0

ραT ‖
#»
V ‖22−(ραT H−βT )

ραT Cν
−V1

Cν
−V2

Cν
−V3

Cν

1
Cν

 (2.244)

2.9 Boundary Conditions

This section specifies the BCs for the governing equations derived in the previous sections from a theoretical perspec-
tive. Section 6 defines the BCs that arise from the FEM. The BCs will be presented here for the general governing
equations for a Newtonian fluid, and then simplifications will be made for the particular application range expected.
All BCs are derived by considering a general interface between two regions. Statements can only be made about the
normal components of quantities of interest such as velocity and momentum. This is also reflected in the BCs actually
implemented within the finite element framework.

If an interface S is defined as a function S( #»x , t) = 0, the material derivative of S must also equal zero:

∂S
∂t

+
∂xi

∂t
∂S
∂xi

= 0 (2.245)

A unit surface normal to the surface S is defined as:

#»n =
∇S
|∇S|

(2.246)

Inserting this definition into Eq. (2.245) and dividing through by |∇S|:

∂S/∂t
|∇S|

+
∂xi

∂t
ni = 0 (2.247)

Only the normal component of velocity appears in Eq. (2.247), which demonstrates why only conclusive
statements can be made of the normal component of quantities of interest.

It is commonplace to see BCs applied to tangential components of velocity, such as in the no-slip condition which
requires

#»
V · #»s = 0, where #»s is a unit tangential vector to the surface. These BCs are to the discretion of the modeler,

and only the normal conditions are strictly required from conservation of mass, momentum, and energy. These required
BCs are derived by selecting a control volume straddling an interface, where the interface moves with velocity V. The
control volume selected moves with the interface, with relative velocity

#»
V ′ defined by:

#»
V ′ =

#»
V −V · #»n (2.248)

The BCs are developed for a relative velocity, where the control volume moves with the interface. This is required
so that integrals over the control volume are finite, which in the limit of zero volume signifies that the integrals also
go to zero. All jump terms are evaluated on either side of the interface. Gradients are typically large directly at the
interface, but on either side are small, and this observation will justify neglecting some terms in the BCs.
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2.9.1 The Continuity Equation

Balancing mass as in Eq. (2.47) over an interface moving, with the positive direction defined pointing from side “1”
to side “2”:

∫
V–

∂ρ

∂t
dV– =−ρ

#»
V ′ · #»n

∣∣∣∣2
1
+mass flow ‖ to interface (2.249)

In the limit of the thickness of the control volume (perpendicular to the interface) going to zero, the term on the
LHS and the parallel flow term both go to zero. Then, the mass balance BC is given in Eq. (2.250)a.

ρ
#»
V ′ · #»n

∣∣∣∣2
1
= 0 (general interface) (2.250a)

#»
V · #»n

∣∣∣∣2
1
= 0 (material interface) (2.250b)

A material interface is defined as an interface between two materials that do not exchange mass, such as the case
for a fluid flowing along a solid boundary, assuming that none of the fluid converts to the solid and vice versa. To
reduce Eq. (2.250)a to a relation for a material interface, the speed of the material interface is defined to be:

V≡ #»
V · #»n (2.251)

Inserting Eq. (2.251) into Eq. (2.250)a, for
#»
V =

#»
V1 or

#»
V =

#»
V2 gives Eq. (2.250)b. For a material interface with no

exchange of material, the normal component of the velocity must be continuous. Hence, for a solid wall that has zero
velocity, fluid in contact with that wall must have a zero normal component of velocity. This is sometimes referred to
as the “kinematic,” or “no penetration” BC.

2.9.2 The Momentum Equation

Balancing momentum as in Eq. (2.58) over the same control volume:

∫
V–

∂

∂t

(
ρV ′i
)

dV– =−ρV ′i
#»
V ′i · #»n

∣∣∣∣2
1
+σi jn j

∣∣∣∣2
1
+ fs,i +

∫
V–

ρgidV– + momentum flow ‖ to interface (2.252)

where fs represents the resultant surface tension force. Note that the positive sign on the net contact force term
σi jn j occurs due to the definition of σi j representing the force acting on the volume by its surroundings. In the limit
of the thickness of the control volume going to zero, Eq. (2.253)a arises. Inserting Eq. (2.251) into Eq. (2.253), Eq.
(2.253)a reduces to Eq. (2.253)b for a material interface.

ρV ′i
#»
V ′i · #»n

∣∣∣∣2
1
= σi jn j

∣∣∣∣2
1
+ fs,i (general interface) (2.253a)

0 = σi jn j

∣∣∣∣2
1
+ fs,i (material interface) (2.253b)
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The free jet BC commonly encountered in introductory fluids courses results from Eq. (2.253)b by assuming the
Newtonian constitutive relationship in Eq. (2.90) and neglecting viscous and surface tension forces. Then, the BC
for a free jet is simply that the pressure everywhere in the jet equals the atmospheric pressure. Because viscous and
surface tension effects are neglected in Pronghorn, Eq. (2.253) simplifies to:

ρV ′i
#»
V ′i · #»n

∣∣∣∣2
1
= P

∣∣∣∣2
1

(general interface) (2.254a)

0 = P
∣∣∣∣2
1

(material interface) (2.254b)

Because the reactor systems modeled are expected to be dominated by inertial forces, the ratio of surface tension
to inertial forces should be small, so the above simplification is valid.

2.9.3 The Energy Equation

Balancing energy as in Eq. (2.157) over the same control volume:

∫
V–

∂(ρE)
∂t

dV– =−ρE
#»
V ′ · #»n

∣∣∣∣2
1
− #»q · #»n

∣∣∣∣2
1
+σi jn jV ′i

∣∣∣∣2
1
+

∫
V–

ρbiVidV– (2.255)

In the limit of the thickness of the control volume going to zero and assuming the Newtonian constitutive relation-
ship in Eq. (2.90) and the definition of enthalpy in Eq. (2.160), Eq. (2.256)a results. Inserting Eq. (2.251) into Eq.
(2.256)a gives Eq. (2.256)b.

ρ

(
1
2
|V |2 +h

)
#»
V ′ · #»n

∣∣∣∣2
1
= − #»q · #»n

∣∣∣∣2
1
+(τ+ζ∇ · #»

V δi j)n jV ′i

∣∣∣∣2
1

(general interface) (2.256a)

0 = − #»q · #»n
∣∣∣∣2
1
+(τ+ζ∇ · #»

V δi j)n jV ′i

∣∣∣∣2
1

(material interface) (2.256b)

For an interface at which a phase change is occurring, h|21 represents the enthalpy of vaporization. For virtually
all situations, the enthalpy of vaporization is of much larger magnitude than the kinetic energy change, and hence the
kinetic energy term can be neglected. Because viscous and volumetric viscosity effects are neglected in Pronghorn,
Eq. (2.256) simplifies to:

ρ

(
1
2
|V |2 +h

)
#»
V ′ · #»n

∣∣∣∣2
1
= − #»q · #»n

∣∣∣∣2
1

(general interface) (2.257a)

0 = − #»q · #»n
∣∣∣∣2
1

(material interface) (2.257b)

2.10 Nondimensionalization of the Governing Equations

This section presents the non-dimensionalization of the governing equations for momentum and energy in order to
justify why certain terms can be neglected in Pronghorn. No terms are neglected in the mass conservation equation,

68



so this equation does not need to be nondimensionalized. Operating conditions for representative reactor systems
are reviewed to show that neglecting terms is valid for the range of applicability of Pronghorn. In addition to the
classical nondimensionalization approach, a brief discussion on the validity of a compressible versus incompressible
flow model is provided in order to guide the selection of solution variables (conservative versus primitive) based on
dimensionless numbers.

2.10.1 The Momentum Equation

Eq. (2.95), with the material derivative expanded, is repeated here for convenience:

ρ
∂Vi

∂t
+ρ

#»
V ·∇Vi = ρgi−∇P+∇ ·

[
µ
(

∇Vi +(∇Vi)
T
)
− 2µ

3
∇ · #»

V
]

The following non-dimensional quantities are defined:

t+ =
t
to
, V+ =

Vi

Vo
, P+ =

P
Po

, x+ =
x
L
, g+ =

gi

go
(2.258)

Two different choices can be made to scale pressure, where the selection is based on the flow regime. For
flows dominated by inertial forces, Po can be set to ρV 2

o . For example, for flow past a cylinder, the highest
pressure in the system is the stagnation pressure, which can be shown to equal ρV 2

o from a simple application
of the Bernoulli equation (which assumes inviscid flow). For flows dominated by viscous forces, a different
selection can be made by selecting Po = µVo/L. Po = ρV 2

o is selected here because the flows to be modeled by
Pronghorn are expected to be dominated by inertial forces.

Inserting these nondimensional quantities into the 1-D form of the Navier-Stokes equations:

ρVo

to

∂V+

∂t+
+V+ ρV 2

o

L
∂V+

∂x+
= ρg+go−

ρV 2
o

L
∂P+

∂x+
+

µVo

L2
∂

∂x+
(�) (2.259)

where the complicated form of the viscous term is denoted as � for simplicity. Dividing through by the coefficient
on the advective term:

L
Voto

∂V+

∂t+
+V+ ∂V+

∂x+
=

Lgo

V 2
o

g+− ∂P+

∂x+
+

1
Re

∂

∂x+
(�) (2.260)

All of the terms in the Navier-Stokes equations are retained in Pronghorn except the terms with 1/Re coefficients,
i.e. the terms representing viscous forces. Therefore, Re� 1 is required. If surface tension forces are small, then Eq.
(2.254) holds.

2.10.2 The Energy Equations

Because the temperature and energy forms of the energy equation are equivalent and it is difficult to define a nondi-
mensional energy E+ = E/Eo, the temperature form will be nondimensionalized to see which terms can be neglected.
The temperature form of the energy equation is repeated here for reference, with the material derivatives expanded,
Fourier’s law inserted for the conductive heat flux, and with ζ = 0:
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ρCp

(
∂T
∂t

+
#»
V ·∇T

)
−T β

(
∂P
∂t

+
#»
V ·∇P

)
=

τ2

2µ
+∇ · (k∇T )

Using the same nondimensionalization in Eq. (2.258), the above becomes in 1-D form:

ρCp

(
1
to

∂T
∂t

+V+Vo

L
∂T
∂x+

)
−T β

(
1
to

∂P
∂t+

+V+Vo

L
∂P
∂x+

)
=

µV 2
o

L2 (�)− k
L2

∂T 2

∂x+2 (2.261)

where for simplicity the nondimensionalized, complicated viscous power term is indicated as (�). Several addi-
tional nondimensionalizations are needed for the energy equation:

T+ =
T

∆T
, P+ =

P
ρV 2

o
, t+ =

t
L/Vo

(2.262)

The temperature is scaled according to the maximum temperature increase in the domain. Because Re� 1 for
the application space of interest to Pronghorn, pressure can be scaled as P+ = P/ρV 2

o . Also, because the terms
of interest for scaling contain the dimensionless time to (while this term did not appear in the momentum equation
because the only nondimensional number of interest was Re), time is scaled with to = L/Vo. Inserting these additional
nondimensionalizations:

∆T ρCpVo

L
dT+

dt+
−T+

β
ρV 3

o

L
dP+

dt+
=

µV 2
o

L2 (�)− ∆T k
L2

∂T+2

∂x+2 (2.263)

Dividing through by the coefficient on the temperature material derivative:

dT+

dt+
−βEcT+ dP+

dt+
=

Br
Pe

(�)− 1
Pe

∂T 2

∂x+2 (2.264)

where Pe is the Peclet number defined in Eq. (2.295), Ec is the Eckert number defined in Eq. (2.297), and Br
is the Brinkman number defined in Eq. (2.298). The viscous and pressure work terms are neglected in the solid by
assuming that the solid has zero velocity and pressure changes in the solid are negligible. Both of these assumptions are
obvious, and do not require proof. In addition, the viscous work term is neglected, which is valid provided Br/Pe� 1.
To neglect thermal energy diffusion, Pe� 1 must be satisfied. However, as shown in Section 2.10.5, this would
be invalid for certain reactor systems, so thermal energy diffusion must be retained. In the energy BCs, as long as
Br/Pe� 1, the viscous power term can be neglected.

The ρ
#»

b · #»
V term in Eq. (2.161) is often approximated as ρ

#»g · #»
V . To assess the validity of this approximation,

normalize the neglected term by the diffusive term, since the diffusive term is included based on the dimensionless
number arguments in Table 3 [43]:

ρW
#»
V · #»

V
∇ · (k∇T )

≈
150µ(V+)2 +1.75ρ(V+)3dp

k∆T

(
D
dp

)2

= 150Br

(
D
dp

)2

+1.75ReEcPr
D
dp

(2.265)

where Eq. (2.152) is used to expand W and the Ergun correlation in Eq. (9.1) is used to obtain realistic propor-
tionality constants on the two drag terms since the coefficient on the friction drag term is not of order unity. In order
to neglect the viscous dissipation due to the porous media friction forces, the above dimensionless number should be
much smaller than unity.
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2.10.3 Compressible Versus Incompressible Flows

This section discusses the dimensionless numbers that should be used to judge when a flow should be treated as com-
pressible or incompressible. Many discussions of this concept are found alongside discussions of the Euler equations,
where the influence of compressibility is only shown to be related to the Mach number [22] (chapter 11). However,
the choice to use an incompressible model must also consider temperature gradients, the length scales involved, and
hydrostatic pressure changes.

The conditions under which flow can be treated as incompressible can be determined by investigating the continuity
equation in Eq. (2.47), rearranged here to give:

∇ · #»
V +

1
ρ

dρ

dt
= 0 (2.266)

A flow is incompressible if dρ/dt = 0, which results in a simplified continuity equation ∇ · #»
V = 0. For this

approximation to be valid, the second term on the LHS above has to be small with respect to the maximum of
|∂Vx/∂x|, |∂Vy/∂y|, and |∂Vz/∂z|. In other words, for the flow to be incompressible:

∣∣∣∣1ρ dρ

dt

∣∣∣∣� |∇ · #»
V | (2.267)

For a pure fluid, ρ is related to two state variables. Pressure is selected as one of these variables because it
appears directly in the Navier-Stokes equations and is related to the BCs. Entropy is chosen as the second variable
because it has its own conservation equation that is related to molecular processes that can more easily be argued to
be significant/insignificant in a nondimensionalization analysis. The derivative of ρ can then be expressed as:

dρ

dt
=

(
∂ρ

∂P

)
s

dP
dt

+

(
∂ρ

∂s

)
P

ds
dt

=
1
c2

dP
dt
− ρβT

Cp

ds
dt

(2.268)

where the speed of sound c is defined as:

c2 ≡
(

∂P
∂ρ

)
s

(2.269)

To determine dP/dt, consider sound waves where viscous effects can be neglected. The inviscid form of the
Navier-Stokes equation in Eq. (2.95) with

#»

b ≡ #»g gives a relationship for the gradient of pressure:

ρ
d

#»
V

dt
=−∇P+ρ

#»g (2.270)

This can be used in the general chain rule form of dP/dt for ∇P:

dP
dt

=
∂P
∂t

+
#»
V ·∇P

=
∂P
∂t

+
#»
V ·

(
ρ

#»g −ρ
d

#»
V

dt

) (2.271)
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Combining the above with Eq. (2.268) and Eq. (2.267) gives the condition for which the flow can be treated as
incompressible:

∣∣∣∣ 1
ρc2

∂P
∂t

+
1

ρc2
#»
V ·

(
ρ

#»g −ρ
d

#»
V

dt

)
− βT

Cp

ds
dt

∣∣∣∣� |∇ · #»
V | (2.272)

The following nondimensional quantities are introduced in order to quantitatively discuss Eq. (2.272).

V+ =
V
Vo

, x+ =
x
L
, g+ =

g
go

(2.273)

Introducing these into Eq. (2.272):

1
ρc2

∂P
∂t

+
goVo

c2 V+g+− V 3
o

c2L
V+ dV+

dt
− βT

Cp

ds
dt
�
∣∣∣∣Vo

L

∣∣∣∣ (2.274)

For sound waves, ∂P/∂t may be non-negligible, in which case, the unsteady pressure derivative ∂P/∂t requires a
separate scaling. For the propagation of a sound wave, gravitational effects are negligible and advection of momentum
can be neglected on the scale of the sound wave. Then, Eq. (2.270) further reduces to:

ρ
∂

#»
V

∂t
=−∇P (2.275)

For a sound wave propagating with frequency n, the above can be nondimensionalized as:

ρnVo =
δP
L

→ ∂P
∂t

= ρn2VoL (2.276)

For a sound wave, the frequency of the sound wave is related to its wavelength and the speed of sound approxi-
mately by c = λn. Introducing this into the above equation and in Eq. (2.274) adds to the incompressibility condition:

∣∣∣∣Vo

L

(
L2

λ2
∂P
∂t

+
goL
c2 V+g+− V 2

o

c2 V+ dV+

dt
− βT

Cp
∆s

)∣∣∣∣�∣∣∣∣Vo

L

∣∣∣∣ (2.277)

where the entropy contribution is quantified by a time scaling chosen as ∆t = L/Vo. So, for a generic fluid to be
incompressible, the following conditions must be met:

(
L
λ

)2

� 1,
(

goL
c2

)
� 1, Ma2� 1,

(
βT ∆s

Cp

)
� 1 (2.278)

where Ma is the Mach number defined in Eq. (2.296). For an ideal gas, βT = 1, and by T ∆s ≈Cp∆T suggested
by Eq. (2.176), the last term reduces to ∆T/T . In essence, the above statements require that:

1. the length scale of the body be much smaller than the length scale of a sound wave,

2. hydrostatic pressure changes be small,

3. the Mach number be small, and
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4. ∆T/T � 1.

The limits imposed by Ma and ∆T/T are likely to be important for certain classes of reactors and operating
conditions, while the first two considerations are assumed negligible. Values for Ma and ∆T/T are provided in Table
3. Neglecting compressibility essentially leads to errors in the estimation of dynamic pressure. At Ma = 0.2, an error
of approximately 1% is made on the dynamic pressure - Ma≤ 0.2 is often selected in this manner to signify the onset
of important compressibility effects [22] (chapter 11).

The interpretation of the speed of sound is derived by applying a perturbation in density, pressure, and velocity
to the governing equations. These perturbations are assumed small such that the multiplication of any two
perturbations can be neglected. Spatial averages of the o subscripted quantities are zero. These perturbations
are:

ρ = ρo + ρ̂( #»x , t) (2.279a)

P = Po + P̂( #»x , t) (2.279b)
#»
V =

#»
0 +V̂ ( #»x , t) (2.279c)

Inserting the perturbations into Eq. (2.47) and neglecting small and zero terms:

∂ρ̂( #»x , t)
∂t

+V̂ ( #»x , t) ·∇ρo +ρo∇ ·V̂ ( #»x , t) = 0 (2.280)

Taking the time derivative of the above expression, and neglecting small or zero terms:

∂2ρ̂( #»x , t)
∂t2 +

∂(∇ ·V̂ ( #»x , t))
∂t

ρo = 0 (2.281)

For sound waves, gravitational and inertial forces are negligible. With these assumptions, the Navier-Stokes
equations in Eq. (2.95) simplify to the following, where the second equation takes the gradient of both sides
and expands the material derivative.

ρ
d

#»
V

dt
= −∇P (2.282a)

ρ∇

(
∂

#»
V

∂t
+

#»
V ·∇ #»

V

)
+

(
∂

#»
V

∂t
+

#»
V ·∇ #»

V

)
∇ρ = −∇

2P (2.282b)

Then, inserting the perturbed quantities defined in Eq. (2.279) and canceling the small or zero terms:

ρo
∂∇ ·V̂ ( #»x , t)

∂t
=−∇

2P̂( #»x , t) (2.283)

where the gradient was moved inside the time derivative term because a gradient is only a function of space.
Combining Eq. (2.281) with the above gives:

∂2ρ̂( #»x , t)
∂t2 = ∇

2P̂( #»x , t) (2.284)

For sound waves, the flow is nearly isentropic because viscous dissipation is negligible and sound waves travel
relatively slowly so that volumetric viscous effects can be neglected. Hence, while pressure normally is a
function of density and entropy, it can be taken as only a function of density as P = f (ρ). By the chain rule:

∇P̂( #»x , t) = f ′(ρ)∇ρ̂( #»x , t) (2.285)
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Hence, Eq. (2.284) becomes:

∂2ρ̂( #»x , t)
∂t2 = f ′(ρ)∇ρ̂( #»x , t)∇2P̂( #»x , t) (2.286)

Eq. (2.286) can be recognized as the wave equation, where f ′(ρ)∇ρ̂( #»x , t) is recognized to be the speed of
sound. Hence, the speed of sound is defined as in Eq. (2.269).

2.10.4 Definitions of Dimensionless Numbers

A challenge associated with porous media is that there are several natural length and velocity scales, and there is no
consistency in their use in dimensionless numbers. This section defines the notation used in this manual to refer to
important dimensionless numbers, where focus is generally places on beds of spherical particles through the reference
to dp. The Reynolds number can in general be defined in five (or more) different ways:

Re =
ρvdp

µ
(2.287a)

Reh =
ρV D

µ
(2.287b)

Rei =
ρV dp

µ
(2.287c)

Reb =
ρvD

µ
(2.287d)

Rek =
ρV
√
‖K‖/ε

µ
(2.287e)

Correlations for heat transfer and friction coefficients will often be in terms of one of these definitions. Eq. (2.287)a
is most often used, since it is good at describing the overall characteristics of a porous medium. The other forms shown
above are less-frequently used, but have been useful for correlating experimental data. The Reynolds number with a
characteristic length based on the square root of the permeability, Rek, has been used successfully to uniquely define
flow regime transitions [28]. While Rek does contain porosity in its definition, the dependence is weaker, thus reducing
dependence on an experimental property. The hydraulic diameter is defined in the standard manner:

D =
4V– f

aw
(2.288)

where V– f is the fluid flow volume per unit total volume. From the definition of porosity, V– f = ε. Using the
definitions from Eq. (2.288) and (2.205), the hydraulic diameter for a pebble bed is:

D =
4ε

6(1− ε)
dp (2.289)

Note that this hydraulic diameter is only valid in the center of the bed. Near the wall, porosity goes to 1, in which
case the hydraulic diameter according to Eq. (2.289) tends to infinity. Clearly this is nonphysical, since the wall limits
the hydraulic diameter to finite values. In actuality, the hydraulic diameter reaches a maximum near the wall, but
decreases in the immediate vicinity of the wall [65].

Nu for a porous medium can be expressed either in terms of the pebble diameter or the hydraulic diameter:
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Nu =
hcdp

k
(2.290a)

Nuh =
hcD

k
(2.290b)

Many of these dimensionless numbers are linearly related to one another. Substituting in Eq. (2.31) for
#»
V and

Eq. (2.289) for D into Eq. (2.287), Reh can be expressed in terms of Re, where the factor of 4/6 has been
neglected, which is common in practice [66, 67].

Reh = Re
1

(1− ε)
(2.291)

Likewise, by Eq. (2.31), Rei is also directly related to Re:

Rei =
Re
ε

(2.292)

Substituting Eq. (2.289) for D into Eq. (2.290)b, where the factor of 4/6 has been neglected:

Nuh =
ε

1− ε
Nu (2.293)

For prismatic reactors, both Re and Nu are defined in terms of the hydraulic diameter D, since there is no corre-
sponding dp. The Prandtl number is another important dimensionless number that represents the ratio of the momen-
tum diffusivity µ/ρ to the thermal diffusivity k/ρCp:

Pr ≡
µCp

k
(2.294)

The Prandtl number therefore represents the relative thicknesses of the momentum and thermal boundary layers.
High-Prandtl number fluids, such as molten salts, at Reynolds number typical of reactor operation display greater heat
transfer caused by turbulence than diffusion [10]. The Peclet number indicates the ratio of a representative velocity
and length scale to a diffusivity δ:

Pe≡ V L
δ

(2.295)

where the diffusivity depends on the particular equation. For the fluid energy equation, δ = k/ρCp, but for the
momentum equation, δ= µ/ρ (in which case the Peclet number is equivalent in interpretation as the Reynolds number).
In practice, the diffusivity in Eq. (2.295) is taken to be the diffusivity for the fluid energy equation, in which case
Pe = Re ·Pr. The Mach number is defined as:

Ma≡ ‖
#»
V ‖
c

(2.296)

Additional dimensionless numbers used in this manual include the Eckert number:

Ec =
V 2

Cp∆T
(2.297)
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and the Brinkman number:

Br =
µV 2

k∆T
(2.298)

2.10.5 Expected Values for Dimensionless Numbers

In order to justify the simplifications made based on dimensionless numbers characterizing the momentum and energy
equations and BCs described in the previous sections, the following requirements must be met:

1. Re� 1 to neglect viscous forces, which eliminates the ∇ · τ term in Eq. (2.95). This then naturally neglects the
viscous component in Eq. (2.253).

2. Br/Pe� 1 to neglect viscous power, which eliminates the viscous component in Eq. (2.185) (and by a similar
argument, the viscous component in Eq. (2.158)). This then naturally neglects the viscous component in Eq.
(2.257).

3. Surface tension forces negligible, which eliminates the fs,i term in Eq. (2.253).

4. Pressure changes in the solid are negligible, which when combined with the above requirement, leads to no
compression work in the solid, neglecting the dP/dt term in Eq. (2.185).

These requirements in general, cannot all be met. However, it is not the intention that Pronghorn be used to
model flows as different as supersonic flows and highly viscous flows. Pronghorn is to be used for nuclear reactor
applications, and hence to determine the range of applicability of the above claims, the coolants commonly used in the
nuclear power industry are investigated. Example reactor designs using these coolants are then selected to determine
the operating range in Re,Pe, and Br to justify neglecting the terms mentioned above. Table 3 provides very rough
estimates for the dimensionless numbers that appear in the equations governing conservation of momentum and energy
for five representative reactor designs. For all of these reactors, viscous heating effects can be neglected because Br/Pe
is on the order of 10−9. There is a larger variation in Re, but in general Re is relatively high. Salt reactors tend to have
relatively small Re on the order of 103, but this still satisfies the requirement that Re� 1. Note that thermal energy
conduction could safely be neglected in all reactor choices except liquid-metal-cooled reactors, due to the high thermal
conductivity of metals. For these reactors, Pe is rather small, on the order of 100, and could drop to the range of 25 -
35 for certain transients [68]. In these cases, it is not appropriate to neglect thermal energy conduction in the fluid.

Values for Eq. (2.265) vary widely among the reactor types presented, and in general the W
#»
V term in

#»

b should
not be neglected if the diffusive term is not neglected, since in many cases these two terms are roughly the same order
of magnitude. However, W

#»
V is currently neglected - future work must investigate the impact on simulation results.
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Table 3: Operating conditions for representative nuclear reactor designs using a variety of coolants. All material
properties are evaluated at the median of the operating temperature range. The parameters shown in the third and
fourth sections are very approximate, and only reflect expected values over normal operating conditions. dp for the
THTR and PB-FHR are obtained from Table 15. “—” denotes that Eq. (2.265) is not evaluated for non-pebble bed
designs. Speed of sound is evaluated using Eq. (7.18) at the lower operating temperature.

PFBR [69, 70] THTR [71] PB-FHR [3] AP-1000 [72, 73] Torness AGR
Coolant sodium helium flibe water CO2
Power (MWth) 1250 750 236 3400 1623
Fuel assembly pebble pebble assembly assembly
Type pool loop loop loop loop
P (MPa) 0.1 4.0 0.1 15.5 4.1
Temperature (°C) 397/547 250/750 600/700 279/325 339/639
Flowrate (kg/s) 6385 298 976 13705 4067
Velocity (m/s) 4.8 12.0 0.4 4.8 1.6
D (mm) 5.0 26.0 13.0 11.7 38.0
ρ (kg/m3) 840.9 2.5 1999.7 720.2 28.4
µ (10−5 Pa·s) 24.6 3.85 678.08 8.73 3.4
k (W/m·K) 139.0 0.30 1.09 0.56 0.05
Cp (J/kg·K) 1268.1 5195 2416 5534 1157
c (m/s) 582 1346 275 527 371
Pr 0.002 0.67 15.0 0.86 0.79
Br 2.7×10−7 3.7×10−5 9.9×10−6 7.8×10−5 5.8×10−6

Re 8.2×104 2.0×104 1.5×103 4.6×105 5.0×104

Pe 1.8×102 1.3×104 2.3×104 4.0×105 4.0×104

Ec 1.2×10−4 5.5×10−5 6.6×10−7 9.0×10−5 7.4×10−6

Br/Pe 1.5×10−9 2.8×10−9 4.3×10−10 2.0×10−10 1.5×10−10

Ma 8.2×10−3 8.9×10−3 1.4×10−3 9.1×10−3 4.3×10−3

∆T/T 2.2×10−1 9.6×10−1 1.1×10−1 8.3×10−2 4.9×10−1

Eq. (2.265) — 0.6×100 1.1×10−2 — —

2.11 Summary of Physical Models

This manual presents the theory and equations used in the modern Pronghorn circa 2017. The remaking of Pronghorn
was motivated by a restructuring of the MOOSE framework and the desire to include a fully conservative equation set
for more flexible modeling. The key differences between modern and legacy Pronghorn are:

• Conservative vs. Primitive kernels - Using conservative variables in the modern version is somewhat more
convenient because messy chain rule time derivatives can be avoided, and both RELAP-7 and BIGHORN are
written in conservative form, allowing a high degree of code re-use. For backwards compatibility, a primitive
variable formulation is still available.

• Less physics neglected - The modern Pronghorn includes additional advection and time derivative terms that had
previously been neglected.

• Flexible fluid EOS - The legacy version was restricted to the ideal gas EOS. The modern version can use any set
of fluid properties that derives from the fluid properties MOOSE module.

• Flexibly solid properties - The legacy Pronghorn hard-coded solid properties for graphite. The modern Pronghorn
can use any set of solid properties that derives from the new modular class structure.

• Flexible constitutive relationships - The modern Pronghorn has restructured the friction coefficients, heat trans-
fer coefficients, and effective solid thermal conductivity into more modular class structures that permit easier
extension. Additional options have also been provided.
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• Consistent stabilization - The modern Pronghorn permits consistent SUPG stabilization for the fluid continuity,
momentum, and energy equations for both the primitive and conservative variable formulations, when only very
rudimentary stabilization had been applied in the legacy version.

• No neutronics - Due to the great advancements made in RATTLESNAKE, there is no need to duplicate neutron
diffusion physics in Pronghorn, so all neutronics physics have been removed.

Table 4 shows the difference between the legacy and modern equation sets, where both the primitive and conser-
vative modern formulations are shown.

Table 4: Equation differences between modern and legacy Pronghorn. The modern version has both a conservative
and primitive variable formulation.

Equation Version Equations

continuity legacy ε

R
∂

∂t

(
P
Tf

)
+∇ ·

[
ε

W

(
εP #»g
RTf
− ε∇P

)]
= 0

modern (prim.) ε
∂ρ f
∂t +∇ ·

[
ε

W

(
ερ f

#»g − ε∇P
)]

= 0

modern (cons.) ε
∂ρ f
∂t +∇ · (ερ f

#»
V ) = 0

momentum legacy ε∇P− ερ f
#»g +Wρ f

#»
V = 0

modern (prim.) ε∇P− ερ f
#»g +Wρ f

#»
V = 0

modern (cons.) ε
∂(ρ f

#»
V )

∂t +∇ · (ερ f
#»
V

#»
V )+ ε∇P− ερ f

#»g +Wρ f
#»
V = 0

fluid energy legacy ε
∂

∂t

(
ρ fCpTf

)
+∇ · (ερ fCp

#»
V Tf )−∇ · (εκ f ∇Tf )+α(Tf −Ts) = 0

modern (prim.) ερ fCp f
∂Tf
∂t + ερ fCp f

#»
V ·∇Tf −∇ · (κ f ∇Tf )+α(Tf −Ts)−q f = 0

modern (cons.) ε
∂(ρ f E)

∂t +∇ · (εH f ρ f
#»
V )−∇ · (κ f ∇T )− ερ f

#»g · #»
V +α(Tf −Ts)−q f = 0

solid energy legacy (1− ε) ∂

∂t

(
ρsCpTs

)
−∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0

modern (prim.) (1− ε)ρsCp,s
∂Ts
∂t −∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0

modern (cons.) (1− ε)ρsCp,s
∂Ts
∂t −∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0

It is assumed that porosity is independent of time; this approximation is discussed further in Section 8. The modern,
conservative equation set is:

ε
∂ρ f

∂t
+∇ · (ερ f

#»
V ) = 0 (2.299a)

ε
∂(ρ f

#»
V )

∂t
+∇ · (ερ f

#»
V

#»
V )+ ε∇P− ερ f

#»g +Wρ f
#»
V = 0 (2.299b)

ε
∂(ρ f E)

∂t
+∇ · (εH f ρ f

#»
V )−∇ · (κ f ∇T )− ερ f

#»g · #»
V +α(Tf −Ts)−q f = 0 (2.299c)

(1− ε)ρsCp,s
∂Ts

∂t
−∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0 (2.299d)

The weak forms are derived by multiplying each term by a weight function ψ, integrating over phase space, and
applying the divergence theorem when possible. The following inner product notation is used for conciseness:

∫
Ω

f ψdΩ≡ ( f ,ψ) (2.300a)∫
Γ

f ψ
#»n dΩ≡ 〈 f ,ψ〉 (2.300b)
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where Ω represents integration over the interior and Γ represents integration over a boundary. The weak forms of
the equations listed in Eq. (2.299) are as follows:

(
ε

∂ρ f

∂t
,ψ

)
+
(
−ερ f

#»
V ,∇ψ

)
+
〈

ερ f
#»
V ,ψ

〉
= 0(

ε
∂ρ fVi

∂t
− ερ f gi +Wρ fVi−P∇ε,ψ

)
+
(
−ερ fVi

#»
V − εP,∇ψ

)
+
〈

ερ fVi
#»
V + εP,ψ

〉
= 0(

ε
∂(ρ f E)

∂t
− ε

#»g ·ρ f
#»
V +α(Tf −Ts)−q f ,ψ

)
+
(
−εH f ρ f

#»
V +κ f ∇Tf ,∇ψ

)
+
〈

εH f ρ f
#»
V −κ f ∇Tf ,ψ

〉
= 0(

(1− ε)ρsCp,s
∂Ts

∂t
+α(Ts−Tf )−qs,ψ

)
+(κs∇Ts,∇ψ)−〈κs∇Ts,ψ〉= 0

(2.301)

The modern, primitive equation set is:

ε
∂ρ f

∂t
+∇ ·

[
ε

W

(
ερ f

#»g − ε∇P
)]

= 0 (2.302a)

ε∇P− ερ f
#»g +Wρ f

#»
V = 0 (2.302b)

ερ fCp f
∂Tf

∂t
+ ερ fCp f

#»
V ·∇Tf −∇ · (κ f ∇Tf )+α(Tf −Ts)−q f = 0 (2.302c)

(1− ε)ρsCp,s
∂Ts

∂t
−∇ · (κs∇Ts)+α(Ts−Tf )−qs = 0 (2.302d)

The weak forms for Eq. (2.302) is:

(
ε

∂ρ f

∂t
,ψ

)
+

(
ε

W

[
ε∇P− ερ f

#»g
]
,∇ψ

)
+

〈
ε

W

(
ερ f

#»g − ε∇P
)
,ψ

〉
= 0 (2.303a)(

ε∇P− ερ f gi +Wρ fVi,ψ
)
= 0 (2.303b)(

ερ fCp f
∂Tf

∂t
+ ερ fCp f

#»
V ·∇Tf +α(Tf −Ts)−q f ,ψ

)
+
(
κ f ∇Tf ,∇ψ

)
+
〈
−κ f ∇Tf ,ψ

〉
= 0 (2.303c)(

(1− ε)ρsCp,s
∂Ts

∂t
+α(Ts−Tf )−qs,ψ

)
+(κs∇Ts,∇ψ)−〈κs∇Ts,ψ〉= 0 (2.303d)

Gradients are inferred to correspond to the i direction for the momentum equations in Eqs. (2.299) and (2.303).
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3 Kernels

This section summarizes the class names that correspond to the kernels available in Pronghorn.

Table 5: Kernels for use in the Pronghorn mass equation(s).

Strong Form Weak Form Name Options

ε
∂ρ f
∂t

(
ε

∂ρ f
∂t ,ψ

)
ConservativeTime

ε
∂P
∂t

(
ε

∂P
∂t ,ψ

)
PressureTime

∇ · (ερ f
#»
V

(
−ερ f

#»
V ,∇ψ

)
ContinuityEqn

∇ ·
(

ε

W

[
−ε∇P+ ερ f

#»g
]) (

ε

W

[
ε∇P− ερ f

#»g
]
,∇ψ

)
PressurePoisson

Table 6: Kernels for use in the i-th Pronghorn momentum equation(s).

Strong Form Weak Form Name Options

ε
∂(ρ f Vi)

∂t

(
ε

∂ρ f Vi
∂t ,ψ

)
ConservativeTime

∇ · (ερ fVi
#»
V )

(
−ερ fVi

#»
V ,∇ψ

)
MomConvectiveFlux

∇(εP) (−εP,∇ψ) MomPressureGradient∗

∇(εP)
(
∇(εP),ψ

)
MomPressureGradient† divergence = false

Wρ fVi
(
Wρ fVi,ψ

)
MomFrictionForce

−P∇ε (−P∇ε,ψ) MomPressureGradientPorosity
−ερ f gi

(
−ερ f gi,ψ

)
MomGravityForce

Table 7: Kernels for use in the Pronghorn fluid energy equation(s).

Strong Form Weak Form Name Options

ε
∂ρ f E

∂t

(
ε

∂ρ f E
∂t ,ψ

)
ConservativeTime

ερ fCp
∂Tf
∂t

(
ερ fCp

∂Tf
∂t ,ψ

)
FluidEnergyTime∗

εCp
∂ρ f Tf

∂t

(
εCp

∂(ρ f Tf )

∂t ,ψ
)

FluidEnergyTime† constant cp = true

∇ · (εH f ρ f
#»
V )

(
−εH f ρ f

#»
V ,∇ψ

)
FluidEnergyConvectiveFlux

ερ fCp
#»
V ·∇Tf

(
ερ fCp

#»
V ·∇Tf ,ψ

)
FluidEnergyAdvection∗

∇ · (ερ fCpTf
#»
V )

(
−ερ fCpTf

#»
V ,∇ψ

)
FluidEnergyAdvection† constant cp = true

−∇ · (κ f ∇Tf )
(
κ f ∇Tf ,∇ψ

)
FluidEnergyDiffusion

−ερ f
#»g · #»

V
(
−ερ f

#»g · #»
V ,ψ

)
FluidEnergyGravityForce

α(Tf −Ts)
(
α(Tf −Ts),ψ

)
FluidSolidConvection

−q f
(
−q f ,ψ

)
HeatSrc
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Table 8: Kernels for use in the Pronghorn solid energy equation(s).

Strong Form Weak Form Name Options

(1− ε)ρsCps
∂Ts
∂t

(
(1− ε)ρsCp,s

∂Ts
∂t ,ψ

)
SolidEnergyTime

−∇ · (κs∇Ts) (κs∇Ts,∇ψ) SolidEnergyDiffusion
α(Ts−Tf )

(
α(Ts−Tf ),ψ

)
SolidFluidConvection

−qs (−qs,ψ) HeatSrc
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4 AuxKernels

This section summarizes the auxiliary kernels used in Pronghorn. Some of these auxiliary kernels are developed
specifically for Pronghorn, while others are available in BIGHORN or the MOOSE Navier-Stokes module. A summary
of these auxiliary kernels is given in Table 9. Note that TotalFluidEnergyAux is only intended for use in isothermal
calculations because otherwise a circular logic exists with its dependencies.

Table 9: Auxiliary kernels used in Pronghorn.

AuxVariable Computed AuxKernel Dependency

Peel CellPecletAux
#»
V , he, and thermal diffusivity

H f EnthalpyAux ρ f , ρ f E, and P
ρ f FluidDensityAux P and Tf
Vi NSVelocityAux ρ f and ρ fVi
P PressureAux v f , e
e SpecificInternalEnergyAux ρ f E and ρ

#»
V

v f SpecificVolumeAux ρ f
Tf TemperatureAux v f , e
E TotalFluidEnergyAux ρ f , e, and

#»
V (isothermal only)
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5 Interface Kernels

Interface kernels are used to apply Neumann-type BCs (flux BCs) on interior mesh sidesets to link variables defined on
two different regions of the mesh. For example, a fluid flowing next to a solid is linked to the solid by conjugate heat
transfer. The heat flux between the two phases is governed by Newton’s law of cooling. The heat flux from the fluid to
the solid is q

′′
= h(Tf −Ts), while the heat flux from the solid to the fluid is the negative of this expression. Note that

interface kernels can only be used to exchange flux between two regions that are connected by a mesh sideset. Interface
kernels could not, for example, be used to model radiation heat transfer between two non-connecting surfaces, since
those two surfaces would not share a sideset.

Interface kernels use a Discontinuous Galerkin (DG) formulation to specify a Neumann-type residual contribution
from one surface to another. So, the equations used to specify the flux between regions simply require specification of
the discontinuous numerical flux. When the flux is governed by a variable difference, such as is the case for convection
and radiation fluxes, the variable difference appears the “same” from both sides of the discontinuous interface. So,
numerical flux functions for convection and radiation transfer can be written without approximation. However, when
the flux appears different depending on the side of the interface, such as for conduction flux, a numerical approximation
to the true flux must be made.

This section presents the interface kernels available in Pronghorn. The flux between two regions, 1 and 2, is
represented as q

′′
1→2 and q

′′
2→1, where q

′′
2→1 =−q

′′
1→2 because the areas of the two surfaces are the same because they

must share a sideset. Table 10 summarizes the interface kernels available in Pronghorn.

Table 10: Interface kernels available in Pronghorn.

Interface Kernel q
′′
1→2 Interpretation

HeatConvectionInterface h(T1−T2) Convective heat flux

ThermalRadiationInterface σ(T 4
1 −T 4

2 )/
(

1
εr,1

+ 1
εr,2

+1
)

Thermal radiation (gray bodies)

HeatDiffusionInterface q
′′
1→2 =

1
2

(
−k1

∂T1
∂x

#»n − k2
∂T2
∂x

#»n
)

Thermal diffusion heat flux

The diffusive flux interface kernel uses the Bassi and Rebay numerical flux formulation to simply take the average
of the two fluxes; a simpler formulation such as those for convection and radiation is not possible because the gradient
of the solution on either side of the discontinuous interface is not the same.
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6 Boundary Conditions

This section discusses the BCs used in Pronghorn. There are two general types of BCs available within Pronghorn -
Dirichlet BCs, which strongly enforce a value for a variable, and Neumann BCs, which weakly enforce either a flux
or a value for a variable. For Neumann BCs, only the integral, rather than the value, of the quantity is imposed. Often,
the same mathematical BC can be applied in either manner, but numerically differences will exist.

Neumann-type BCs are additive, allowing some BCs to be split into more than one BC for modularity. For instance,
in the conservative form of the fluid energy equation, boundary terms arise due to the convective transport of enthalpy
and the diffusion of temperature. The correct BCs for this equation will include both terms, but because Neumann-type
BCs are additive, this combined BC is split into two BCs that are summed.

Below is a table summarizing the BCs available in Pronghorn for both the conservative and primitive equation sets.
i subscripts denote known quantities. Quantities without subscripts denote the implicit solution value. Neumann-type
BCs are shown in the boundary integral notation defined in Eq. (2.300)b, while strongly-enforced Dirichlet conditions
are shown in the form F = Fi. “Walls” are assumed stationary. Some BCs are implemented in a “vectorized” form
to ensure consistent usage of BCs in the involved equations. For example, frequently only the combination of BCs
specified will yield a well-posed problem. In the tables below, if a BC name appears in multiple tables below, it is a
vectorized BC, and the equation to which it is applied is indicated by the var num parameter, which is 0 for the mass
equation, 1 · · ·ns for the momentum equation(s), and ns +1 for the energy equation. Sections 6.1 and 6.2 explain these
BCs for the conservative and primitive equation sets, respectively.

Table 11: Summary of BCs used in the mass equation in Pronghorn.

Weak Form Name Boundary Type

〈ερ f (Pstag,i,Tstag,i)
#»
V ,ψ〉 ConsVecStagnationInlet Inflow

〈ε(ρ f
#»
V )i,ψ〉 ConsVecSubsonicInlet Inflow

〈ερ f
#»
V ,ψ〉 ConsVecSubsonicOutlet Outflow

〈ερ f
#»
V ,ψ〉 ContinuityFreeBC Outflow

〈ερ f ,i
#»
V ,ψ〉 ContinuityInflowBC Inflow

ρ f = ρ f ,i DirichletBC Inflow
〈0,ψ〉 NoSlipBC Wall
〈ερ f

#»
V ,ψ〉 PressurePoissonInflowBC Inflow

P = Po PressurePoissonOutflowBC Outflow
〈0,ψ〉 PressurePoissonWallBC Wall

Table 12: Summary of BCs used in the momentum equation in Pronghorn. BCs are shown only for the x-direction
momentum equation.

Weak Form Name Boundary Type

ερ f (Pstag,i,Tstag,i)Vx
#»
V +Pstag,i,ψ〉 ConsVecStagnationInlet Inflow

ερ f
#»
V Vx + εPi,ψ〉 ConsVecSubsonicOutlet Outflow

ρ fVx = (ρ fVx)i DirichletBC Inflow
〈ερ fVx

#»
V ,ψ〉 MomFreeBC Outflow

〈ε(ρ fVx)i
#»
V ,ψ〉 MomInflowBC Inflow

〈εP,ψ〉 MomImplicitPressureBC Inflow/wall
〈εPi,ψ〉 MomWeakPressureBC Inflow/outflow
〈0,ψ〉 NoSlipBC Wall
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Table 13: Summary of BCs used in the fluid energy equation in Pronghorn. q̄ represents a known heat flux.

Weak Form Name Boundary Type

〈ε
(

ρ f (Pstag,i,Tstag,i)E f (Tstag,i,
#»
V )+Pstag,i

)
#»
V ,ψ〉 ConsVecStagnationInlet Inflow

〈ε
(
(ρ f

#»
V )iH f − k f ∇Tf

)
,ψ〉 ConsVecSubsonicInlet Inflow

〈ερ f
#»
V H f (E,ρ f ,Pi)− εk f ∇Tf ,ψ〉 ConsVecSubsonicOutlet Outflow

〈hc(Tf −T∞),ψ〉 ConvectionBC Convection to ambient/wall
〈ερ fCp f

#»
V Tf ,ψ〉 FluidEnergyAdvectionFreeBC Outflow

〈ερ fCp f
#»
V Tf ,i,ψ〉 FluidEnergyAdvectionInflowBC Inflow

〈εH f ρ f
#»
V ,ψ〉 FluidEnergyFreeBC Outflow

〈εH f ,iρ f
#»
V ,ψ〉 FluidEnergyInflowBC Inflow

〈εq̄,ψ〉 HeatFluxBC q̄ in fluid
〈q̄,ψ〉 NeumannBC q̄ from fluid to boundary

Table 14: Summary of BCs used in the solid energy equation in Pronghorn. q̄ represents a known heat flux.

Weak Form Name Boundary Type
〈(1− ε)q̄,ψ〉 HeatFluxBC q̄ in solid
〈q̄,ψ〉 NeumannBC q̄ from solid to boundary

The inflow BC for the pressure Poisson equation is the same as that used for the continuity equation, since the pres-
sure Poisson equation was obtained by substituting the momentum equation into the continuity equation. Because the
inflow BC associated with the continuity equation cannot be applied on outflow boundaries, there is no corresponding
outflow BC for the pressure Poisson equation. However, the Laplacian of pressure in this equation does require some
condition on pressure to be specified on outflow boundaries. This is commonly a Dirichlet condition, so this BC sets
a Dirichlet condition for pressure on outflow boundaries for use with the PressurePoisson kernel.

Because the HeatFluxBC multiplies the heat flux by the phase porosity, this BC is used to set a known value for the
heat flux in one phase. Note that this is different from setting a value for εkκk∇Tk. The ConsVecStagnationInlet
BC currently only applies for the ideal gas EOS.

6.1 The Conservative Equation Set

For the conservative equation set in Eq. (2.301), the flux vector that is integrated over a boundary is:

#»
B ≡



ερ f
#»
V · #»n

εη1
#»
V · #»n + εPn1

εη2
#»
V · #»n + εPn2

εη3
#»
V · #»n + εPn3

εh #»
η · #»n −κ f ∇Tf · #»n
−κs∇Ts · #»n


(6.1)
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6.2 The Primitive Equation Set

For the primitive equation set in Eq. (2.303), the flux vector that is integrated over a boundary is:

#»
B ≡



ε

W

(
ερ f

#»g − ε∇P
)
· #»n

0
0
0

−κ f ∇Tf · #»n
−κs∇Ts · #»n


(6.2)
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7 Equations of State

For the conservative equation set shown in Eq. (2.299), an EOS is needed to calculate P and Tf :

P = P(ρ f ,e) (7.1a)
Tf = Tf (ρ f ,e) (7.1b)

For the primitive equation set, an EOS is required for density in terms of P and Tf . These primitive EOS are
described in Section 13 because the term EOS is often reserved for equation sets that are based on thermodynamic
theory and easily codified for a wide range of fluids (such as the ideal gas law), rather than experimental measurements
(such as the density variation of flibe with pressure). Any EOS available in RELAP-7 can be used to calculate P and
Tf as a function of specific volume and specific internal energy of the fluid.

Eq. (7.1)a and (7.1)b are incomplete EOSs because they consist of a pair of equations. A complete EOS would
specify e = e(ν,s), where s is the entropy per unit mass. Differentiating this complete EOS with respect to s holding ν

constant, or with respect to ν holding s constant, will produce the EOS pair. However, the existence of the incomplete
pair EOS does not necessarily imply the reverse. The Euler equations do not require a complete EOS for smooth flows,
and hence the use of an incomplete EOS is acceptable in Pronghorn. Note that Pronghorn is currently only capable of
modeling single-phase flows.

7.1 Barotropic Equation of State

Flows in which density is only a function of pressure are barotropic flows. For pure systems, normally two state
variables are required to specify the state of the system - density, and either entropy or temperature. Hence, the
barotropic EOS can only be used for isothermal or isentropic flows, both of which are situations very unlikely to
be in the application space of Pronghorn. This EOS implies a constant speed of sound, given the definition in Eq.
(2.269). This EOS will not produce any shocks or discontinuities in the solution unless the initial conditions have
discontinuities (in which case those discontinuities are simply advected without further steepening). This EOS should
not be used for modeling applications, and is only described here because it is useful for testing. The pressure is
specified as [74]:

P = P0 +a2(ρ f −ρ f ,o) (7.2)

where P0 is a reference pressure, ρ f ,o is the density at P0, and a is a constant that can be interpreted as the speed of
sound.

7.2 Stiffened Gas Equation of State

This compressible EOS, which applies to both liquids and gases, is the simplest EOS that contains the essential
phenomena in fluids. Pressure is provided according to [74]:

P = (ϖ−1)ρ(e−qB)︸ ︷︷ ︸
repulsion

− ϖP∞︸︷︷︸
attraction

(7.3)

where qB is the binding energy of the fluid and ϖ and P∞ are empirical fluid constants. The higher the P∞ the
“stiffer” the fluid. For gases, P∞ is often zero or very close to zero, in which case Eq. (7.3) reduces to the ideal gas law
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in Eq. (7.10)b. Solving the above for the internal energy gives:

e =
P+ϖP∞

(ϖ−1)ρ
+qB (7.4)

An EOS for the temperature requires an additional caloric law Tf = Tf (P,ρ f ):

Tf =
P−P∞

(ϖ−1)Cvρ f
(7.5)

Combining Eqs. (7.4) and (7.5) to eliminate ϖ, the temperature EOS is derived:

Tf =
1

Cv

(
e−qB−

P∞

ρ f

)
(7.6)

7.3 Isentropic Stiffened Gas Equation of State

The isentropic version of the Stiffened Gas EOS discussed in Section 7.2 gives pressure as [74]:

P = (Po +P∞)

(
ρ f

ρ f ,o

)ϖ

−P∞ (7.7)

where P∞, ρ f ,o, and ϖ are fluid-dependent constants. Representative values for water are P∞ = 3.3× 108 Pa,
ϖ = 7.15, and ρ f ,o = 103 kg/m3. Because this equation of state assumes the system is isentropic, it is not sufficient for
capturing shock behavior. This EOS is usually used for modeling incompressible fluids, and is an improvement on the
barotropic EOS because the speed of sound is no longer constant.

7.4 Linear Equation of State

Generic linear equations of state for pressure and internal energy are defined using the chain rule [74]:

P = Po +

(
∂P
∂ρ

)
T
(ρ f −ρ f ,o)+

(
∂P
∂Tf

)
ρ

(Tf −Tf ,o) (7.8)

e = eo +

(
∂e

∂ρ f

)
Tf

(ρ f −ρ f ,o)+

(
∂e

∂Tf

)
ρ f

(Tf −Tf ,o) (7.9)

where the partial derivatives are evaluated at ρ f ,o and Tf ,o. Rearranging Eq. (7.9) gives an EOS for temperature of
the form in Eq. (7.1)b.

7.5 Ideal Gas Equation of State

The ideal gas law specifies pressure as:
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P = ρRT (7.10a)
= (γ−1)ρe (7.10b)

where R is the ideal gas constant and γ is the specific heat ratio:

γ =
Cp

Cv
(7.11)

This EOS is most accurate at low pressures, high temperatures, and far from phase change. Under these conditions
interactions between gas molecules is minimal. Eq. (2.159) gives enthalpy as:

h = e+RT (7.12)

Eqs. (2.176) and (2.177) give:

Cp =Cv +R (7.13)

The specific heats of an ideal gas are assumed constant because R is a constant. Because h and e depend only on
the quantity RT , the partial derivatives in the definitions of Cp and Cv in Eqs. (2.176) and (2.177) are taken as whole
derivatives. This gives:

T =
e

Cv
(7.14)

h =CpT (7.15)

Inserting Eqs. (7.14) and (7.13) into Eq. (7.10) gives the form in Eq. (7.10)b.

7.5.1 Isentropic Relations

For isentropic flow, several important identities can be derived that will be used for defining ideal-gas-specific BCs in
Section 6. Setting T ds = 0 and using differential forms of Eqs. (7.14) and (7.15) in Eqs. (2.166) and (2.167) gives:

T2

T1
=

(
v1

v2

)γ−1

(7.16a)

=

(
P2

P1

) γ−1
γ

(7.16b)

where numeric subscripts indicate two arbitrary states. Eq. (7.16) can be rearranged to show that:

Pρ
−γ = constant (7.17a)

ln(P)− γ ln(ρ) = constant (7.17b)
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where the second form has been obtained by taking the natural logarithm of both sides. Then, differentiating both
sides and using the definition of the speed of sound in Eq. (2.269) gives the speed of sound in an isentropic ideal gas:

c =
√

γRT (7.18)

Inserting Eq. (7.15) into Eq. (2.100) defines the stagnation temperature for an ideal gas, assuming gz�V 2/2+h:

Tstag =
1
2

V 2

Cp
+T

= T
(

1+
γ−1

2
Ma2

) (7.19)

where Eq. (7.18) has been used to introduce the speed of sound in the Mach number. Combining Eqs. (7.15) and
(7.19) gives:

H =CpTstag (7.20)

Using Eq. (7.16)b and Eq. (7.19) gives the stagnation pressure:

Pstag = P
(

1+
γ−1

2
Ma2

) γ

γ−1
(7.21)

For isentropic flow, Pstag is constant.
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8 Porosity, Coordination Number, and Tortuosity

This section describes the functions used to calculate the porosity, coordination number, and tortuosity of the porous
media. The emphasis is entirely placed on beds of spherical particles, so none of the correlations shown in this
section should be used for plate or prismatic solid geometries. In addition, the following geometrical features are
not considered in this section because they have very different porosity profiles, but can be added through custom
functions:

• Particle shapes aside from spheres [35], or packings caused by dimpled walls;

• Aligned pebbles near in-bed control rods or broken pebbles caused by control rod impact [6, 75];

• Non-cylindrical walls, such as in the ASTRA [16] and Thorium Molten Salt Reactor (TMSR) experimental
facilities [7]; and

• Asymmetric axial configurations, such as converging/diverging conical sections, where the average porosity
sharply transitions to a value several percent higher than the cylindrical region of the bed and the oscillatory
porosity profile near the walls has wider peaks [76].

Discrete Element Method (DEM) simulations can be performed to determine the porosity profile for any desired
geometry. The porosity is generally a function of height and distance from a wall. This section will discuss these de-
pendencies separately, and to employ both dependencies, the correlations would simply need to be multiplied together
and scaled appropriately. However, correlations currently available only treat the radial dependence. Correlations for
ε have been determined experimentally and numerically in many ways. It is common to use a DEM code to numer-
ically generate a packed bed [76–78]. Experimentalists often simply fill a cylinder with spheres, pour in a wax or
resin that is allowed to solidify, and then chop the cylinder into pieces for weighing. Some researchers have also used
image analysis and radiography. However, there still exists variation amongst correlations given by researchers due to
how the bed is initially filled with pebbles. A pebble bed can generally be filled in four different ways, which show
progressive decreases in the infinite bed porosity ε∞ [79]:

1. Drain fluid from a fluidized bed containing spheres: ε∞ ≈ 0.44.

2. Drop spheres individually into the bed or allow them to roll into place: ε∞ ≈ 0.395−0.4.

3. Pour spheres into the bed: ε∞ ≈ 0.375−0.391.

4. Shake down the packed bed by vibration: ε∞ ≈ 0.359−0.375.

In general, gentler filling methods lead to higher porosities because less pebble motion is induced while filling the
bed. For natural media, ε usually varies from 0.2− 0.6. For beds of equal-sized spheres, the limits on ε are 0.2595
for rhomohedral packing and 0.4764 for Simple Cubic (SC) packing. The rougher the pebbles, the more resistant
the pebbles to slipping into a higher packing fraction. However, none of the correlations discussed here consider the
roughness of the pebbles.

The radial porosity profile is a damped oscillatory function of the distance from the wall. A minimum (of about
0.2 for ε∞ ≈ 0.4) is reached at about dp/2 from the wall due to sphere alignment. Most experimental results show that
a constant porosity is reached within four to five pebble diameters from the wall [78, 79]. The largest porosity (except
that right at the wall) is obtained one pebble diameter from the wall. While the porosity tends to unity right at the wall,
fluid stagnation points act to artificially decrease the porosity, such that a wall porosity of 1.0 is not necessarily “seen”
by the fluid [35]. When using a spatially-varying porosity, it should be noted that the governing equations generally
become stiff and difficult to converge in the near-wall regions where ε = 1 [38] or in very low flow regions where
ε = 0 [80]. For this reason, it may help convergence to assume a constant porosity to avoid numerical stiffness issues
associated with ε→ 1 and ε→ 0. It is also a common approximation to treat the porosity as a piecewise function, with

91



one value used in the center of the bed, and a different, higher, value (but not unity) used at the periphery of the bed;
this may be supported by the apparent decrease in porosity at the walls caused by stagnation points [19].

The axial porosity profile is also a damped oscillatory function of the distance from the bounding walls. However,
most beds will only have one axially-bounding wall, either on the top for beds filled from the bottom, or on the bottom
for beds filled from the top. At the free end of the bed, the porosity smoothly approaches unity [49, 77]. Inner bed
structures, such as guiding plates to enforce pebble zoning, also impact the porosity profile. During motion, pebbles
diffuse less than one pebble diameter from the mean flow streamlines, so even though guiding plates typically only
extend into the bed for a fraction of the total bed height, the porosity profile may be affected throughout the entire
height of the bed [76]. In addition to wall structures, the weights of the pebbles also impact the porosity. For gas-
cooled reactors, where the pebbles have very little buoyancy force, the average porosity will be slightly higher towards
the bottom of the bed, though not all researchers have observed this effect numerically or experimentally [77]. Pebble
weight will likely have an even smaller impact for liquid-cooled reactors, since the pebbles are closer to neutrally
buoyant. In beds with a free axial surface such as the Pebble Bed High-Temperature Fluoride-Salt Cooled Reactor
(PB-FHR), the flow profile results in either a convex or concave pebble structure [15].

Overall, the radial porosity profile has a stronger effect on the bed flow than the axial profile. The radial increase in
porosity near the walls impacts the friction coefficients discussed in Section 9, the heat transfer coefficients discussed
in Section 10, and the effective thermal conductivities discussed in Sections 11 and 12. The velocity is the field
variable most impacted by a spatially-varying porosity [54] - the radial velocity profile is almost entirely determined
by the porosity [49]. High porosity near the walls generally results in lower drag coefficients because the Darcy and
Forchheimer prefactors scale as (1−ε)2/ε and 1−ε, respectively. The dependence of the drag coefficients on porosity
produces a flow-channeling effect - the velocity shows a large peak that is contained within a half pebble diameter of
the wall [38]. Fig. 8 shows an example of these velocity profiles near the wall in a pebble bed.

As long as a Brinkman-type model is not used (the no-slip condition is not enforced at the walls), the velocity field
will almost exactly follow the porosity profile, so using an oscillatory profile yields an oscillatory velocity [36, 38].
With a constant porosity, the velocity profile is nearly constant along a cross-section [7,36,54,81], with slightly higher
values in regions where the heating is greatest (from mass conservation principles). With a non-constant porosity, the
flow channeling effect at the walls results in bypass flow that causes less effective cooling of the fuel, and higher overall
temperatures in the bed (on the order of tens of degrees) [36, 81] and a more nonuniform outlet temperature [82]. The
porosity profile also impacts the overall pressure drop. If the high-porosity region is confined to a relatively small
region of the bed, the overall pressure drop may differ by only about 2.5% from the pressure drop obtained using a
uniform porosity [36]. The majority of packed beds are designed with fairly low dp/dbed ratios, so the wall effects tend
to be fairly minimal. However, it should be noted that using a constant porosity is non-conservative in the sense that
flow bypassing the fuel is not captured and some non-uniformity of the outlet flow is not captured. Table 15 provides
example values for several packed bed reactors and experimental facilities. For annular beds, the bed diameter is taken
as the difference in the outer and inner diameters.

Table 15: Core geometries and dp/dbed ratios for several packed bed reactors and experimental facilities. “—” denotes
that an inner diameter cannot be defined for cylindrical beds. The PB-FHR inner and outer diameters are for the
mid-plane of the bed, and the height was estimated based on the number of central reflector blocks of height 25 cm
adjacent to the core (not including the defueling chutes).

System Bed Type Active Height (m) Inner Diameter (m) Outer Diameter (m) dp (m) dp/dbed

HTR-10 [83] cylindrical 1.97 — 1.8 0.06 0.033
HTR-PM [21] cylindrical 11 — 3.0 0.06 0.020
PB-FHR [3] annular 4.5 0.70 2.5 0.03 0.012
PBMR-400 [84] annular 11.0 2.0 3.7 0.03 0.018
SANA [18] annular 1.0 0.141 1.5 0.06 0.044
THTR [71] cylindrical 6.0 — 5.6 0.06 0.011
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So, many researchers assume constant porosity εo [7, 11]:

ε = εo (8.1)

Figure 8: Velocity flow channeling effect at the wall of a pebble bed for two different Reynolds numbers [85]. The
figure shows the velocity normalized by the bed-averaged superficial velocity.

Larger pebble diameters produce wider, but shallower, velocity peaks near walls [54]. The ratio of the peak
superficial velocity to the bed-center superficial velocity is in the range of 2-10. Because high Re flow is characterized
by better momentum transfer, the width of the velocity peak is larger for high Re flows since the channeling region
extends farther into the bed. Therefore, the ratio of superficial velocities decreases with Re, and is in the range of
2-4 for 10 < Re < 1000 [38]. Generally, the flow channeling region does not decrease to nil at very large Reynolds
numbers, but eventually becomes stationary. By defining the percentage of flow that is bypass flow as the fraction
of velocities above the average bed velocity, higher Re leads to a lower percentage of bypass flow [38]. At higher
temperatures, because gas viscosity increases with temperature, viscous diffusion also causes the flow channeling
peak to become wider. Faster velocities at the edges of the core lead to a lower overall bed pressure drop than had
a constant porosity been used. However, this bypass flow results in less cooling of pebbles. The bypass flow does
produce greater convective cooling of the bounding wall, which can help extend component lifetimes. For annular
packed beds, there is essentially no difference in the porosity structure near the inner versus outer walls. As the fluid
heats up in the core, by conservation of mass the velocity generally increases, resulting in more significant drag effects
as the fluid moves through the core [2, 17, 49].

The correlations discussed in this section do not consider any stochastic behavior in the local porosity. By com-
puting the average porosity over small clusters of about 45 pebbles, Auwerda determined approximate Probability
Density Function (PDF)s for porosity in a cylindrical packed bed, shown in Fig. 9 [78]. The variation in porosity is
lower in the inner bed region; but, near the walls, both very large and very small packing fractions are obtained. These
wide variations show that hot spots can occur, especially near the walls if adjacent to reflectors, which would not be
captured by any of the porosity correlations discussed in this section. Accounting for hot spots is more important for
gas-cooled beds than for liquid-cooled beds since gas viscosity increases with temperature, increasing friction drag
and reducing convective cooling velocity [3].
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Figure 9: PDF of the coordination number for the inner (far from walls) and outer (within several pebble diameters of
the walls) regions of a cylindrically-packed bed for experimental (denoted as “scan”) and numerical data [78].

The correlations discussed in this section also assume that the porosity is independent of the fluid flow. In reality,
the fluid exerts drag forces on the pebbles, causing them to move slightly. To fully account for pebble motion, a coupled
DEM-CFD simulation would need to be performed, and the drag on the pebbles use a nonzero solid velocity [49].
Using DEM and CFD, Li et. al assess the pebble motion due to drag forces exerted by the fluid in the annular Pebble
Bed Modular Reactor-400 (PBMR-400) reactor, and find that at the entrance of the bed, the fluid causes the axial
porosity to increase from roughly 0.4 to 0.5 [86]. The fluid flow generally causes the pebbles to move from the
outer wall of the annular core to the inner wall, resulting in increase channeling effects at the outer wall. Neither of
these effects are very significant in the bulk or at the bottom of the bed, where contact forces prevail. No impact on
the coordination number was observed. For beds of floating pebbles, such as salt-cooled systems, the kinetic energy
of the pebbles is essentially zero, even for the pebbles at the lower plenum that are free to move [87]. Due to the
great complications associated with running DEM simulations to obtain porosity distributions that are a function of
the fluid flow (thus introducing a coupling, since the fluid flow is dependent on the porosity), the assumption of a
time-dependent porosity is used in Pronghorn.

A time-dependent porosity based on the online refueling pebble recirculation motion (about 0.5% of pebbles are
removed each day [71]) is also not considered, because this rate tends to be very low for packed bed reactors and
experimental facilities. For example, for the PB-FHR, pebbles pass through the core an average of eight times over 1.4
years, giving an average pebble velocity of only 10−7 m/s [3]. Therefore, most researchers assume a time-independent
porosity [11].

In addition to the fluid flow and heat transfer, porosity has an important impact on the neutronics of a pebble bed
system via its impact on neutron streaming. Though mostly outside the scope of this document, a brief discussion may
be useful for those directly using the porosity correlations in Pronghorn for coupling to a neutronics code. Some neu-
tronics models homogenize the entire bed using an average porosity. But, there are two more sophisticated modeling
options -

1. Divide the reactor into zones of homogeneous porosity. When using a piecewise constant porosity in the neu-
tronics solution, corrections to diffusion coefficients attempt to regain lost accuracy.

2. Explicitly model all pebbles.

The average porosity of a bed is lower than the median porosity due to structuring near walls, so using a piecewise
constant porosity generally increases the multiplication factor by 50-100 pcm because less fuel is located near the
periphery than suggested by a totally homogeneous bed [88]. However, using explicit pebble models best captures
the overall leakage increase effect. For a helium-filled cylindrical bed of a 1:1 ratio of moderator to fuel pebbles,
Auwerda et.al calculate a 606 pcm decrease in the multiplication factor when explicitly modeling the pebbles versus
the piecewise constant approach. The standard deviation of 104 pcm indicates the strong impact the local porosity
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has on the neutron streaming [88], though the lack of any treatment is significant [89]. The most important impact
of the porous nature of the bed is the increase in streaming and leakage - the decrease in resonance self-shielding at
the edge of the bed is not statistically significant [88]. If using a Pronghorn porosity correlation in a neutronics code
that is not capable of explicitly modeling the individual pebbles, an oscillatory porosity correlation combined with
diffusion coefficient correction factors may be the next-best approach. If only using the neutronics code to obtain
global parameters, a constant porosity may be sufficient, but local reaction rates (which can show on the order of 40%
difference from homogenized rates) require spatially-varying porosity [89].

Correlations for porosity either smooth out the physical oscillations, or retain them in some average sense. Both
options are available in Pronghorn. In the correlations that follow, many give results in terms of a nondimensional
distance from the wall that is defined here for reference:

Z=
dbed/2− r

dp
(8.2)

The coordination number Nc, or the number of pebbles contacting a pebble, is another important property of
packed beds that varies with position in the bed. Nc is important for calculating the solid-to-solid contact conduction
component of the effective solid thermal conductivity discussed in Section 11.

To be stable, a pebble needs at least three contacts. At the wall, one of these contacts can be provided by the wall,
so the minimum Nc are 3 far from the walls and 2 at the walls. The maximum theoretical coordination number is
12, corresponding to Hexagonal Close Packing (HCP). By investigating the axial porosity, the radial distribution of
pebble-to-pebble center distances, and angles between touching pebbles, Auwerda shows that near walls, the pebbles
are ordered in a packing very similar to HCP packing [78]. This structuring has important consequences for the coor-
dination number within the bed. Auwerda computed the PDF of the coordination number using both a numerically-
generated bed and an experimental setup, with results shown in Fig. 10. As can be seen, there is a large variation in
the coordination number within a bed, with significant variation in different regions of the bed. In the inner bed region,
there is less spread in the predicted coordination numbers. Interestingly, at the edges of the bed, higher coordination
numbers are possible due to the semi-ordered HCP packing. So, despite the lower porosity, coordination numbers can
be higher at the edges of the bed. For SC packings, Nc = 6, for BCC packings, Nc = 8, and for FCC packings, Nc = 12.
For randomly-packed pebble beds, the coordination number is some combination of these various packing structures,
and a wide range of coordination numbers are reported in the literature [17, 86].

Figure 10: PDF of the coordination number for the inner (far from walls) and outer (within several pebble diameters
of the walls) regions of a cylindrically-packed bed for experimental (denoted as “scan”) and numerical data [78].

In addition to porosity and coordination number, the tortuosity T is another geometric characteristic of a porous
media. The tortuosity is a measure of the average fluid particle path length to the straight-line distance between the
same points. In other words, the tortuosity is a measure of the increase in the fluid particle path length due to flow
obstructions caused by the solid porous matrix. The tortuosity is an important factor in the effective fluid thermal
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conductivity discussed in Section 12. Tortuosity can be measured by performing mass transfer experiments to ensure
no conductance through the solid phase, or by comparing diffusion coefficients in non-porous and porous media. The
tortuosity will always be lower than 1/ε, since T = 1/ε signifies that the only impedance occurs to a loss of flow area,
and underestimates tortuosity due to bending around solid particles [90].

8.1 Porosity

This section describes the functions available in Pronghorn to calculate porosity. Porosity may also be specified as a
constant value or with some other user-defined function.

8.1.1 OscillatoryPorosityFunction

Klerk correlated porosity as a function of radial position for cylindrical packed beds of spheres [79]. The period of the
oscillation is taken to be constant because it has not been successfully correlated with the bed to pebble diameter ratio.
The correlation is split into two zones because the first layer of pebbles in contact with the wall will be fully ordered,
while all other layers will not. This correlation requires dbed/dp > 2.

ε(r) =

{
2.14Z2−2.53Z+1 Z≤ 0.637
ε∞ +0.29e−0.6Z cos(2.3π(Z−0.16))+0.15e−0.9Z Z> 0.637

(8.3)

8.1.2 ExponentialPorosityFunction

Hunt and Tien calculate the radial porosity for a cylindrical bed of spheres as [91]:

ε(r) = ε∞ +(1− ε∞)e−6Z (8.4)

This function gives the infinite bed porosity towards the center of the bed, and an exponential increase to a porosity
of 1 at the wall. Other authors use similar exponential formulations that do not rely on any numerical factors, such
as ε(r) = ε∞

(
1+Ce1−Z

)
[38]. Vortmeyer et. al provides a semi-analytical expression for the velocity profile in a

porous media near a bounding wall assuming an exponential porosity formulation such as in Eq. (8.4) that can be used
for comparing constant-porosity and non-constant porosity results for isothermal flows [38, 85].

8.1.3 AnnularExponentialPorosityFunction

For annular cylindrical beds with an outside radius ro and an inside radius ri, many authors have expressed porosity in
the following form [77]:

ε(r) =


ε0

[
1+C1 exp

(
−N1

r−ri
dp

)]
r1 ≤ r ≤ ro−ri

2

ε0

[
1+C2 exp

(
−N2

ro−r
dp

)]
ro−ri

2 < r ≤ ro

(8.5)

where there is varied interpretation of the meaning of ε0 and the values used for N1 and N2. Unity porosity can
be enforced at the walls by taking C1 = C2 = 1/ε0− 1. Du Toit recommends usage of Hunt and Tien’s version of
this correlation, where N1 = N2 = 6 and ε0 is taken to be the bulk porosity of the bed [77]. For simplicity, here it is
assumed that the bulk porosity is equal to ε∞. Note that this correlation is not strictly continuous at r = (ro− ri)/2, but
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because N is selected as 6, the jump at this point is small unless a very narrow annular is modeled (in which case the
porous media approximation is less accurate anyways).

8.2 Coordination Number

You et. al calculate Nc as a function of porosity as [92]:

Nc = (1.008E−2)ε−4.785 +5.6480 (8.6)

which is valid for 0.26≤ ε≤ 0.476. By performing DEM simulations, You estimates 10% accuracy of Eq. (8.6),
though the equation provides slightly higher Nc than actually observed. Propagating this uncertainty to the correlations
used for κsolid conduction results in only a 1% difference in κsolid conduction, and hence the error in Eq. (8.6) is acceptable.
Note that Eq. (8.6) does not account for any local stochastic variations in Nc illustrated by Fig. 10. However, Eq.
(8.6) gives reasonable packing fractions that agree with the mean values shown in Fig. 10. There are no function-type
classes to compute Nc in Pronghorn, but Eq. (8.6) is used directly in Section 11.

8.3 Tortuosity

Of the constitutive relationships discussed in this document, the variation in tortuosity correlations seems to be very
wide. Several researchers have predicted constant values of T (

√
2 for beds of spheres [19]), but in principle T should

depend on porosity [93]. Boudreau collected a variety of tortuosity correlations available in the literature, and showed
that the majority have one of the following dependencies, where a, b, and n represent tunable constants:

T−1 =
√

εn (8.7a)

T−1 =
√

1+a(1− ε) (8.7b)

T−1 =
√

1−b ln(εn) (8.7c)

None of these correlations provide a very good fit over wide experimental data sets, so the choice of tortuosity
representation may not be very crucial for correct modeling. By fitting experimental data to the three forms shown
above, the highest r2 value obtained by Boudreau was only 0.65 - statistically significant, but not an impressive match
to experimental data [93]. Boudreau recommended selecting:

T−1 =
√

1− ln(ε2) (8.8)

Alternatively, by fitting mass transfer data, the tortuosity has been approximated as [85, 90]:

T−1 = 1−
√

1− ε (8.9)

Eq. (8.9) often overpredicts the tortuosity [90]. The tortuosity is an important factor in the effective fluid ther-
mal conductivity discussed in Section 12. While no function-type classes exist in Pronghorn to compute tortuosity,
currently the simple approximation that T = 1/ε is used, though future developments may involve more sophisticated
tortuosity models. Tortuosities measured in the radial and axial directions show only slight differences, and hence it is
unlikely that a tensorial form of tortuosity be required [94].
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9 Friction Coefficients

This section provides values for the friction coefficient W that appears in Eq. (2.152). Section 9.1 provides isotropic
correlations for beds of spherical particles, while Section 9.2 provides anisotropic correlations for pipe flow that may
be used to represent reflector coolant channels or other components. No correlations are currently implemented for
plate or prismatic solid geometries. All friction coefficients available in Pronghorn are a function of Reynolds number,
porosity for pebble bed correlations, and pipe roughness for pipe flow correlations.

9.1 Pebble Bed Correlations

This section presents correlations for friction factors to be used for pebble bed geometries. These friction coefficients
depend on several design parameters -

1. Randomness of the pebble packing; all correlations discussed in this section are applicable to randomly-packed
beds, and applying these correlations to ordered packings at the same Reynolds number generally overpredicts
the pressure drop due to the more tortuous fluid paths in random beds [10, 17].

2. The bed to pebble diameter ratio dbed/dp; friction exists due to both the solid pebbles and the containing wall,
and the extent to which the wall friction contributes to the overall bed pressure drop depends on the dbed/dp
ratio. When dbed/dp < 10, wall effects can constitute a significant portion of the flow, and whether the overall
pressure drop is higher or lower than that of an infinite bed depends on two competing factors [31]: 1) The lower
porosity at the wall reduces friction due to the lower number of flow obstructions, and 2) The presence of the
wall increases friction, analogous to flow in a pipe. The factor that dominates depends on the Reynolds number.
For low Reynolds number, the boundary layer on the wall is relatively thick such that the viscous drag is most
significant. For high Reynolds number, the boundary layer is so thin that the high porosity effect dominates.
This means that, for small dbed/dp, the viscous drag is greater for low Reynolds numbers, while the kinetic drag
is lower for high Reynolds numbers. Section 9.1.1 provides correlations that neglect dependence on dbed/dp
that can be used for the majority of beds as shown in Table 15, while Section 9.1.2 provides correlations that
account for dbed/dp, and should be used for relatively narrow beds.

3. Pebble diameter; both D and F decrease with larger pebble diameters in the laminar regime due to wall effects,
since the velocity peak extends further into the bed. However, in the turbulent regime, such drag reduction effects
may not be observed because turbulence enhances mixing to the point that the wall effect is less significant [40].

4. Porosity; pressure drop tends to decrease linearly with porosity. For example, a 1% change in the porosity in the
Ergun correlation will produce a 10% change in the pressure drop [95].

5. Pebble surface roughness; in practice, this dependence is negligible, and hence roughness is neglected in all
pebble bed correlations shown in this section. However, surface roughness could be taken into account via the
calculation of the pebble surface area in Eq. (2.204).

6. Prandtl number; few friction factor correlations are a function of Prandtl number, but because inertial forces
dominate the total pressure drop for Reynolds numbers typical of reactor conditions, high Prandtl number fluids
will be characterized by less vortices. Most of the correlations in this section were developed for fluids with
Prandtl numbers on the order of 1, and the use of these correlations for higher Prandtl number fluids will
generally overpredict the pressure drop [10].

The correlations presented in this section have primarily been developed for isothermal straight channel flow, and
may not be valid for converging/diverging geometries or combined axial and cross flow in high-temperature-gradient
conditions. In addition, all of the correlations discussed in this section have been obtained using bed-average values of
velocity, porosity, and thermophysical properties. Despite these correlations representing global friction coefficients,
it is assumed that these correlations are locally valid such that local values of system parameters, rather than medium-
averaged values, are used [24, 35, 37, 38]. In this heuristic approximation, squares of velocity are transformed to
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| #»v | #»v [37]. Caution should be taken with the particular drag correlation used, since many are not valid up to ε = 1.
The range of validity may require the use of a different porosity profile.

The strong dependence of the pressure drop on porosity causes a flow channeling effect near the walls of the core
where the porosity is high. This strong bypass flow is not treated consistently among experimentalists, and is likely
the main source of scatter among the correlations discussed in this section [67]. If the bypass flow isn’t taken into
account, then the superficial velocity will be larger than the actual local values, giving a smaller friction coefficient.

The pressure drop per unit length tends to be approximately constant over the core for reactor systems [7, 10, 48],
with the total pressure drop being on the order of 0.06-0.3 MPa for gas-cooled systems [36, 48, 81] and 0.06 kPa for
salt-cooled systems [11]. The magnitude of the pressure drop depends on the flow profile, as partial or full radial flow
substantially reduces the pressure drop [11, 84].

9.1.1 Friction Coefficients Independent of the Wall

This section contains friction coefficient correlations that don’t account for wall effects on the whole-bed solution. Fig.
11 shows a comparison of the many friction factor correlations available in the literature that fall into this category. As
can be seen, there is considerable spread among these correlations, which is partially explained by the use of different
dbed/dp ratios.

Figure 11: A comparison of the friction factor computed from the many available correlations for pebble beds that do
not account for the presence of the bounding wall [95].

9.1.1.1 ErgunDragCoefficients

Based on the proportionalities shown in Eqs. (2.143) and (2.144), the simplest friction factor correlation can specifies
constant proportionalities A and B for each of the contributions to the total pressure drop:

ε∇P =−A
(1− ε)2

d2
pε

µ
#»
V −B

1− ε

dp
ρ f |

#»
V | #»V (9.1)
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Ergun analyzed a wide variety of experimental data and concluded that A = 150 and B = 1.75 most accurately rep-
resents the data. From theoretical grounds, however, there is no reason to expect that A and B are universal constants,
and assigning any constant value simply represents a best fit to data. Ergun’s correlation covers the range of Reynolds
numbers up to fully turbulent flow, and is valid for 0.08 < Rek < 196 and a wide variety of porosities and particle
shapes [28]. This correlation has been supported by a great deal of experimental validation; 92 out of 98 data sets
correlated with an r-value greater than 0.9 when correlated with an Ergun-type equation [30–32]. Ergun’s correlation
is the most commonly-used friction factor correlation for pebble beds, and it is the correlation used in TRACE [95].
There is disagreement on whether this correlation predicts the pressure drop well for HTGRs - Seker et. al recom-
mend Eq. (9.4), while Becker et. al find no different in temperatures and velocities when using Eq. (9.1) versus Eq.
(9.4) [81, 96].

Other researchers have proposed different proportionality constants A and B in Eq. (9.1). For example, Macdonald
concluded that a better fit could be obtained with A = 180 and B in the range of 1.8 (smooth particle) to 4.0 (very rough
particle) [29]. This dependence of B on particle roughness fits with the analogy of internal pipe flow, though others
have contradicted any dependence of B on roughness [31]. So, while Ergun’s correlation with constant coefficients
provides only one curve, in reality there may be many curves at higher Re, dependent on the surface roughness. For
at least one data set, it appeared that A and B are not actually constant, but have weak variation on porosity, where A
was better fit proportional to ε−5.5 rather than (1− ε)2/ε3. However, MacDonald also suggests that the pressure drop
is rather insensitive to the values of the coefficients - varying A and B by ±25% did not lead to substantial differences
in the overall pressure drop. Based on this analysis, and because Macdonald’s correlation shown in Fig. 11 is not very
different from Ergun’s correlation, Ergun’s correlation is implemented in Pronghorn using A = 150 and B = 1.75.

9.1.1.2 PiecewiseLinearDragCoefficients

Several researchers have developed correlations for drag coefficients that are piecewise-linear in Reynolds number,
where one correlation is to be used in the Forchheimer regime, and the other in the fully turbulent regime. In other
words, the A and B that appear in Eq. (9.1) are different based on the flow regime. Fand et. al developed a piecewise
correlation based on beds of both uniform- and mixed-diameter spheres [40]:

D f and =


182 (1−ε)2

d2
pε

µ 5 < Re < 80

225 (1−ε)2

d2
pε

µ Re≥ 120
(9.2)

F f and =

1.92 1−ε

dp
5 < Re < 80

1.61 1−ε

dp
Re≥ 120

(9.3)

In order to implement the Fand correlation numerically, the entire range of Reynolds numbers must be covered. It
is assumed that the Forchheimer regime is extended to cover the range from zero Reynolds number to the Reynolds
number at which the flow enters the transitional regime. On the lower spectrum, it is assumed that the inertial forces
are always present, such that the Darcy-Forchheimer relationship in Eq. (2.148) extends to zero Reynolds number
as well. This is a very good approximation that it supported by least-squares analysis performed by MacDonald that
shows that uncertainty in computed values of B in Eq. (9.1) has negligible impact on the computed drag in the viscous-
dominated regime [29]. Linear interpolation is performed within this transitional regime since most authors do not
provide a correlation describing the transitonal regime.
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9.1.1.3 KTADragCoefficients

KTA developed an empirical correlation for the pressure drop in pebble bed reactors that is widely used in nuclear
applications [42]:

ε∇P = Ψ
1− ε

2dp
ρ f |

#»
V | #»V (9.4)

where Ψ is defined as:

Ψ = 320
(

Re
1− ε

)−1

+6
(

Re
1− ε

)−0.1

(9.5)

This correlation is valid for 1 < Reh < 105, 0.36 < ε < 0.42, dbed/dp above a limiting curve provided in [42], and
the height of the bed being at least five times greater than the pebble diameter. The lower the Reynolds number, the
greater the diameter of the bed required to use Eq. (9.4); at low Reynolds number, the magnitude of the velocity peak
at the walls is very large, and a strong bypass flow develops that for higher Reynolds number flows would be more
smeared. From the curve in [42], for Reh = 1 the bed must be roughly 35 pebbles wide.

The fluid viscosity should be determined at the average of the fuel surface temperature and the fluid temperature.
Beyond about Reh = 105, the pressure drop becomes independent of Reh [67], which agrees in approximate order of
magnitude with values reported by [31].

9.1.2 Friction Coefficients Dependent on the Wall

This section contains friction coefficient correlations that account for the bed to particle diameter ratio dbed/dp. These
correlations are only required for relatively narrow beds, i.e. dbed/dp < 10. While the pebble discharge/fueling tubes
are typically narrow, because the neutron flux is usually intentionally small to avoid damage to fueling components
[11, 15], using correlations in Section 9.1.1 will likely not produce a significant modeling error. But, temperatures
can be large if fueling tubes are fed by high-temperature coolant such as near the core outlet, in which case the use of
correlations in this section may be more important. For a given infinite medium porosity, Fig. 12 shows the friction
factor computed using the Eisfeld correlation as a function of the bed to pebble diameter.
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Figure 12: A comparison of the friction factor computed using the Eisfeld correlation as a function of the bed to pebble
diameter [95].

9.1.2.1 EisfeldDragCoefficients

Eisfeld correlated experimental data using an Ergun-type correlation [31]:

Deis f eld = 154A2
w
(1− ε)2

εd2
p

µ (9.6)

Feis f eld =
Aw

Bw

1− ε

dp
(9.7)

where Aw and Bw represent modified Ergun-type drag coefficients:

Aw = 1+
2

3 dbed
dp

(1− ε)
(9.8)

Bw =

[
1.15

(
dp

dbed

)2

+0.87

]2

(9.9)

This correlation is valid for 0.01 < Re < 17365, 1.6 < dbed/dp < 250, and 0.33 < ε < 0.882. This correlation gives
a lower Root Mean Square (RMS) deviation than correlations that do not account for the bounding wall. The Eisfeld
correlation is used in TRACE when the bed to particle diameter ratio is sufficiently small [95].

9.2 Pipe Flow Correlations

This section presents correlations for friction factors to be used for pipe flow. Unlike the correlations presented in
Section 9.1, the correlations in this section must be anisotropic to reflect the fact that there is a preferred flow direction.
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Pipe flow friction correlations typically bundle the friction and kinetic drag components into a single term that is often
very difficult or analytically impossible to detangle into separate D and F, so all correlations in this section simply
present W , rather than its individual components.

9.2.1 ChurchillDragCoefficients

Churchill combined several correlations for laminar, transitional, and turbulent flow to obtain a correlation valid for
all Re and relative pipe surface roughness εpipe/D [97]:

W =
ε‖ #»

V ‖2

2D

[(
8

Re

)12

+
1

(Ac +Bc)3/2

]1/12

(9.10)

where the factor of ε‖ #»
V ‖2/2D appears in order to use this friction factor to represent ε∇P, and Ac and Bc are

defined as:

Ac =

2.457ln

 1(
7

Re

)0.9
+0.27 εpipe

D




16

(9.11)

Bc =

(
37530

Re

)16

(9.12)
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10 Heat Transfer Coefficients

This section describes the correlations available for calculating heat transfer coefficients. The emphasis is placed
entirely on beds of spherical particles, so none of the correlations shown in this section should be used for plate
or prismatic solid geometries. These correlations were obtained specifically for beds of randomly-packed pebbles;
application of these correlations to ordered packings generally results in overprediction of the Nusselt number for an
ordered packing at the same porosity [10].

Heat transfer coefficient closure laws are required to describe the solid-to-fluid within-bed heat transfer and the
bed-to-wall heat transfer that occurs at the edges of the core. The within-bed heat transfer is represented by α, while
the bed-to-wall heat transfer coefficient is represented by αw. α appears directly in the fluid and solid energy equations,
while αw appears in convection BCs on the bed fluid phase. Because α appears within the volumetric conservation
equations, it must be multiplied by the specific surface area aw in Eq. (2.205).

The convective heat transfer is about two times lower in the entrance region of a packed bed than for an average bed
location because the turbulence and boundary layers are smaller [67]. This difference between observed and predicted
heat transfer is more significant for larger Reynolds numbers. However, other researchers have shown substantial
improvements in heat transfer in the entrance region. Ferng et. al show that α in the first pebble layer is nearly
double that in the bulk of the bed; α decreases over the first six to seven pebble layers as the flow becomes thermally
fully-developed [14]. Song et. al show that Nu is about 20% higher in the entrance region than the bulk bed value for
BCC lattices; the lack of a significant entrance effect for an FCC configuration suggests this effect may be packing
structure-dependent [10]. These apparent disagreements need to be further investigated, but most of the correlations
discussed in this section do not take this account into effect.

10.1 Pebble Bed Correlations

This section discusses heat transfer coefficient correlations available for modeling beds of spherical pebbles. The
techniques to measure the heat transfer coefficient in pebble beds include:

1. Heat transfer from an electrically-heated sphere in an unheated packing; if mixing effects and conduction be-
tween spheres are small, this can yield accurate measurements of the convection coefficient. The Nusselt number
may be over-predicted by an order of magnitude at low Reynolds number if the spheres contacting the single
heat sphere are not of low thermal conductivity [67].

2. Mass transfer tests; analogies between heat and mass transfer allow experiments at extremes in dimensionless
numbers that would be difficult to obtain using heat transfer. Mass transfer tests typically use spheres coated in
napthalene, which undergoes sublimation in air. This eliminates most heat transfer modes due to a negligible
temperature difference between the solid and the fluid. However, the object’s temperature must still be known
accurately since it has a strong impact on the vapor pressure of napthalene.

3. Regenerative heating (unsteady heating)

In the limit of Re→ 0 for a single sphere surrounded by fluid, it can be shown that Nu= 2. Many of the correlations
shown in this section include this limiting behavior. However, some authors argue that using a limiting Nu only applies
for a single sphere, and not for beds of spheres [19].

In a spherical coordinate system, conduction in a constant thermal conductivity fluid surrounding a sphere is
dictated by:

k
r2

∂

∂r

(
r2 ∂T

∂r

)
= 0 (10.1)
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Solving this equation with the BCs T (R) = To and T (r→ ∞) = T∞ gives:

T (r) =
R(To−T∞)

r
+T∞ (10.2)

Matching the heat flux at R with the convection heat flux gives:

k
R(To−T∞)

R2 = h(To−T∞) (10.3)

Because D = 2R, solving the above for hD/k gives Nu = 2 for a sphere in stagnant fluid.

Heat transfer coefficient correlations for packed beds either average or explicitly account for the dependence on
porosity. α decreases approximately linearly with porosity, though with a weaker dependence on porosity that the
friction coefficients discussed in Section 9. A 1% change in the infinite medium porosity gives about 3% change in the
fluid-pebble heat transfer coefficient. In the center of the bed, correlations that do not account for porosity variation
could be used with relatively minor error. However, towards the edges of the bed where porosity is very high, there
are two competing effects:

1. A less tortuous fluid path due to the higher porosity reduces α.

2. The higher-velocity wall bypass flow increases α.

Whether α is overall higher or lower at the edges of the bed depends on how ε and V change relative to one another.

10.1.1 Correlations Independent of Porosity Variation

This section provides several heat transfer coefficient correlations that do not directly account for the bed porosity.
Fig. 13 shows a comparison of several of the most common of these heat transfer coefficients.

Figure 13: A comparison of the Nusselt number computed using a variety of common porosity-independent heat
transfer coefficients [95].
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10.1.1.1 WakaoPebbleBedHTC

The Wakao correlation can be obtained by mass-heat analogy [98]:

Nu = 2+1.1Pr1/3Re0.6 (10.4)

This correlation is valid for 15 ≤ Re ≤ 8500 and ε = 0.4. At lower Re, the correlation slightly under predicts
experimental data.

10.1.2 Correlations Dependent on Porosity Variation

This section provides several heat transfer coefficient correlations that explicitly depend on porosity, and hence are ca-
pable of modeling wall effects provided using a globally-determined correlation for local effects is valid. Researchers
have assumed validity for friction coefficient correlations generated on a global basis - the same validity is assumed
here for heat transfer coefficients. Fig. 14 shows a comparison of several of the most common of these heat transfer
coefficient correlations.

Figure 14: A comparison of the Nusselt number computed using a variety of common porosity-dependent heat transfer
coefficients [95]. “VanSaden” corresponds to the KTA correlation.

10.1.2.1 GnielinskiPebbleBedHTC

Gnielinski developed a semi-empirical correlation by introducing the appropriate length (dp) and velocity scales (
#»
V )

to transform the heat transfer from a flat plate to flow around spherical particles [67]:

Nu =
[
1+1.5(1− ε)

](
2+
√

Nu2
lam +Nu2

turb

)
(10.5)

Nulam = 0.664Re0.5
i Pr1/3 (10.6)
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Nuturb =
0.037Re0.8

i Pr
1+2.443Re−0.1

i
(
Pr2/3−1

) (10.7)

This correlation is valid for Rei ≤ 7.7× 105, 0.7 ≤ Pr ≤ 104, and 0.26 ≤ ε ≤ 0.935. The Gnielinski correlation
matches experimental data fairly well at high Re, but may over predict at low Re. This correlation was experimentally
verified by Achenbach using a single heated sphere in an unheated packing [67].

10.1.2.2 KTAPebbleBedHTC

KTA proposed the following correlation for pebble bed reactors [99].

Nu = 1.27
Pr1/3Re0.36

ε1.18 +0.033
Pr0.5Re0.86

ε1.07 (10.8)

This correlation is used in TRACE and PEBBED [95]. This correlation is valid for 100 ≤ Re ≤ 105, 0.36 < ε <
0.42, and a bed height greater than four times the pebble diameter. If plane-averaged values of the porosity are used,
then the bed diameter must be 20 times greater than the pebble diameter. Because it is assumed that this correlation
uses local values, this restriction does not apply. The material properties of the gas should be evaluated at the mean
value of the pebble surface temperature and the gas temperature. For the first layer of pebbles, Eq. (10.8) should be
halved to account for poorer heat transfer due to entrance effects.

10.2 Wall-to-Fluid Correlations

This section presents correlations for αw, which captures heat transfer between the bed and a solid wall. This heat
transfer mode is represented by the green lines in Fig. 16. This heat transfer occurs through the thermal boundary
layer, which is generally much smaller than the pebble diameter. For turbulent flows, most heat is transferred by
the fluid to the wall, rather than by the solid to the wall, since the solid thermal conductivity was found to not have
a significant impact on the wall heat transfer coefficient (provided the system is isothermal) [100]. For this reason,
convection heat transfer could be approximated as only occurring between the bed fluid and the containing wall.

The thermal boundary layer’s impact on heat transfer to the wall is most important for high Prandtl number fluids,
since these fluids have relatively small thermal boundary layers that are nearly fully-contained within the momentum
boundary layer [37]. For these cases, using only bulk correlations for the heat transfer coefficient will give very
inaccurate results.

The heat flux from the wall to the pebbles is not smoothly-varying, as it is a strong function of the pebble-scale
flow behavior. Fig. 15 shows the (a) velocity vectors, (b) conceptual diagram of flow paths, and (c) heat flux from a
wall to a pebble bed [5]. Nijemeisland and Dixon found that the heat flux was highest at the pebble-wall contact areas,
and lowest at the vortices that form on the back sides of pebbles and in regions where flow paths join.
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Figure 15: A unit cell for comparing (a) velocity vectors, (b) conceptual flow field diagram, and (c) heat flux from a
cylindrical wall to a pebble bed [5].

10.2.1 AchenbachPebbleBedWallHTC

Using the mass-heat analogy with napthalene sublimation experiments [67]:

Nu =

(
1−

dp

dbed

)
Re0.61Pr1/3 (10.9)

This correlation is valid for 50 < Re < 2× 104. This correlation cannot be extended to lower Re because at that
point diffusion becomes substantially more important than convection, causing the thermal boundary layer thickness
to be of the order of the pebble diameter.

10.2.2 WakaoPebbleBedWallHTC

Using heat and mass transfer experiments, Yagi and Wakao developed a correlation for bed-to-wall heat tranfser based
on Reynolds number, but due to an insufficient range in Prandtl numbers, a typical heat transfer correlation in terms
of both Reynolds and Prandtl numbers could not be obtained. By comparing results with the heat transfer from a flat
plate recommended by Colburn, good agreement was reached with their correlation by replacing the distance along
the plate x by the pebble diameter [100]:

Nuwall = 0.036Pr1/3Re0.8 (10.10)

The pebbles essentially act to break up an otherwise continuous wall boundary layer, and hence the boundary layer
likely never becomes fully-developed at the wall. By using a shortened characteristic length (the pebble diameter),
this break-up effect is approximately captured.
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11 Effective Solid Thermal Conductivity κs

The effective solid thermal conductivity κs is used in lieu of ks in the solid heat diffusion kernel because conduction
in a pebble bed is impacted by the presence of the two mixed phases. Conduction occurs both within a single pebble,
and between pebbles at contact points and across solid voids (fluid regions) by radiation and fluid conduction. These
additional heat transfer mechanisms are not present in a filled solid (ε = 0) because regions of the solid cannot “see”
each other across fluid regions and heat is not restricted to flow between solid regions at solid contact zones. Fig.
16 depicts the various heat transfer mechanisms that are represented by κs, in addition to several other heat transfer
processes that are discussed in other sections of this manual.

Figure 16: Various heat transfer processes in a pebble bed [92].

κs consists of three components -

1. Conduction in a pebble and radiation between pebbles across a transparent fluid. This is represented by the
orange and red lines in Fig. 16, and is denoted as κradiation.

2. Conduction in a pebble and conduction in the fluid between pebbles. This is represented by the orange and blue
lines in Fig. 16, and is denoted as κfluid conduction.

3. Conduction in a pebble and conduction between pebbles at contact areas. This is represented by the orange and
pink lines in Fig. 16, and is denoted as κsolid conduction.

All three of these processes occur in “stagnant” beds, where the fluid is stationary. For this reason, κs is often
referred to as the “stagnant” effective thermal conductivity. The green lines in Fig. 16 represent heat transfer between
the packed bed and the wall, and is discussed in Section 10.2. Not shown in Fig. 16 is the heat transfer path described
by conduction within a pebble and convection in the fluid. This heat transfer path can be neglected at all values of
Reynolds number [101], though some authors suggest that this assumption is not valid for pore spaces on the order of
several centimeters, which is generally the pore size for nuclear reactor applications [90].

κs is the primary constitutive relationship that captures heat transfer mechanisms in loss of coolant accidents when
convective cooling becomes negligible. Accurate correlations are essential to the prediction of decay heat removal in
such accidents. Using slightly different correlations for κs shows temperature differences on the order of 75°C for
some of the SANA benchmark cases [55] and 25°C for a gas-cooled reactor system [81].
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The correlations discussed in the next sections are often provided in terms of the solid-to-fluid conductivity ratio,
defined here for convenience:

λ =
ks

k f
(11.1)

Representative thermal conductivities for several common reactor materials are given in Table 16. ks decreases with
temperature for nuclear-grade graphite [102]. Because the thermal conductivity of gases has a very small pressure
dependence, the Thorium High Temperature Reactor (THTR) results also apply for the High Temperature Reactor
Power Module (HTR-PM) reactor, though the HTR-PM operators at 7 MPa [21].

Table 16: Representative ks for common reactor materials at operating conditions. The solid material is assumed to be
100 °C higher than the fluid [2]. The graphite k is averaged over several different types of nuclear graphite [102].

Reactor Solid Fluid P (MPa) Tf (C) ks (W/m·K) k f (W/m·K) λ

PBMR [103] graphite helium 8.4 500/900 100/70 0.31/0.41 323/171
PB-FHR [3] graphite flibe 0.1 600/700 90/80 1.07/1.12 84/71
THTR [75] graphite helium 3.9 250/750 115/75 0.23/0.37 500/203

Because different heat transfer modes in beds can be isolated from one another, most literature provides correla-
tions for only one component of κs at a time. In the Pronghorn input file, the user selects which correlation to use
for each component of κs separately. In addition, a correction treatment is frequently applied in the vicinity of walls,
where a different correlation is used [36].

The combination of BreitbachBarthels, ZBS, and ChanTien correlations for the radiation, fluid conduction, and
solid conduction components, respectively, matches the model used in THERMIX [104]. There are several sources
that provide semi-empirical correlations for κs in entirety; these are the focus of the next section.

11.1 Models for κs

This section presents models for all three combined heat transfer paths that comprise κs. These combined models are
separated into distinct components that are then discussed in Sections 11.2, 11.3, and 11.4.

A good model for κs should obey certain logical limits in porosity, ks, and k f . For example, as porosity goes to
zero or unity, κs should tend towards ks and k f , respectively. Many correlations for κs developed do not meet all of
these criteria - only the Zehner and Bauer correlation discussed in Section 11.1.2 meets these criteria, and as such this
model has been recommended for use [90]. However, in order to provide some intuition on how κs might vary with
other system parameters that may not be obvious from a complicated correlation, several rudimentary models are first
discussed in Section 11.1.1.

11.1.1 Parallel and Series Heat Transfer

The most rudimentary formulation would simply be a volume average of the fluid and solid thermal conductivities:

κs = εk f +(1− ε)ks (11.2)

Eq. (11.2) is equivalent to assuming heat transfer occurs in parallel between the two phases. Alternatively, series
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heat transfer could also be assumed:

1
κs

=
ε

k f
+

1− ε

ks
(11.3)

Eqs. (11.2) and (11.3) provides bounds on the actual κs of the medium, with series heat transfer representing the
minimum (all heat must eventually pass through the lower-conducting phase) and parallel heat transfer the maximum
(the low-conducting phase can be bypassed). Because no parameters related to radiation heat transfer or contact
conduction area appear, Eq. (11.2) and Eq. (11.3) can be interpreted as a very rudimentary models for κfluid conduction.
Eq. (11.2) and (11.3) would also in principle be used to calculate κ f .

Some authors simply use linear combinations of Eqs. (11.2) and (11.3), with a recommended value of 20% of the
heat occurring in series [90]. Many early researchers, such as Maxwell and Lord Rayleigh, provide analytical corre-
lations, but these are rather limited in applicability and often did not consider the radiation or contact area conduction
components of κs [90, 105]. Hence, none of these simpler models will be described further here.

11.1.2 Zehner, Bauer, and Schlunder

The Zehner, Bauer, and Schlunder correlation gives κs as [90, 92]:

κs = εk f (1−
√

1− ε)
([

ε−1+1/KD
]−1

+KR

)
+ k f
√

1− ε
(
ϕλ+(1−ϕ)KSF

)
(11.4)

where ϕ is the contact area fraction, also known as the deformation ratio. KD represents a modified gas thermal
conductivity that accounts for Knudsen effects when the mean free path of the fluid is on the order of the pebble
diameter:

1
KD

= 1+
λ̃m f p

dp
(11.5)

where λ̃m f p is a modified mean free path, which can be calculated according to [90]. The mean free path is
much smaller than dp for Pronghorn’s application space, so to a good approximation, KD = 1. This approximation
is performed for Eqs. (11.14) and (11.22). KSF represents the complicated conduction-radiation and conduction-
conduction processes that occur between the solid and fluid phases:

KSF =
2
a

[
B(λ+KR−1)

a2λKD
ln

λ+KR

B
(
KD +(1−KD)(λ+KR)

)]

+
2
a

−B−1
aKD

+
B+1

2B

(
KR

KD
−B

{
1+

1−KD

KD
KR

}) (11.6)

where B is given by

B =C
(

1− ε

ε

)m

(11.7)

For the case where Eq. (11.4) is simplified to represent only the fluid conduction component (by setting KR = 0
and ϕ = 0), Zehner and Schlunder recommend C = 1.25 and m = 10/9 to exactly fit the geometrical constraint on the
shape factor B, but Hsu by a least squares procedure determined C = 1.364 and m= 1.055 better match the geometrical
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constraint. However, when all three components are considered, Hsu argues that the values for C and m in Eq. (11.7)
should be modified [106]. Hsu provides graphical data for computing C and m as a function of the deformation ratio,
but because the deformation does not change appreciably for pebble bed designs of practical interest, the constant
values of C = 1.25 and m = 10/9 are used [92, 106].

a is defined as:

a =

[
1+

KR−BKD

λ

]
1
KD
−B

(
1
KD
−1
)(

1+
KR

λ

)
(11.8)

The contact area fraction ϕ has commonly been specified in the literature in terms of empirical values or graphical
data that do not correlate well with the wide variety of porosities encountered [92,106]. ϕ is on the order of 0.01-0.001
for most systems of practical interest [90]. dc/dp ≈ 0.002 is a good constant approximation [92]. You et. al. provide
equations for ϕ using elastic deformation theory, though ϕ can only be approximated, since it is affected by the packing
structure and surface roughness [92]. You et. al estimate ϕ as:

ϕ =
Nc

4

(
dc

dp

)2

(11.9)

where Nc is the coordination number discussed in Section 8.2. Eq. (8.6) is used here to calculate Nc. Then, the
same Hertz deformation theory as used in the Chan and Tien correlation discussed in Section 11.4.1 is used to calculate
dc/dp as in Eq. (11.16) and the force F as in Eq. (11.20). KR is defined as [90]:

KR = 4σ
1

2/εr,s−1
T 3 dp

k f
(11.10)

where σ is the Stefann-Boltzmann constant and εr,s is the emissivity of the pebbles. A variety of other models have
also been proposed for calculating KR [92]. In the present work, any of these other models can be used by simply
setting KR = 0 in Eq. (11.4) and adding the radiative component separately.

Most experimental data points lie within ±30% of Eq. (11.4). These data points include solid-fluid suspensions
and liquid-liquid emulsions, and hence the correlations is expected to be valid for transparent liquid-saturated beds,
though original development focused on gas-saturated beds [90]. Eq. (11.4) is valid for essentially all values of
porosity and 1 < λ < 2000. However, Eq. (11.4) has critics, primarily related to the author’s neglect to consider
radiation heat transfer between distant parts of the bed. At the very high temperatures in HTGRs, this underpredicts
κs, and many authors switch to different correlations above ≈1600°C [107].

11.2 Models for κradiation

In Loss of Coolant Accident (LOCA) conditions, the radiation component is most significant due to the lack of fluid
conduction and high temperatures (≈2000-3000 °C in a fluid-stagnant HTR) [108]. In gas reactors, the radiation
component tends to be the most significant even in normal operating conditions, at least until temperatures drop below
about 300-400 °C [92, 104], though some have concluded otherwise, and neglected the radiation component [58].
Many of the correlations developed scale as 4σT 3

s dp, which demonstrates the increasing importance as temperature
increases. In all of the correlations described in this section, it is assumed that the fluid is transparent to radiation; this
is a good approximation for helium, but should always be investigated before application of these correlations to other
fluids [14].
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11.2.1 ZBS

Zehner and Schleunder developed an analytical expression based on a unit cell consisting of two half-spheres in contact
(with conduction between the spheres) with simultaneous radiation exchange [108]. It was assumed that this unit cell
is closed to radiation heat transfer from neighboring unit cells. All gas boundaries are assumed to be specular reflecting
surfaces. The solid spheres were assumed to be opaque and have grey surfaces.

κradiation =

 (1−√1− ε)ε

2/εr,s−1
+

√
1− ε

2/εr,s−1
B+1

B
1

1+ 1
(2/εr,s−1)Λ

4σT 3
s dp (11.11)

Λ =
ks

4σT 3
s dp

(11.12)

where B is given in Eq. (11.7). The first term represents direct radiation exchange (and can be obtained retaining
the term with KR in Eq. (11.4) with Eq. (11.10) used for KR), while the second represents the combined radiation-
conduction heat transfer. This correlation, applied to temperatures above its applicability range, under-predicts κs at
high temperatures, which is expected based on the assumptions made that no radiation heat transfer occurs between
other unit cells [108]. This model also does not function well with low solid emittance, since the assumption of the
pebble interior having the same emissivity of the pebble surface is less accurate.

Vortmeyer followed a similar approach as Zehner and Schleunder, except that the geometry under consideration
consisted of layers of unit cells. Using 1-D heat conduction solutions, where the layers of unit cells can communicate
with each other, a more accurate correlation was obtained. This correlation, however, requires obtaining values for B
from plots, and is hence more difficult to implement numerically [108].

11.2.2 BreitbachBarthels

Experiments performed with graphite pebble beds (high emittance) and ZrO2 (low emittance) at temperatures up to
1000-1500 °C were used to experimentally validate corrections made to the Zehner and Schluender correlation given
in Eq. (11.11) such that it can be applicable at high temperatures. For this improved derivation, the interior pebble
surfaces are treated as black surfaces, instead of having the same emittance as the pebble surfaces:

κradiation =

(1−
√

1− ε

)
ε+

√
1− ε

2/εr,s−1
B+1

B
1

1+ 1
(2/εr,s−1)Λ

4σT 3
s dp (11.13)

where Λ is given in Eq. (11.12).

11.3 Models for κfluid conduction

This section presents correlations used for κfluid conduction. Because the thermal conductivity of the solid phase is usually
greater than that of the fluid phase for graphite-fueled systems, if Eq. (11.2) is used to provide a very rough estimate
of κconduction, then κconduction decreases with porosity, and will therefore be lowest near the walls of the bed.

11.3.1 ZBS

For a bed of spherical particles, the Zehner, Bauer, and Schlunder correlation discussed in Section 11.1.2 can be
simplified to only consider the fluid conduction component by setting KR = 0 and ϕ = 0 in Eq. (11.4) [92, 105,
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106, 109]. This correlation was experimentally validated by Prasad et. al using several combinations for fluids and
beads [109]. This correlation predicts values close to the minimum predicted by series heat transfer in Eq. (11.3).

κfluid conduction = k f

{
1−
√

1− ε+
√

1− εKSF

}
(11.14)

KSF =
2

1−B/λ

[
B(1−1/λ)

(1−B/λ)2 ln
λ

B
− B−1

1−B/λ
− B+1

2

]
(11.15)

11.4 Models for κsolid conduction

In pebble-to-pebble contact, the contact area, contact roughness, and surface film contamination (especially if the
surface is heavily oxidized) all have an impact on the conduction heat transfer. These three resistances to heat transfer
occur in series. The correlations discussed in this section only address the contact area factor, which for spherical
particles also tends to be the most important [110].

11.4.1 ChanTien

Chan and Tien developed a correlation for pebble-to-pebble heat conduction for hollow, solid, and solid-coated spheres
in between two infinite plane surfaces at different temperatures. The diameter of the contact area between the spheres,
dc is given by the Hertz relation for elastic contact of two smooth, linearly elastic, solid spheres of radius dp under
collinear force F :

dc = 2

(
3
4

1−ν2

E
F

dp

2

)1/3

(11.16a)

dc

dp
=

(
3
4

1−ν2

E
4F
d2

p

)1/3

(11.16b)

where ν is the Poisson ratio of the solid and E the Young’s modulus. This relationship is accurate provided dc� dp.
It is assumed that the contact surface has a uniform heat flux and the remainder of the surface is insulated such that
heat transfer only occurs through the contact area. The resistance to contact heat transfer is related to the resistance rth
within a single sphere with one contact point:

rth =
4∆T

q0πd2
c

(11.17)

where q0 is the constant heat flux through the contact area and ∆T is the temperature drop over the contact area. For
other packing patterns where the sphere has more than two 180-degree-separated contact points, a modified thermal
resistance can be defined by multiplying rth by a geometrical factor. For the regular lattice structures considered, each
sphere has the same contact pattern with its neighbors, so the resistance to conduction contact heat transfer for each
should be the same. Hence, the effective thermal conductivity of the entire bed is given by:

κsolid conduction =
NA

NL

1
rth

(11.18)

where NA and NL are the number of spheres per unit area and length in the unit cell, respectively. It is assumed that
each unit cell layer is isothermal such that contact points only touching other layers contribute to the heat transfer. By
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assuming that the solution for a solid sphere is the same as that for a hollow sphere in the limit of the wall thickness
going to the sphere radius:

κsolid conduction =
ksdc

2 ·0.53
NA

NL

=
ks

0.53
NA

NL

(
3
4

1−ν2

E
F

dp

2

)1/3 (11.19)

where Eq. (11.18) was used to express the modified resistance to the resistance of a simple cubic arrangement and
Eq. (11.16) is used to expand dc. The force is given in terms of the pressure P exerted by the pebble weight:

F = SF
P

NA
(11.20)

where SF is a factor that relates the total force to the vertical component (the only component in which gravity is
applied), since pebbles do not only contact each other along the vertical axis. The pressure is approximated as:

P(z)≈ (1− ε∞)ρs V–(z)|gz| (11.21)

where V–(z) is the total volume above the z-plane on which the sphere lies (because all particles above a sphere
exert a contact force on it), the factor 1− ε∞ approximates the fraction of this volume that is solid, and |g| is the
magnitude of the gravitational acceleration in the direction of the force. Table 17 provides values of the coefficients
appearing in the above correlations for the various packings investigated. Interpolation is performed between these
values given the infinite medium porosity.

Table 17: Values appearing in the Chan and Tien correlation for various packing arrangements.

Simple cubic Body-centered cubic Face-centered cubic

NA
1

4R2
p

1
2
√

3R2
p

3
16R2

p

NL
1

2Rp

√
3

2
√

2Rp

√
3

2Rp

SF 1 1√
6

√
3

4
ε 0.48 0.32 0.26

11.4.2 ZBS

The Zehner, Bauer, and Schlunder correlation in Eq. (11.4) can be simplified to neglect the radiation component
by setting KR = 0. Then, subtracting the fluid conduction component in Eq. (11.14) such that the correlation only
provides the solid conduction component, the solid conduction component can be extracted [92, 106]:

κsolid conduction = k f
√

1− ε(ϕλ−ϕKSF) (11.22)

where KSF is given by Eq. (11.15), B is given by Eq. (11.7), and ϕ is given by Eq. (11.9).
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11.5 Variation of κs with System Parameters

This section provides a brief description of how κs varies with system parameters in order to aid the understanding
of the correlations used and their expected impact on simulation results. In addition to a dependence on temperature,
pressure, and λ, κs also depends on the pebble diameter and the dose. The larger the pebble diameter, the larger the
radiation component, as more pebbles can “see” each other; this effect can be quite significant [92]. The higher the
dose, the lower the solid thermal conductivity, which can reduce κs by about 20% at high temperatures [96].

Temperature

The three components of κs are individually plotted as a function of solid temperature in Fig. 17. κs increases expo-
nentially with temperature. The radiation component is most significant at high temperatures because that component
scales as T 3. The contact component decreases with temperature because solid thermal conductivities generally de-
crease with temperature. Lastly, the fluid conduction component increases with temperature because fluid thermal
conductivities generally increase with temperature. However, the variation of these two components with temperature
is much smaller than the radiation component variation.

Figure 17: κs components as a function of temperature for the SANA experiments [92].

Pressure

Thermal conductivities of gases are independent of pressure. At atmospheric pressure and above, the mean free path
of the fluid is much smaller than the characteristic dimension of a pebble bed, so the majority of the path lengths are
computed according to collisions with other fluid molecules. When the path length of the fluid is very large, however,
the path lengths are often lower in a porous media than in a fluid-only medium because fluid-solid collisions cause
the path lengths to be reduced. At low pressures, on the order of 1000 Pa, the pressure dependence of κs begins to
become evident. κs decreases with pressure reductions beginning around 1000 Pa. Because these pressures are much
lower than those expected in reactor analysis, even under accident conditions, the pressure dependence of κs can be
effectively neglected.
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Solid to Fluid Thermal Conductivity Ratio λ

Using Eq. (11.2) as an approximate model for κs, holding k f constant but varying ks shows that as λ decreases, κs
decreases. While λ increases, κs also increases. At the extremes of very small and very large λ, plateaus are reached
in κs, with about an order of magnitude difference in the asymptotic values.
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12 Effective Fluid Thermal Conductivity κ f

The effective fluid thermal conductivity κ f introduced in Eqs. (2.208) and (2.209) is used in lieu of the material
property thermal conductivity of the fluid in the diffusive kernel because conduction within the bed is amplified by
thermal dispersion (convection). The majority of porous media codes appear to neglect thermal dispersion, and simply
approximate the decrease in conduction by the decrease in flow area:

κ f = εk f (12.1)

Pronghorn currently also makes this assumption, though future work will involve the implementation of the thermal
dispersion models discussed in this section. Because thermal dispersion acts to increase the diffusive effects, neglecting
thermal dispersion is conservative in the sense that peak temperatures are often higher [81]. If only a single energy
equation is used, a volume-average of ks and k f would be sufficient to a first-order approximation:

κ f = εk f +(1− ε)ks (12.2)

The emphasis in this section is on beds of spherical particles, and none of the correlations discussed in this section
should be used for plate or prismatic solid geometries.

Thermal dispersion arises due to the secondary flow effects of mixing and recirculation of local fluid flows [54]. κ f
generally increases with Reynolds and Prandtl numbers. Many researchers have proposed correlations dependent on
these two dimensionless numbers. Because the experimental focus has generally cylindrical coordinate systems, ther-
mal dispersion correlations in the literature are usually only available for radial and axial flow directions - azimuthal
dispersion coefficients are rarely measured. For an r-z coordinate system, κ f is:

κ f ≡

[
κ f ,R 0

0 κ f ,A

]
(12.3)

where κ f ,R represents the radial thermal dispersion and κ f ,A the axial thermal dispersion. The thermal disper-
sion varies considerably between the axial and radial directions in a cylindrical packed bed. The dispersion thermal
conductivity is usually about five times larger in the axial direction than in the radial direction (except for Re < 10,
where convective effects are nearly negligible), so use of different correlations for each direction are important [111].
Correlations for κ f are often quoted in terms of diffusivities. For the fluid energy equation, the diffusivity (which is in
general a tensor) in scalar form is:

D≡ k
ρ fCp f

(12.4)

The literature often presents correlations for κ f in terms of two different diffusivities. When the material property
thermal conductivity, or k f is used for k in Eq. (12.4), D is referred to as the “molecular” diffusivity. Alternatively,
when κ f is used for k in Eq. (12.4), D is referred to as the “axial” or “radial” diffusivity based on the component of
κ f used. This section will present correlations for the axial, DA, and radial, DR, diffusivities, which are defined in a
manner similar to the axial and radial components of κ f provided the diffusivity is assumed to not be a scalar:

D≡

[
DR 0
0 DA

]
(12.5)

Experiments have shown that DA and DR are functions of Re and Pr independently, though most often data is sim-
ply plotted as a function of Pe [111]. This is also done in part because the majority of thermal dispersion experiments
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have only been performed using air or water, for which an appreciable range in Pr could not be obtained.

Plotting DA/D and DR/D as a function of Peclet number shows a nearly linear increase with Pe, which is intuitive
based on high Reynolds number flows improving dispersion mixing. Like the diffusivity, the Peclet number can be
based on either k f or κ f , and the same notation used for differentiating between diffusion coefficients is used for
Peclet numbers in this section. PeA and PeR are Peclet numbers based on either the axial or radial components of κ f ,
respectively.

The greatest variation in experimental data is evident when PeA and PeR are plotted as a function of Pe. Rather than
showing a monotonic increase, a plateau is reached for Pe > 104 [111]. At low Pe, PeA and PeR usually monotonically
increase. In the low and high Pe range, the axial and radial Peclet numbers are typically characterized by [85, 111]:

1
PeA

=
1
T

1
Pe

+
1

PeA,∞ f
(12.6a)

PeA =
2TPe

2+TPe
(12.6b)

1
PeR

=
1
T

1
Pe

+
1

PeR,∞ f
(12.7a)

PeR =
12TPe

12+TPe
(12.7b)

where T is the tortuosity, described in Section 8.3. PeA,∞ and PeR,∞ are the asymptotic values of the effective Peclet
numbers in an unconfined bed, i.e. as the bed to particle diameter ratio tends to infinity. This limiting value has been
obtained analytically to be about 8 [85]. f is a correction factor that accounts for the presence of the wall on the bed
that accounts for two separate factors:

• Flow maldistribution increases as the wall is radially approached due to the no-slip condition. The effective
radial diffusivity near the wall is roughly half that in an unconfined bed.

• Flow channeling occurs at the wall.

Tsotsas et. al show that f can be interpreted as the ratio of the bed-averaged superficial velocity to the center-
averaged superficial velocity [85]. The extent to which this ratio is greater than one indicates the extent to which the
wall effect characterizes the entire flow.

Deviations from Eqs. (12.6) and (12.7) occur in the intermediate Peclet number range. This deviation is primarily
caused by the wall-channeling effect and the magnitude of the Prandtl number. Generally, the deviation is largest
for small bed to particle diameter ratios and large Prandtl numbers [85]. For very small beds, the wall channeling
effect is more significant, and the radial diffusion coefficient will be smaller due to impedance by the wall. Because
gases generally have smaller Prandtl numbers than liquids, the simple additive models in Eqs. (12.6) and (12.7) are
appropriate for gases, but may not be for liquids.

Axial and radial diffusivities are often provided in terms of five thermal dispersion regimes, given here in terms of
approximate bounding Pe:

1. Molecular diffusion regime - Pe < 0.3; diffusion-dominated. In this range, dispersion is solely determined by
molecular diffusion, and:

DA =
D
T

(12.8)
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DR =
D
T

(12.9)

2. Diffusion and convection regime - 0.3 < Pe < 5; diffusion and dispersion are of the same magnitude

3. Mechanical dispersion regime - 5 < Pe < 300; dispersion begins to dominate

4. Pure mechanical dispersion regime - 300 < Pe < 105; full dispersion domination

5. - Pe > 105; at very high fluid velocities, the limiting values for PeA and PeR suggested from Eqs. (12.6) and
(12.7) can be used to show that the axial and radial diffusivities should increase linearly with velocity:

DA ≈
vdp

2
(12.10)

DR ≈
vdp

12
(12.11)

A common approximation is that the diffusive and convective limits are additive, such as suggested by the k f +kdis
in Eq. (2.210). This superposition is valid especially for the radial direction because there is no sustained radial
flow [94]. However, simply adding Eqs. (12.8) and (12.10) will not correctly predict behavior at intermediate Pe,
though correct asymptotic behavior is shown for low and high Pe. A summation-type correlation is sufficient for
gases, but not for liquids [111].

A complication associated with most of the correlations shown in the next sections are that they were constructed
using bed-averaged dimensionless numbers, which in principle would then only give constant values for the axial and
radial components of κ f . Schertz et. al show that, for correlations of the form developed by Yagi and Kunii, that when
using Rei in place of Re, local values for the effective thermal conductivities can be obtained using the correlations
originally developed for bed-average representations [65]. All of the correlations discussed in the following sections
were developed for beds of particles on the order of 1 mm diameter, though pebble fuel in HTGR designs is on the order
of several cm in diameter. Larger pebble diameters equates to larger pore diameters, which increases the potential for
flow recirculation. Abdulmohsin conducted experiments with large pebbles, and found that the correlations developed
for mm-size particles are suitable for nuclear reactor analysis [19].

Gunn states that dispersion coefficients are independent of bed to particle diameter ratios given their derivation of
the dispersion coefficients for a two-region bed consisting of an inner and outer region characterized by two differ-
ent porosities; the porosity change for their example exactly cancelled the velocity change, so the difference in the
interstitial velocity between the two bed regions is negligible [112].

12.1 Axial Effective Thermal Conductivity

Amiri expresses the axial component as [54]:

κ f ,A =
k f

T
+0.5RePrk f (12.12)

which is roughly five times larger than the radial component given in Eq. (12.14) with C0 = 1/8.
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12.2 Radial Effective Thermal Conductivity

Most researchers correlate DR simple as a superposition of the diffusion and convection limits as:

DR =
D
T
+C0vdp (12.13)

which can also be written as follows using Eq. (12.4):

κ f ,R =
k f

T
+C0RePrk f (12.14)

where C0 captures mixing effects due to particle shape and packing [65, 85, 100, 101]. Yagi et. al provides a table
showing the value of C0 obtained by various researchers - values are all of the same order of magnitude [101]. Most
of the values presented by researchers do not consider the dependence of C0 on position or dbed/dp. A singular value
proposed by Yagi and Wakao of C0 = 0.11, valid for 20 < Re < 800 and for 0.021 < dp/dbed < 0.072, fits well with
other values obtained in the literature [100] and has been used for reactor analysis [36]. By varying C0 by a factor
of four, only minor changes are obtained in the bulk bed temperatures, where lower C0 results in slightly higher bed
temperatures since heat is removed less effectively near walls [36].

Tsotsas et. al show that C0 depends on the bed to particle diameter ratio, and that C0 can be approximated as:

C0 =
1

Pe∞ f
(12.15)

where Pe∞ ≈ 8 is the limiting value of the effective Peclet number as the molecular Peclet number tends to infinity
[85], and f is a correction factor given by:

f =

2−
(

1−2 dp
dbed

)2
|r−Rbed/2|< dp

1 |r−Rbed|> dp

(12.16)

This formulation for f is based on the assumption that within one pebble diameter of the wall, DR decreases by
a factor of two. Smirnov et. al extended this formulation for non-spherical particles, and found remarkably good
agreement [113]. Finally, most researchers have fitted Eq. (12.14) only using bed-averaged values, but accurate
point-wise values can be obtained by simply replacing Re by Rei [65].
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13 Fluid Properties

In addition to the EOS available in the fluid properties MOOSE module and RELAP-7, which are discussed in Section
7, Pronghorn permits custom fluid property definitions. This section discusses those custom fluid properties currently
available in Pronghorn. Future extensions are planned. Table 18 shows the units assumed in the thermophysical
correlations for both fluid and solid properties. For consistency, therefore, these must be the same set of units used by
the modeler for other parameters such as Initial Condition (IC)s and BCs.

Table 18: Set of units assumed in Pronghorn for the fluid and solid properties.

Quantity Unit
pressure Pa
temperature K
weight kg
distance m
time s

13.1 Gases

This section presents the fluid properties for gases available in Pronghorn. It should be noted that liquid and solid
properties for these gases are not implemented. If temperatures and pressures reach the point where condensation or
sublimation occur, then the results predicted using the vapor properties will be inaccurate. However, reaching melting
or sublimation points for Pronghorn’s application space is highly unlikely.

13.1.1 Helium

Petersen provides correlations for helium that are valid in the range 1 ≤ P ≤ 100 bar and 273 ≤ Tf ≤ 1800 K [114]
that have been used by KTA in their pebble bed HTGR analyses [115]. Standard deviations for these thermophysical
properties can be found in [114]. Constant specific heats of Cp = 5195 J/kg·K and Cv = 3117 J/kg·K are used. In SI
units, with pressure P in Pa and temperature Tf in K,

ρ f (kg/m3) = 48.14
10−5P

Tf

(
1+0.4446

10−5P
T 1.2

f

)−1

(13.1)

µ (Pa·s) = (3.674×10−7)T 0.7
f (13.2)

k f (W/m·K) = 2.682×10−3
(

1+1.123×10−8P
)

T 0.71(1−2×10−9P)
f (13.3)

and other thermaldynamic quantities, such as specific internal energy and specific enthalpy can be calculated as

e =CvTf (13.4)

h =CpTf (13.5)

Because helium is a noble gas, there is little deviation in the density correlation from the ideal gas EOS, though
deviations are larger at higher pressures and lower temperatures. At the pressure of 60 bar and 550 K typical of HTGR
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operating conditions, the difference in ρ f from that predicted by the ideal gas EOS is less than 1.5%, so an appropriate
approximation here would be the use of the ideal gas properties.

In some cases, it is also desriable to express helium’s properties as functions of specific volume (ν ≡ 1/ρ f ) and
specific internal energy (e). For example, pressure can be obtained as an function of (ν, e) as

P =
105Tf

48.14ν− 0.4446
T 0.2

f

(13.6)

with Tf = e/Cv.

13.2 Liquid Salts

This section presents the fluid properties for liquid salts available in Pronghorn. Vapor properties are not implemented
for these salts because it is highly unlikely, even in accident scenarios, to experience boiling of the coolant, because
melting points of these salts are on the order of 1400°C. Solid properties of these salts are also not implemented,
though there is less margin to salt freezing than salt boiling in typical reactor designs. The user should be aware that
entry into the liquid or vapor regimes for these salts will result in inaccurate results when using the liquid properties
discussed in this section. Melting and boiling points for the salts in this section are shown in Table 19 to provide
approximate bounds on correlation applicability.

Table 19: Melting and boiling points for the liquid salts discussed in this section [62]. Boiling points are approximate.

Salt Melting Point (°C) Boiling Point (°C)
LiF-BeF2 (flibe) 458 1400
NaF-ZrF4 (nafzirf) 500 1350
LiF-NaF-KF (flinak) 454 1570
KF-ZrF4 390 1450

The pressure dependence of all properties is neglected for the liquid salts, since there is little variation with pres-
sure. For example, TRACE approximates the pressure dependence on density by including an additional 1.7324×
10−7P term, where P is in Pa [62]. At typical reactor conditions, densities are on the order of 1000 kg/m3, where this
additional term is on the order of 0.1-0.01 kg/m3, and hence is negligible.

Specific heats show very little variation with temperature, and hence constant values for all salts are assumed using
experimental or analytical evaluations at 700°C. The thermal conductivity also varies only slightly with temperature.
All salts show a linear variation of density and an exponential variation of viscosity with temperature.

13.2.1 LiF-BeF2

The thermophysical property data here assumes the 67% LiF and 33% BeF2 eutectic composition, with 99.995%
enrichment in Li-7 [62]. A constant specific heat of Cp = 2416 J/kg·K is used, with an uncertainty of 2%. The
uncertainty on the density is very low, only 0.05%. The uncertainties on the viscosity and thermal conductivity are
20% and 15%, respectively.

ρ f (kg/m3) =−0.4884Tf +2413 (13.7)

µ (Pa·s) = (1.16E−4)e3755/Tf (13.8)

123



k f (W/m·K) = (5E−4)Tf +0.63 (13.9)

13.2.2 NaF-ZrF

The thermophysical property data here assumes the 59.5% NaF and 40.5% ZrF mixture [62]. A constant isobaric
specific heat of Cp = 1172 J/kg·K is assumed, with uncertainty of 10%. The uncertainty on the density is very low,
only 2%. The uncertainties on the viscosity and thermal conductivity are 20% and 15%, respectively.

ρ f (kg/m3) =−0.889Tf +3827 (13.10)

µ (Pa·s) = (7.67E−5)e3977/Tf (13.11)

k f (W/m·K) = (5E−4)Tf +0.0052 (13.12)

13.2.3 LiF-NaF-KF

The thermophysical property data here assumes the 46.5% LiF, 11.5% NaF, and 42% KF eutectic mixture [62]. A
constant specific heat of Cp = 2010 J/kg·K is assumed, with uncertainty of 20%. The uncertainty on the density is
very low, only 2%. The uncertainties on the viscosity and thermal conductivity are 20% and 15%, respectively.

ρ f (kg/m3) =−0.73Tf +2729 (13.13)

µ (Pa·s) = (4.0E−5)e4170/Tf (13.14)

k f (W/m·K) = (5E−4)Tf +0.43 (13.15)

13.2.4 KF-ZrF4

The thermophysical property data here assumes the 58% KF and 42% ZrF4 mixture [62].

ρ f (kg/m3) =−0.887Tf +3658 (13.16)

µ (Pa·s) = (1.59E−4)e3179/Tf (13.17)

k f (W/m·K) = (5E−4)Tf −0.032 (13.18)

The density of KF-ZrF4 has not been measured experimentally, but has been estimated using well-known density
correlations of its KF and ZrF4 constituents [62]. Because this salt has not been measured experimentally, it has the
highest uncertainty of the salts (5%) available in Pronghorn. The uncertainties on the viscosity and thermal conduc-
tivity are 20% and 15%, respectively. An analytical method is used to predict a constant value of Cp = 1051 J/kg·K,
with uncertainty of 20%.
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14 Solid Properties

Custom solid properties are required to provide the specific heat, thermal conductivity, and density for the solid
material. In addition, depending on the models used for κ, the emissivity, Poisson ratio, and Young’s modulus are
also required. This section discusses the models available in Pronghorn for common solid materials. It is a common
approximation that solid properties are relatively independent of pressure, so none of the correlations discussed in this
section are functions of pressure. Table 18 shows the units assumed in the correlations in this section.

14.1 ElectricGraphite

In support of the SANA benchmark, density and thermal conductivity measurements performed for the Sigri Al 2-500
electric graphite pebbles are available in [18]. Two repeated measurements were performed, and the “Measurement 3”
is arbitrarily selected here to provide the constant density of ρs = 1673 kg/m3 and tabular thermal conductivity. This
tabular data is fitted as:

ks (W/m·K) = (2.5738×104)T−0.86367
s (14.1)

Butland collected isobaric specific heat data from a variety of sources for many types of graphite, none actually
including nuclear graphite, and then attempted to aggregate the data sets that best represent nuclear graphite into a
single correlation [116]. Because nuclear graphite is well graphitized and very pure, the measurements of poorly
graphitized materials were rejected from the data set. No experimental errors are provided for the data used in the
polynomial fit, but it is expected that the experimental data agrees within their mean probably error.

Cp,s (J/kg·K) = 4184
(

0.54212− (2.42667×10−6)Ts−
90.2725

Ts

)
+

4184

(
−43449.3

T 2
s

+
1.59309×107

T 3
s

− 1.43688×109

T 4
s

) (14.2)

14.2 StainlessSteel

Stainless steel thermal conductivity is given as [117]:

ks (W/m·K) = 15.17+13.3
Ts−273

1000
(14.3)

which is valid for 173K < T < 1023K. Using a constant density of ρs = 7863 kg/m3, the specific heat is given
as [117]:

Cp,s (J/kg·K) =
7.8×106

ρs

(
0.4533+0.382

Ts−273
1000

)
(14.4)

which is valid for T < 1473K.
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15 Stabilization Methods

This section introduces the need for stabilization methods for convection-diffusion equations through simple exam-
ples. This is followed by a discussion of general, higher-dimensional stabilizations. After providing examples and
motivation for stabilization via the 1-D convection-diffusion equation, extension of stabilization schemes to the gen-
eral compressible Navier-Stokes equations, and finally to the Pronghorn conservative and primitive equation sets, are
given.

15.1 An Example: The 1-D Convection-Diffusion Equation

Consider the 1-D convection-diffusion equation:

−k
d2φ

dx2 +V
dφ

dx
= 0 (15.1)

where V is the velocity and k the diffusivity. For simplicity, throughout this discussion it is assumed that the flow
is incompressible such that ∇ · #»

V = 0, giving the simplified form above. This is purely for pedagogic reasons, and the
conclusions that are reached extend to compressible flow. The convection-diffusion equation is conditionally stable
when using the standard Bubnov-Galerkin method. For an interior node with index n, the nodal equation is:

(−Peel−1)φn−1 +2φn +(Peel−1)φn+1 = 0 (15.2)

where Peel is the element Peclet number:

Peel =
Pe
2

(15.3)

This is identical to the nodal equations that are obtained when using the central difference method to approximate
the first and second derivatives, and hence the Galerkin method for 1-D linear elements (of constant size, velocity, and
diffusivity, and no terms besides advection and diffusion) is equivalent to a central difference method.

Consider a 1-D linear finite element, with end nodes xn and xn+1 and shape functions ψ corresponding to those
nodes as:

ψn =
xn+1− x

he
(15.4a)

ψn+1 =
x− xn

he
(15.4b)

where he is the element size. The Bubnov-Galerkin weak form of Eq. (15.1) is obtained by multiplying by the
weight function ψ and integrating by parts to give a nonlinear system Ki jφ j = fi, where

Ki j =
∫ L

0

(
ψiV

dψ j

dx
+

dψi

dx
k

dψ j

dx

)
dx (15.5a)

fi = − q̄ψi

∣∣∣∣L
0

(15.5b)

(15.5c)
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and φ j is the vector of expansion coefficients to be solved for. An equation for a typical node xa that is not
subject to any BCs (so that fi = 0 and complications associated with Dirichlet conditions can be neglected)
can be determined in terms of the solutions at xn−1 and xn+1 by solving for Ki j and fi given the shape functions
in Eq. (15.4). Performing the integrations gives the system:V

2

[
−1 1
−1 1

]
+

k
he

[
+1 −1
−1 +1

][ φn
φn+1

]
=

[
0
0

]
(15.6)

In 1-D, the global stiffness matrix is assembled by “tesselating” the local stiffness matrices along the diagonal
such that inter-element continuity is guaranteed.

a b 0 0 0 0
c d +a b 0 0 0
0 c d +a b 0 0
0 0 c d +a b 0

· · ·




· · ·

φn−1
φn

φn+1
· · ·

=


0
0
0
0
0

 (15.7)

where a =−Peel +1,b = Peel−1,c =−Peel−1,d = Peel +1. Selecting an arbitrary interior node such as φn,
Eq. (15.2) is obtained.

Eq. (15.2) gives purely oscillatory (nonphysical) results as Peel → ∞. The stability of the above equation can be
assessed in terms of recursion relations. Assuming the solution for φ j = m j, where m is a constant, the above equation
gives two possible values for m, and hence two possible solutions for φ j:

φ j = 1 j (15.8a)

φ j =

(
−Peel +1

Peel−1

) j

(15.8b)

If Peel > 1, the solution will oscillate due to the alternating powers of j. These results may appear to be tied to
the rather specific 1-D convection diffusion equation selected, but the instability is actually related to the non-self
adjointness of convection operators. To see why the 1-D convection-diffusion equation is non-self adjoint, begin with
the weak form of Eq. (15.1):

∫ L

0

dψ

dx
k

dφ

dx
dx+−k

dφ

dx
ψ · #»n

∣∣∣∣L
0
−

∫ L

0
V φ

dψ

dx
+V ψφ · #»n

∣∣∣∣L
0
= 0 (15.9)

Now, reverse-integrate the first term by parts by recognizing that:

∫ L

0

d
dx

(
k

dψ

dx

)
φdx =−

∫ L

0

dψ

dx
k

dφ

dx
dx+ k

dψ

dx
φ · #»n

∣∣∣∣L
0

(15.10)

Eq. (15.9) can then equivalently be expressed as:

∫ L

0

(
− d

dx

(
k

dψ

dx

)
−V

dψ

dx

)
︸ ︷︷ ︸

adjoint of original proglem

φdx+ k
dψ

dx
φ · #»n

∣∣∣∣L
0
+−k

dφ

dx
ψ · #»n

∣∣∣∣L
0
+V ψφ · #»n

∣∣∣∣L
0
= 0 (15.11)
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The adjoint of the original problem that appears in the weak form above has the opposite sign on the convective
term, and hence convection produces non-self-adjoint equations. Fig. 18 shows the FE and exact solutions to Eq.
(15.1) obtained with Pronghorn. For Peel > 1, the solution is oscillatory, with the oscillation magnitude increasing
with Peel . The oscillatory behavior in the vicinity of the downstream boundary is partly caused by the selection of
the BCs, since steep gradients are restricted to narrower and narrower regions as Peel → ∞. However, the numerical
algorithm should still give stable and accurate results because as long as some diffusion is present, it is valid to specify
BCs on all boundaries.
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Figure 18: Solution to the the 1-D convection-diffusion problem in Eq. (15.1) with he = 0.1 for various Peel with BCs
of φ(0) = 0,φ(1) = 1. The exact solution for these BCs is φ(x) = (1− exp(Peelx/L))/(1− exp(Peel)).

In higher dimensions, solving Eq. (15.1) without the diffusive term (amplifying the instability) with Pronghorn
gives the results shown in Fig. 19. Convection-dominated instabilities generally manifest themselves as nodal oscilla-
tions.
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Figure 19: Solution to Eq. (15.1) with zero diffusive term and a source term 2πcos(2πx). The solution should be
ρ = sin(2πx)sin(2πt). Results are shown on 0≤ x≤ 1 at t = 1.15s.

For convection-dominated problems, Peel can be very large. But as long as some diffusion is present, in theory
the mesh can be refined until Peel < 1, since the element size he appears in the definition of Peel . The level of
mesh refinement becomes increasingly demanding for convection-dominated problems, and many methods have been
developed to circumvent the Peel stability criteria such that stability is independent of Peel , allowing engineering-scale
meshes when only engineering-scale results are desired. Reactor applications will be convection-dominated, which
necessitates the inclusion of stabilization schemes in Pronghorn. Not only do stabilization methods improve stability,
but they in general can also enhance convergence rates during the iterative solution of the linear system [118]. Several
stabilization methods are discussed next.

15.2 Upwinding

One of the first attempts to circumvent the Peel stability criterion was the use of upwind finite differencing within the
Finite Difference (FD) community. Because information propagates in the direction of velocity when diffusive effects
are small, it is somewhat unnatural to use a symmetric FD to approximate the convective term. Instead, upwinding
uses one-sided finite differences are used to approximate the convective derivative term, such that instead of the central
difference approximation:

dφ

dx
≈ φn+1−φn−1

he
(15.12)

a one-sided approximation is used:

dφ

dx
≈ φn−φn−1

he
(15.13)
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where a positive velocity has been assumed. The upwinding approximation is only used for the convective deriva-
tive, while the central difference approximation is retained for the diffusive term. To illustrate how such a choice
eliminates the Peel stability criterion discussed in Section 15.1, repeat the derivation of the equation governing a rep-
resentative non-boundary node using upwind differencing of the first derivative and central differencing of the second
derivative to give:

(−2Peel−1)φn−1 +(2Peel +2)φn +(−1)φn+1 = 0 (15.14)

Performing the same recursion analysis as in Section 15.1, the following two solutions are obtained:

φ j = 1 j (15.15a)

φ j = (2Peel +1) j (15.15b)

Neither of these solutions give oscillatory results because the arguments are always positive. Hence, upwinding
fully eliminates all oscillatory behavior. But, upwinding does not necessarily give the correct solution. The full
upwinding shown here only gives nodally exact values for either Peel = 0 (purely diffusive) or Peel = ∞ (purely
convective). In addition to the difficulty of determining the appropriate amount of upwinding when both convective
and diffusive forces are present, it is not immediately clear how to extend the upwinding FD method to a FE weak
form. There are many ways in which investigators have extended upwinding to the FE framework such that the FD
equivalent in Eq. (15.14) is obtained when looking at a non-boundary node. The remaining methods discussed in this
section can give nodally exact results in 1-D, but fail when extended in an ad hoc manner to higher dimensions.

15.2.1 Petrov-Galerkin Stabilization

Petrov-Galerkin methods, as opposed to Bubnov-Galerkin methods, select the shape function and the weight function
from different spaces of functions. The weight function is modified to be the sum of the original, element-continuous
weight functions ψ, and a discontinuous portion ψ∗:

ψ̃ = ψ+αpgψ
∗ (15.16)

where αpg is a scaling parameter. Using a consistent Petrov-Galerkin scheme, using Eq. (15.16) as the shape
function in Eq. (15.14) gives the following weak form:

Ki j =
∫ L

0

(
ψiV

dψ j

dx
+

dψi

dx
k

dψ j

dx

)
dx+∑

nel

[∫ L

0

(
αpgψ

∗
i V

dψi

dx
+

d(αpgψ∗i )

dx
k

dψ j

dx

)
dx

]
(15.17a)

fi = −q̄ψi

∣∣∣∣L
0

(15.17b)

where instead of a continuous integral over the entire domain, the term containing the inter-element discontinuous
shape functions ψ∗ is restricted to the element interiors. This summation simply indicates that integration by parts is
not performed on the second integral in Eq. (15.17)a, which eliminates complications with having to modify BCs or
losing inter-element continuity. There are many possible choices for ψ∗, but one choice that is often selected in 1-D
is:

ψ
∗
i =

he
#»
V

2| #»V |
dψi

dx
(15.18)
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Performing the same analysis of a typical non-boundary node using Eq. (15.18) in Eq. (15.16) gives the same nodal
equation in Eq. (15.14) as long as αpg is selected as 1 (full upwinding). For the convection-diffusion equation under
consideration, it can be shown that nodally-exact values for constant-size linear Lagrange elements can be obtained if
αpg is given by:

αpg =
he

2‖ #»
V ‖

(
coth |Peel |−

1
|Peel |

)
(15.19)

Fig. 20 shows the nodally-exact results obtained for the same problem shown in Fig. 18 with optimal upwinding
given by Eq. (15.19). Even if no oscillations are observed in Fig. 18, such as is the case for Peel = 1.1, upwinding still
improves the solution accuracy in Fig. 20.

Eq. (15.19) can be derived by asserting that the non-self-adjoint convection-diffusion equation, when fully-
expanded, be self-adjoint. This is accomplished by multiplying the operator by a function p, and then deter-
mining the form of p that makes the equation self-adjoint. For instance, the weak form of the 1-D convection-
diffusion equation, multiplied by p is:

∫ L

0
pψ

(
− d

dx

(
k

dφ

dx

)
+V

dφ

dx

)
dx = 0 (15.20)

Integrating by parts (and applying the chain rule to the derivative of pψ):

∫ L

0

ψ
dφ

dx

(
pV + k

d p
dx

)
︸ ︷︷ ︸

non-self-adjoint

+p
dψ

dx
k

dφ

dx

dx− pψk
dφ

dx
· #»n
∣∣∣∣L
0
= 0 (15.21)

The optimal stabilization will be such that the equation is self-adjoint. This leads to an ODE for p:

pV + k
d p
dx

= 0 (15.22)

Solving this equation gives the functional form for p. Plugging this form into the equation (multiplying it
through the original equation) and then applying all the algebra to obtain the typical nodal equation gives Eq.
(15.19). If p is defined as continuous across the elements, however, the system is not well-conditioned. Re-
stricting p to element-wise constant definitions solves this issue, but introduces asymmetries into the stiffness
matrix. This method of determining an appropriate function such that the equation is forced to be self-adjoint,
is the most general way to derive optimal upwinding terms.
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Figure 20: Solution to the 1-D convection-diffusion problem in Eq. (15.1) with αpg given by Eq. (15.19) and he = 0.1
for various Peel with BCs of φ(0) = 0,φ(1) = 1. The exact solution for these BCs is φ(x) = (1− exp(Peelx/L))/(1−
exp(Peel)).

The Petrov-Galerkin method is the most correct way of translating upwinding to a weak formulation, since from
Eq. (15.16), the method is consistent. That is, if the perturbation αpgψ∗ is added to each term in the weak form,
then the true solution is also a solution to the stabilized equation because the true solution has a zero residual. All
of the remaining methods discussed in this section are inconsistent, producing incorrect results usually characterized
by excessive crosswind diffusion. However, understanding these other methods is important for appreciating Petrov-
Galerkin stabilizations.

15.2.2 Isotropic Diffusion Stabilization

If central differencing is performed for the diffusive term, there are no terms present besides the convective and
diffusive terms (such as source terms), and linear Lagrange elements are used, then upwinding can be interpreted as
“adding diffusion” to the equation. Within these two limitations, upwinding is equivalent to amplifying the diffusivity
by an amount k̃. But, inappropriately increasing the diffusivity outside the realm of validity leads to an inconsistent
method. Applying upwinding to the convective term and central differencing to the diffusive term, Eq. (15.14) is
obtained if:

k̃ =
V hαpg

2
(15.23)

Instead of consistently applying the Petrov-Galerkin scheme, early investigators simply added k̃ to the diffusivity
and then used a standard Bubnov-Galerkin discretization. This method is referred to as the “isotropic diffusion stabi-
lization” method. This approach only gives correct results if only terms convective and diffusive terms are present and
linear Lagrange elements are used. In simulations with source terms, significant crosswind diffusion is observed.

15.2.3 Modified Quadrature Rules and Weight Functions

Still within a Bubnov-Galerkin framework, some researchers have modified the quadrature rule on the convective
term so that a single quadrature point is placed upstream of the node, with coordinates dictated by Peel . Quadrature
Upwinding (QU), like the isotropic diffusion method, is inconsistent, and produces excessive crosswind diffusion.
Others have modified the weight functions for the convective term so that they are weighted more heavily upwind of
a node. For 1-D flow towards the right, Fig. 21 shows several perturbed weight functions relative to a linear Lagrange
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shape function. The Petrov-Galerkin method described by Eq. (15.16) also use weight functions weighted more
heavily upwind, but they are weighted based on the velocity, and are weighted within every term so that the method is
consistent.
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Figure 21: Example perturbed upwinding weight functions for a 1-D element, with a standard Lagrange function for
comparison [119].

15.3 Streamline-Upwind Petrov-Galerkin Stabilization

The first attempts to extend the optimal 1-D upwinding to higher dimensions involved ad-hoc extensions of the incon-
sistent methods discussed in Section 15.2. The results were so poor that often the standard Bubnov-Galerkin method
gave superior results. In 1982, Brooks became the first to use a consistent Petrov-Galerkin formulation to extend
upwinding to higher dimensions for the incompressible Navier-Stokes equations [119]. The SUPG method is now one
of the most commonly-used schemes for stabilizing convection-diffusion equations. A very detailed description of
the method can be found in [120]. Because convection is only active in the direction of flow, the SUPG method only
applies upwinding in directions parallel to the velocity. Eliminating upwinding perpendicular to the flow direction
is also desirable from the viewpoint of reducing crosswind diffusion. The SUPG method is therefore an anisotropic
artificial diffusion method. To derive the SUPG method for both higher spatial dimensions and systems of equations,
consider an arbitrary convective equation such as that given by Eq. (2.223), written in quasi-linear form as in Eq.
(2.225). With this linearization, the SUPG method leads to the following weak form that applies to the entire system
of equations:

∫
Ω

#»
R(

#»
U ) · #»

WdΩ+∑
nel

∫
Ωe

Ai
∂

#»
W

∂xi
· τSUPG

#»
R(

#»
U )dΩ = 0 (15.24a)

∫
Ω

R jφdΩ+∑
nel

∫
Ωe

Ai( j,k)
∂φ

∂xi
τSUPGkl RldΩ = 0 (15.24b)

For a 5-equation system in 3 spatial dimensions, j,k, l = 1,2,3,4,5 and i = 1,2,3. Eq. (15.24)b shows the weak
form for equation j in suffix notation. Ai( j,k) represents the j,k entry of matrix Ai.

#»
W is the vector of weight functions,

φ is the weight function for equation j, and τSUPG is a matrix representing the diagonal and cross-term stabilization
parameters (more complicated versions of the αpg parameter from the 1-D examples).

The first term in Eq. (15.24) is the non-stabilized weak form, except that integration by parts is not shown. The
second term in Eq. (15.24) is the discontinuous stabilization term; the discontinuous aspect allows inter-element
continuity to be maintained and eliminates the need to add additional boundary terms. Eq. (15.24) stabilizes each
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equation considering all of the other equations in the nonlinear system. That is, each equation may be stabilized by its
own residual, and possibly the residuals of the other coupled equations.

The remainder of this section derives each of the terms in Eq. (15.24) using the conservative equations solved in
Pronghorn. Occasionally, simplifications such as the non-porous Euler equations are used to discuss characteristics of
the method, but this will be noted when appropriate. Because a stationary solid is assumed in Pronghorn, the coupling
between the fluid and solid phases occurs only through the convective heat transfer term (i.e. the solid energy equation
is purely diffusive because there is no advective coupling to the fluid velocity). Therefore, no stabilization of the solid
energy equation is required, so the SUPG scheme only needs to stabilize the coupled fluid equations. Section 19.1
provides specific values for Ai and Ki j.

Section 15.4 discusses modifications made to the SUPG scheme shown in this section for use with Pronghorn’s
primitive equation set.

15.3.1 Solution, Inviscid Flux, Diffusive Flux, and Source Vectors

All of the equations and vectors must be cast in terms of the five conserved variables U0, U1, U2, U3, and U4 defined
as the entries of

#»
U in Eq. (2.224):

#»
U =

[
U0 U1 U2 U3 U4

]T
(15.25)

One inviscid flux vector exists for each spatial dimension i≤ 3:

#»
F i =


Ui

U1Ui
U0

+δ1iP
U2Ui
U0

+δ2iP
U3Ui
U0

+δ3iP
UiH

 (15.26)

In order to pull out a factor of porosity from
#»
Gi, and keep accounting easier, we assume Eq. (12.1):

#»
Gi = ε

[
0 0 0 0 k f

∂Tf
∂xi

]T
(15.27)

The source vector is:

#»
S =


0

−εU0g1 +WU1−P ∂ε

∂x1

−εU0g2 +WU2−P ∂ε

∂x2

−εU0g3 +WU3−P ∂ε

∂x3
−ε(g1U1 +g2U2 +g3U3)+α(Tf −Ts)− q̇ f

 (15.28)

15.3.2 Variable Derivatives

Derivatives of the conserved variables, as well as pressure, enthalpy, and temperature (if including the thermal diffusion
term) with respect to one another are required in Eq. (15.24). Total enthalpy, defined in Eq. (2.160), can be expressed
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as:

H =
U4 +P

U0
(15.29)

The derivatives of total enthalpy with respect to the conserved variables are:

∂H
∂U0

=
1

U0

(
∂P
∂U0
−H

)
(15.30a)

∂H
∂Ui

=
1

U0

∂P
∂Ui

(15.30b)

∂H
∂U4

=
1

U0

(
1+

∂P
∂U4

)
(15.30c)

For the conservative variable formulation, both pressure and temperature are given by EOSs, so the SUPG stabi-
lization is implicitly dependent on the EOS selected. The ideal gas EOS gives pressure as Eq. (7.10)b, which gives the
following derivatives with respect to the conserved variables:

P = (γ−1)

(
U4−

U2
1 +U2

2 +U2
3

2U0

)
(15.31)

∂P
∂U0

=
(γ−1)(U2

1 +U2
2 +U2

3 )

2U2
0

=
1
2
(γ−1)‖ #»

V ‖2
2 (15.32a)

∂P
∂Ui

=
(1− γ)Ui

U0
= (1− γ)Vi (15.32b)

∂P
∂U4

= γ−1 (15.32c)

The ideal gas EOS gives temperature as Eq. (7.14), which gives the following derivatives with respect to conserved
variables:

Tf =
1

Cv

(
U4

U0
−

U2
1 +U2

2 +U2
3

2U2
0

)
(15.33)

∂Tf

∂U0
=

1
Cv

(
−U4

U0
+

U2
1 +U2

2 +U2
3

U0

)
=

1
ρCv

(
‖ #»

V ‖2
2−

ρE
ρ

)
(15.34a)

∂Tf

∂Ui
= − Ui

CvU0
=− Vi

ρCv
(15.34b)

∂Tf

∂U4
=

1
ρCv

(15.34c)

where i = 1,2,3 in Eqs. (15.30)b, (15.32)b, and (15.34)b.
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15.3.3 Inviscid Flux Jacobian Matrices

The inviscid flux Jacobian matrices defined in Eq. (2.226) are given as follows by canceling derivative terms that are
zero and Kronecker deltas of the form δ4i (since i≤ 3 depending on the spatial dimension):

Ai =



0 δ1i δ2i δ3i 0
−U1Ui

U2
0

+δ1i
∂P

∂U0
δ1i

[
2U1
U0

+ ∂P
∂U1

]
+ δ̃1i

Ui
U0

δi2
U1
U0

+δ1i
∂P

∂U2
δi3

U1
U0

+δ1i
∂P

∂U3
δ1i

∂P
∂U4

−U2Ui
U2

0
+δ2i

∂P
∂U0

δ1i
U2
U0

+δ2i
∂P

∂U1
δ2i

[
2U2
U0

+ ∂P
∂U2

]
+ δ̃2i

Ui
U0

δi3
U2
U0

+δ2i
∂P

∂U3
δ2i

∂P
∂U4

−U3Ui
U2

0
+δ3i

∂P
∂U0

δ1i
U3
U0

+δ3i
∂P

∂U1
δ2i

U3
U0

+δ3i
∂P

∂U2
δ3i

[
2U3
U0

+ ∂P
∂U3

]
+ δ̃3i

Ui
U0

δ3i
∂P

∂U4

Ui
∂H
∂U0

Ui
∂H
∂U1

+δ1iH Ui
∂H
∂U2

+δ2iH Ui
∂H
∂U3

+δ3iH Ui
∂H
∂U4


(15.35)

where δ̃i j ≡ (1−δi j) is defined for conciseness.

15.3.4 Diffusive Flux Jacobian Matrices

The diffusive flux Jacobian matrices defined in Eq. (2.227) are zero if i 6= j, and because only the last entry of
#»
Gi is

nonzero, only the last row in Kii is nonzero:

Kii = k f


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∂Tf
∂U0

∂Tf
∂U1

∂Tf
∂U2

∂Tf
∂U3

∂Tf
∂U4

 (15.36)

15.3.5 The Stabilizing Effect

The stabilizing effect is obtained via the second term in Eq. (15.24). The form of this equation will be different for
each of the mass, momentum, and energy equations, and will contain a mix of strong residuals from each equation.
For simplicity, assume that τSUPG is a diagonal matrix with components defined in Eq. (15.50), where for simplicity
it is in this section assumed that τu1 = τu2 = τu3 ≡ τu. In the continuity equation, the following term is added to the
weak form:

∑
nel

∫
Ωe

τu∇φi ·
#»
R udΩ (15.37)

where
#»
R u is the vector of momentum equation residuals. The continuity equation is therefore stabilized by a term

proportional to the momentum equation strong residuals. In the jth momentum equation, the following term is added
to the weak form:

∑
nel

∫
Ωe

τu

(
(1− γ)

#»
V · #»

R u
∂φi

∂x j
+

#»
V ·∇φiRu j +Vj∇φi ·

#»
R u

)
+ τeRe(γ−1)

∂φi

∂x

dΩ +

∑
nel

∫
Ωe

τcRc

(
−Vj

#»
V ·∇φi +

1
2
(γ−1)‖ #»

V ‖2
2

∂φi

∂x j

)dΩ

(15.38)
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where Rc is the continuity equation strong residual and Re is the energy equation strong residual. The momentum
equations are therefore stabilized by terms proportional to the continuity, momentum, and energy equation residuals.
In the fluid energy equation, the following term is added to the weak form:

∑
nel

∫
Ωe

[
1
2

τu

(
h∇ψi ·

#»
R u +(1− γ)(

#»
V · #»

R u)(
#»
V ·∇ψi)

)
+ τeReγ

#»
V ·∇ψi

]
dΩ +

∑
nel

∫
Ωe

[
τcRc

(
1
2
(γ−1)‖ #»

V ‖2
2−h

)
#»
V ·∇ψi

]
dΩ

(15.39)

The energy equation is therefore stabilized by a term proportional to the continuity, momentum, and energy equa-
tion residuals. The stabilizing effect of the above terms is not immediately apparent. The stabilizing effect is apparent
for the simple 1-D convection diffusion equation in Eq. (15.1), extended to higher dimensions and time dependence:

∂φ

∂t
+∇ · (φ #»

V )−∇ · (k∇φ) = 0 (15.40)

The solution, inviscid flux, and diffusive vectors are:

#»
U =

[
φ

]
,

#»
F i =

[
φVi

]
,

#»
Gi =

[
−k ∂φ

∂xi

]
(15.41)

The inviscid flux Jacobian is:

Ai =
[

∂(φVi)
∂φ

]
=
[
Vi

]
(15.42)

Then, the stabilizing term added to the equation becomes:

∑
nel

∫
Ωe

dΩτcd
#»
V ·∇ψi

(
∂φ

∂t
+∇ · (φ #»

V )−∇ · (k∇φ)

)
︸ ︷︷ ︸

#»
R (

#»
U )

(15.43)

where τcd is the stabilization parameter for this convection-diffusion equation. The overall weak form, with both
the SUPG and original terms, becomes:

(
∂φ

∂t
,ψ

)
+(k∇φ,∇ψ)+

(
−φ

#»
V ,∇ψ

)
+ 〈−k∇φ+φ

#»
V ,ψ〉︸ ︷︷ ︸

original weak form

+

(
∂φ

∂t
,τcd

#»
V ·∇ψ

)
+
(

∇ · (φ #»
V ),τcd

#»
V ·∇ψ

)
+
(
−∇ · (k∇φ),τcd

#»
V ·∇ψ

)
︸ ︷︷ ︸

SUPG term

= 0
(15.44)

The weak form of the diffusion kernel is (k∇φ,∇ψ). The presence of two gradients, ∇φ and ∇ψ, gives the diffusion
term nice numerical properties. For this system of equations consisting of one equation, the SUPG method is analogous
to adding a perturbation term to the weight function ψ such that ψ→ ψ+ τcd

#»
V ·∇ψ. With this extra component, the

weak form for the advective term becomes (τcd∇ · (φ #»
V )− φ,

#»
V ·∇ψ). The SUPG method adds a derivative of the

nonlinear variable φ to the advective kernel to mimics the two derivatives seen in the diffusive term. It is this similarity
to solving a diffusion kernel, when actually solving a convection kernel, that gives the SUPG method its stabilizing
effect. Not all terms added to the original weak forms have stabilizing effects, but overall, the SUPG method stabilizes
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convection-diffusion equations well. The diffusive portion of the SUPG term, (−∇ · (k∇φ),τcd
#»
V ·∇ψ), will disappear

if the shape function order used to approximate φ is first order or lower. Under these conditions, the SUPG method
is no longer conservative. However, this lack of consistency is rarely a practical concern, because the diffusive term
becomes negligible as the Reynolds number increases.

Equivalently, the stabilizing effects of the SUPG method arise because the method increases the symmetry of the
system. The one-equation SUPG method is equivalent to a linear combination of the standard Galerkin FEM and the
Galerkin Least Squares (GLS) method. The GLS method requires the square of the residual to be zero, and hence
produces symmetric stiffness matrices. So, the SUPG method can be interpreted as increasing the symmetry of the
stiffness matrix.

For the 1-D convection-diffusion equation given in Eq. (15.1), the Galerkin FEM gives the following weighted
residual form, with BCs omitted for simplicity:

∫
Ω

ψ

(
−k

d2φ

dx2 +V
dφ

dx

)
dΩ = 0 (15.45)

The GLS weighted residual form is, also with BCs ommitted:

∫
Ω

(
−k

d2ψ

dx2 +V
dψ

dx

)(
−k

d2φ

dx2 +V
dφ

dx

)
dΩ (15.46)

Writing a new weighted residual statement as a linear combination of Eqs. (15.45) and (15.46) scaled by a
parameter ς:

∫
Ω

ψ+ ς

(
−k

d2ψ

dx2 +V
dψ

dx

)[−k
d2φ

dx2 +V
dφ

dx

]
dΩ = 0 (15.47)

If the second derivative term d2ψ/dx2 is neglected (possible when using linear Lagrange shape functions),
then if ς is chosen to equal αpgh/2| #»V |, this linear combination is equal to the one-equation SUPG method.

15.3.6 Shock-Capturing

The SUPG method does not preserve monotonicity. In the vicinity of shocks or very sharp gradients in the solution,
Gibbs phenomena, or the over/undershoots that results from approximating an infinite-term series with a finite number
of terms, results in nonphysical numerical oscillations. Because the governing equations are nonlinear, these oscilla-
tions can rapidly pollute the entire solution. In the vicinity of shocks, there are several additional numerical tweaks
that can be applied to recover the shock-like behavior of the true solution. These treatments will be added as needed.

15.3.7 Calculation of the Stabilization Parameter τSUPG

The stabilization parameter τSUPG is an N×N matrix of intrinsic time scales associated with the N-equation nonlinear
system. The accuracy of the SUPG method is dependent on a good choice for this matrix that balances accuracy and
stability. Optimal values for τSUPG are only available for the most simple of equations, such as the 1-D constant-
coefficient advection-diffusion equation. For multidimensional problems, τSUPG involves the solution of an eigenvalue
problem at each quadrature point. τSUPG is a combination of the waves generated by each eigenvalue: ‖ #»

V ‖, ‖ #»
V ‖+ c,

and ‖ #»
V ‖− c, where c is the sound speed. These waves travel along the streamwise direction.
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For the 1-D equivalent of Eq. (15.35), the inviscid flux Jacobian matrix becomes:

A1 =


0 1 0

−V 2 + ∂P
∂U0

2V + ∂P
∂U1

∂P
∂U4

V
(

∂P
∂U0
−h
)

V ∂P
∂U1

+h V
(

1+ ∂P
∂U4

)
 (15.48)

Without the presence of additional inhomogeneous terms, the governing equations represent the time-
dependent Euler equations, which have the following eigenvalues:

λ1 = V (15.49a)

λ2,3 = V +
1
2

(
∂P
∂U1

+V
∂P
∂U4

)
± 1

2

√
4
(

∂P
∂U0

+V
∂P
∂U1

+h
∂P
∂U4

)
+

(
∂P
∂U1

+V
∂P
∂U4

)2

(15.49b)

For a given EOS, the partial derivatives of pressure with respect to the nonlinear variables can be determined.
It can be shown that the above eventually simplifies to λ2,3 =V ± c for the ideal gas EOS.

Because solving an eigenvalue problem at each quadrature point is CPU-intensive, many authors have instead
relied on ad hoc extensions of the optimal 1-D expressions to higher-dimensions. It is common to only use a diagonal
τSUPG:

τSUPG ≡


τc 0 0 0 0
0 τu1 0 0 0
0 0 τu2 0 0
0 0 0 τu3 0
0 0 0 0 τe

 (15.50)

where subscript c represents the continuity equation, ui the i-th momentum equation, and e the energy equation.
Only diagonal τSUPG are considered in Pronghorn. When a diagonal matrix is chosen as an approximation to the full
matrix, strong discontinuity capturing operators must be used for compensation.

A summary of the values of diagonal τSUPG entries used in the literature is shown below, with reference to the
equation set solved, either Compressible Navier-Stokes (CNS) or Compressible Euler (CE).

Table 20: Summary of the values used for τc found in the literature.

Source Equation Set τc

MOOSE Navier Stokes CNS
[(
‖V‖
he

)2
+
(

2
∆t

)2
]−1/2

BIGHORN CE
[(
‖V‖
he

)2
+
(
‖V‖+c

he

)2
]−1/2

Kirk, [121] CNS
[(

2(‖V‖+c)
he

)2
+
(

2
∆t

)2
]−1/2
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Table 21: Summary of the values used for τui found in the literature.

Source Equations τu

MOOSE Navier Stokes CNS
[(
‖V‖
he

)2
+
(

2
∆t

)2
+
(

µ
ρh2

e

)2
]−1/2

BIGHORN CE
[(
‖V‖
he

)2
+
(
‖V‖+c

he

)2
+
(

µ
ρh2

e

)2
]−1/2

Kirk, [121] CNS
[(

2(‖V‖+c)
he

)2
+
(

2
∆t

)2
+
(

4µ
ρh2

e

)2
]−1/2

Table 22: Summary of the values used for τe found in the literature.

Source Equations τe

MOOSE Navier Stokes CNS

[(
‖V‖
he

)2
+
(

2
∆t

)2
+

(
k

ρCph2
e

)2
]−1/2

BIGHORN CE

[(
‖V‖
he

)2
+
(
‖V‖+c

he

)2
+

(
k

ρCph2
e

)2
]−1/2

Kirk, [121] CNS

[(
2(‖V‖+c)

he

)2
+
(

2
∆t

)2
+

(
4k

ρCph2
e

)2
]−1/2

The remainder of this section discusses several methods by which the τSUPG entries have been calculated. Simpler
methods have been used that typically only consider spatial (maximize spatial accurate) or temporal (maximize phase
accuracy) criteria. These methods do not lead naturally to the forms shown in the tables above, and are not discussed
here. The τSUPG entries are generally unique for each element because they contain the element size he as a parameter.

The clearest way to derive the τSUPG components in Tables 20-22 is by nondimensionalizing the element matrices
and vectors that arise directly from the FEM discretization. If the terms in the integrals are assumed 1-D and constant
over each element, then a simple form amenable for implementation in Pronghorn is obtained. The advantages of this
approach are that the local element length scales, velocities, and temporal scales are automatically taken into account,
and the procedure for computing τSUPG is independent of the element order. By dividing integrals by the advective
term, the τSUPG components represent advection-dominated, transient-dominated, and diffusion-dominated physics.
The scalar value τ j ( j = c,u1,u2,u3, or e) used to stabilize each equation is defined to be the sum of the advective,
transient, and diffusive limits for that equation [118]:

τ j =

[
1

(τadv)
χ +

1(
τtemporal

)χ +
1(

τdi f f
)χ

]−1/χ

(15.51)

where τadv, τtemporal , and τdi f f are the advection-, temporal-, and diffusion-dominated nondimensional terms to be
derived below. This method of summing the various physics-limited τ j’s is known as the “switching method” because
the magnitude of χ indicates how quickly you switch between these different limits. All solution variables in this
section are assumed to be in a linear Lagrange basis such that integral evaluation in 1-D is easy.The weak form of the
continuity equation is:

∫
Ω

∂ρ

∂t
ψdΩ−

∫
Ω

ρ
#»
V ·∇ψdΩ+

∫
∂Ω

ρ
#»
V · #»n ψdΓ︸ ︷︷ ︸

non-stabilized term

+∑
nel

∫
Ωe

τc
#»
V ·∇ψ

[
∂ρ

∂t
+∇ · (ρ #»

V )

]
dΩ︸ ︷︷ ︸

stabilized term

= 0 (15.52)
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An incompressible advective limit τadv,inc can be defined as the ratio of the magnitudes of the advective term in the
stabilized term to the advective term in the non-stabilized term [118]:

τadv,inc ≡

(
‖
∫

Ωe
(

#»
V ·∇ψ)∇ · (ρ #»

V )dΩ‖
‖
∫

Ωe
ρ

#»
V ·∇ψ‖dΩ

)−1

=

(
2‖V‖

he

)−1
(15.53)

This advective term applies for incompressible flow, since ρ was assumed constant so that it could be moved
outside the integration to cancel in the numerator and denominator. A compressible version of Eq. (15.53) is formed
in an ad hoc manner by simply replacing ‖ #»

V ‖ by ‖ #»
V ‖+ c, the largest eigenvalue:

τadv,com ≡

(
2(‖ #»

V ‖+ c)
he

)−1

(15.54)

Authors disagree on how to assemble τadv given the incompressible and compressible limits in Eqs. (15.53) and
(15.54). Because the compressible limit does not provide a well-behaved incompressible limit, some authors define
τadv as the sum of the incompressible and compressible limits, which also gives increased robustness near stagnation
points [122].

The temporal limit can be defined as the ratio of the magnitudes of the time term in the stabilized term to the
advective term in the non-stabilized term [118]. A factor of ∆t/2 is used to both obtain the correct units and obtain a
Lax-Wendroff method [123].

τtemporal ≡

(
2
∆t
‖
∫

Ωe
ρ

#»
V ·∇ψdΩ‖

‖
∫

Ωe
ρ

#»
V ·∇ψ‖dΩ

)−1

=

(
2
∆t

)−1
(15.55)

There are no diffusive terms in the continuity equation, so no diffusion-limited components are defined. The time
and advective terms in the momentum equation give the same weak form shown in Eq. (15.52) except with ρ is replaced
by ρ fVi for i = 1,2,3. So, the momentum equation has the same advection- and transient-limited τui components. A
diffusive limit for the i-th momentum equation can be derived by neglecting the pressure and gravitational forces,
giving the following weak form:

∫
Ω

∂(ρ fVi)

∂t
ψdΩ−

∫
Ω

ρ fVi
#»
V ·∇ψdΩ+

∫
∂Ω

ρ fVi
#»
V · #»n ψdΓ+

∫
Ω

τ : ∇ψdΩ−
∫

∂Ω

τ : #»n ψdΓ︸ ︷︷ ︸
non-stabilized term

+

∑
nel

∫
Ωe

τui

#»
V ·∇ψ

(
∂(ρ fVi)

∂t
+∇ · (ρ fVi

#»
V )−∇ · τ

)
dΩ︸ ︷︷ ︸

stabilized term

= 0
(15.56)

A diffusive limit for the momentum equation can be defined as the ratio of the magnitudes of the diffusive term in
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the stabilized term to the advective term in the non-stabilized term:

τdi f f ≡

(
‖
∫

Ωe

#»
V ·∇ψ∇ · τdΩ‖

‖
∫

Ωe
ρ fVi

#»
V ·∇ψdΩ‖

)−1

=

(
4µ
ρh2

e

)−1
(15.57)

where the final form has assumed incompressibility in order to simplify the evaluation of the tensor gradient. Using
the form of the energy equation given in Eq. (2.185) with the compression work, viscous heating, and volumetric
viscous heating effects neglected, the weak form is:

∫
Ω

ρCp
∂T
∂t

ψdΩ+
∫

Ω

ρCp
#»
V ·∇T ψdΩ−

∫
Ω

k∇T ·∇ψdΩ+
∫

∂Ω

k∇T · #»n ψdΓ︸ ︷︷ ︸
non-stabilized term

+

∑
nel

∫
Ωe

τe
#»
V ·∇ψ

[
ρCp

∂T
∂t

+ρCp
#»
V ·∇T +∇ · (k∇T )

]
dΩ︸ ︷︷ ︸

stabilized term

= 0
(15.58)

A diffusive limit for the energy equation can be defined as the ratio of the magnitudes of the diffusive term in the
stabilized term to the advective term in the non-stabilized term:

τdi f f ≡

(
‖
∫

Ωe

#»
V ·∇ψ∇ · (k∇T )dΩ‖

‖
∫

Ωe
ρCp

#»
V ·∇T ψdΩ‖

)−1

=

(
4k

ρCph2
e

)−1 (15.59)

In conclusion, using the approach of stabilizing each equation independently in order to solve for the physics-
limited τ j’s, then using these τ j’s as the diagonal entries of τSUPG for the matrix-stabilized approach shown in Eq.
(15.24), τc, τm, and τe from Eq. (15.50) are defined as follows for the incompressible Navier-Stokes equations with
χ = 2:

τc =

[(
2‖V‖

he

)2

+

(
2
∆t

)2
]−1/2

(15.60a)

τm =

[(
2‖V‖

he

)2

+

(
2
∆t

)2

+

(
4µ
ρh2

e

)2
]−1/2

(15.60b)

τe =

(2‖V‖
he

)2

+

(
2
∆t

)2

+

(
4k

ρCph2
e

)2
−1/2

(15.60c)

Note that the forms in Eq. (15.60) do not exactly match those shown in Tables 20-22. but all terms are roughly
the same. Instead of taking the sum of the various components, some authors take the minimum of each of the
limits [63, 122]. The element lengths do not necessarily need to be the same in the advective and diffusive terms, and
some authors select different length scales for each component of τ and for each limiting physics [63]. It is sensible
that the advective element length be a flow-aligned length scale, but this need not be the case for the diffusive term,
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since there is both streamwise and crosswind diffusion. However, in unidirectional flow, the streamwise advection
balances the streamwise diffusion, while any crosswind diffusion is to be minimized. For this reason, the diffusive
length is often taken equal to the same length scale that is used in the advective limit [122]. Alternatively, the diffusive
length can be computed as an average of the representative element lengths.

Methods to compute stabilization parameters unique to each node have also been developed; a comparison amongst
the τ computed via Eq. (15.51), via matrix methods, and via vector methods gave almost exactly the same results, so
for simplicity these matrix and vector methods are not pursued in Pronghorn [118].

15.4 SUPG Stabilization with the Primitive Equation Set

Work is currently ongoing to include SUPG stabilization for the primitive equation set in Pronghorn.

15.5 SUPG Stabilization with a Single Equation

The previous sections describe the correct system-based way to use SUPG stabilization in Pronghorn, a single-equation
stabilization form also exists. For a single equation, such as a problem that only solves the momentum equation given
some assumed pressure and density field, Eq. (15.44) shows that SUPG stabilization of that equation requires simply
adding a term:

(
S,τ j

#»
V ·∇ψ

)
(15.61)

to each kernel, where S is the strong form of that kernel and τ j is some scalar stabilization parameter. Because
there is only one equation, cross-equation stabilization terms do not exist. For almost every kernel in Pronghorn, a
one-equation SUPG kernel exists that provides the residual above. The naming convention is to append SUPG to the
name of the kernel to which the SUPG stabilization applies. Note that the single-equation stabilization is only correct
if the system being solved consists of a single equation.
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16 The Finite Element Method

This section discusses the spatial discretization used for the governing equations described in Section 2. The temporal
discretization is discussed in Section 17. MOOSE is a FE-based framework. A comprehensive description of the FEM
is beyond the scope of this manual, but a brief discussion is given here to introduce the more important terminology
and concepts associated with weighted residual methods, of which the FEM is a subset. Then, the most important
features of the FEM are described. Finally, a brief discussion on the choice of element size with regards to the porous
media method is given.

16.1 Weighted Residual Methods and the Galerkin Method

The FEM is an element-wise application of a weighted residual method that provides specific means for selecting the
interpolation functions and BCs that are not specified for a generic weighted residual method. A weighted residual
method seeks a solution to a differential equation by assuming the solution u can be expressed as a summation of
coefficients C and shape functions φ to give an approximate solution uN .

u≈ uN =
N

∑
j=1

C jφ j (16.1)

where N is the number of shape functions chosen to express the solution. Any differential equation can in general
be expressed as A(u) = f , where A is an operator that acts on the true solution u, and f is a function that does not
contain u. For example, for the continuity equation, this operator is:

A() =
(

∂()

∂t
+

#»
V ·∇()+() ·∇ #»

V
)

(16.2)

and because there are no sources of mass, f = 0. To keep the discussion of the numerical method general, all
equations will simply be discussed in the form A(u) = f . The approximation in Eq. (16.1) in most cases (unless we
were extremely lucky in guessing the form of the solution to within a number of multiplicative constants) will not
be the true solution, and hence if uN is substituted back into the governing equation, the equation will not be strictly
satisfied. Rather,

R = A(uN)− f (16.3)

where R is the residual. The objective is to minimize the residual with respect to a particular norm. The choice of
norm about which to minimize is not a trivial manner, and the choice of the norm determines the flavor of the weighted
residual approach. A weighted residual method is, in general, a requirement that the integral of the residual over the
phase space, multiplied by some weighting function ψ, be zero:

∫
Ω

RψdΩ = 0 (16.4)

Suppose the norm about which to minimize the residual is selected to be the L2 norm, defined as:

‖T‖2
2 ≡

∫
Ω

R∗RdΩ (16.5)

Minimizing the residual with respect to this norm then requires that the residual is minimized with respect to
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each coefficient C j that appears in Eq. (16.1):

∂

∂C j

(∫
Ω

R∗RdΩ

)
=

∫
Ω

2R
∂R
∂C j

dΩ = 0 (16.6)

where differentiation was brought inside the integral because the bounds of the domain are assumed fixed
and the residual is assumed real. Eq. (16.6) defines N equations that can be solved to determine the C j
for j = 1,2, · · · ,N. This method is called the “Method of Least Squares,” for obvious reasons. A different
approach forces the residual to be zero at a discrete number of locations Ωi such that R(Ωi) = 0. This can also
be written in integral form using delta functions as:∫

Ω

Rδ(Ω−Ωi)dΩ = 0 (16.7)

Eq. (16.7) is a collocation method, a term that is generally used for situations where the solution is forced to be
exact at discrete locations in the phase space. Both the collocation method and the method of least squares are
weighted residual methods, and differ in their selection of ψ in Eq. (16.4), but the methods are not as widely
used as the FEM due to the higher computational cost required to obtain the same level of accuracy.

A common choice for ψ is given by the Galerkin method. The Galerkin method chooses optimal weight functions
in order to most closely minimize the error:

e≡ u−uN (16.8)

The functions used to construct uN in Eq. (16.1) “live” in a particular function space, and the true solution may or
may not exist within that space. However, for the error to be minimized, e should be orthogonal to uN , since that will
minimize the “distance” between uN and the true solution. This requires:

uN · e = 0 (16.9)

However, the error is not known unless the analytical solution is known, so the above requirement does not provide
a useful condition. The best approximation to the error can be given by the residual R. Hence, Galerkin’s method seeks
to minimize the residual by requiring that it be orthogonal to the approximate solution uN :

uN ·R = 0 (16.10)

While only in special cases are the error and residual the same, Galerkin’s method effectively obtains an approxi-
mate solution. Galerkin’s method technically only supplies one equation, while there are N unknowns. However, an
even stricter requirement is that the above be true for every C j in the expansion for uN provides the needed N equations
for N unknowns:

∫
Ω

C jφ j
(
A(C jφ j)− f

)
dΩ = 0 for j = 1,2, · · · ,N (16.11)

The FEM is most commonly implemented as a Galerkin weighted residual method. The additional stipulations
required by the FEM over the Galerkin method discussed here are given in Section 16.2.

16.2 The Finite Element Method

What further differentiates the FEM from the generic Galerkin method is the 1) formulation of the weak form of the
differential equation to reduce differentiability requirements, 2) the systematic selection of shape functions that lead
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to an element-wise application of the Galerkin method, and 3) the BCs required of the shape functions.

16.2.1 The Weak Form

Many solutions to physical problems are not continuously differentiable. When the higher-order derivatives in the
operator A are integrated, infinite or singular values may result, which would make application of the Galerkin method
impossible unless higher-order shape functions were used. However, by constructing a weak form, the differentiability
requirements on the solution are lowered (a significant cost savings) by transferring some of the differentiation to the
weight function. The weak form is constructed by integrating terms by parts when possible, resulting in lower-order
terms plus boundary terms. This also provides a very natural way to impose certain BCs. These weak forms have
been given for the Pronghorn equations in Eq. (2.301). The weak form is actually more accurate than the strong form
because it doesn’t assume anything about differentiability of material properties or the solution (more than what is
found in the weak form itself). The weak form is identical to the strong form provided the true solution is sufficiently
smooth to satisfy the strong form, so the weak form is still an exact representation of the governing physics.

16.2.2 Shape Functions

In addition to solving the weak form of Eq. (16.4), the FEM prescribes specific shape functions. These shape functions
are selected such that the domain can be divided into a number of finite elements, where each element has nen element
nodes. The solution over the entire domain is then divided into the solution over each of these elements. The solution
over a single element, uh, is the summation of the expansion coefficients in that element, multiplied by the shape
functions over that element. One unknown is present for each node in a FE.

uh =
nen

∑
j=1

C jφ j (16.12)

The shape functions are defined such that φ j is unity at node j and zero at all other nodes. This results in localized
shape functions and a sparse matrix system because distant shape functions do not overlap in space. This alos allows
the FEM to be applied element-wise.

By requiring the shape functions to be zero on all nodes but one, continuity is enforced along elements edges, since
the solution along a boundary between two or more elements is defined only by the nodes that lie along that boundary
(and the local-to-global mapping discussed in the next section ensures continuity at nodes).

A 2-D four-node element can, in principle, be either a rectangle or some other 2-D shape - consider a triangle
with a centrally-positioned node, for example. The solution at any point in this triangle is given by:

u(ξ1,ξ2) =C1 +C2ξ1 +C3ξ2 +C4ξ1ξ2 (16.13)

Along edges of the rectangle, ξ1 = ±1 or ξ2 = ±1. Inserting, for instance, ξ1 = 1 into the above equation
gives u = (C1 +C2)+ (C3 +C4)ξ2 - a solution that is linear along the edge. Because two nodes exist on that
edge, a linear function can be exactly described, and the solution between two rectangular elements will be
continuous at all points along the shared boundary. On the other hand, consider a four-node triangle with one
edge described by ξ1 = ξ2. Along this edge, the solution is u =C1+(C2+C3)ξ2+C4ξ2

2. This quadratic cannot
be exactly described using only the two nodes that exist on the triangle edge, and hence the solution will only
be continuous at shared nodes.

In principle, any set of functions can be used as the shape functions provided that the integrals in the weak form
remain finite. One way to ensure that the integrals remain finite is to require the shape functions to “live” within a
particular function space. The Hilbert Sobolev space is defined as H l(Ω), where l refers to the highest finite derivative
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of the function. For instance, a square wave lives in H0(Ω), since its first derivative is infinite at locations where the
wave height changes. A piecewise function lives in H1(Ω), since first derivatives are everywhere defined, but jumps
in the second derivatives lead to infinite integrals when measured in the H2 norm. The Hilbert-space norm is defined
in 1-D for a vector u consisting of I entries as:

‖u‖H l(Ω) ≡

 I

∑
j=0

∫
Ω

d ju
dx j

d ju
dx j dΩ

1/l

(16.14)

A function is in HI(Ω) if ‖u‖HI(Ω) <∞. The weight functions in the Bubnov-Galerkin method are equivalent to the
shape functions, so both must be at least the minimum Hilbert space required from the weak form. These preliminaries
would also apply to a generic weighted residual method, and it is really that the shape functions are nodal, i.e. unity at
a single node and zero elsewhere, that is a defining characteristic of the FEM. In addition, the shape functions should
be complete (contain all lower orders) and linearly independent.

When a kernel is integrated by parts, a new volume integral and a boundary integral result. In this boundary
integral, it is convenient to require the shape functions to go to zero at Dirichlet nodes, since this then eliminates one
of the BCs from the solve (though its information must be removed from the solve to avoid singularities, as discussed
near Eq. (16.22). Shape functions that are zero at boundaries are not required to satisfy Neumann BCs, however, so
Neumann conditions are only weakly imposed.

The most common shape functions used in the FEM are the Lagrange, Hermite, and Spline shape functions, with
linear Lagrange shape functions used by default in MOOSE. Lagrange shape functions are simply polynomials that
interpolate between nodes. The order of Lagrange shape functions refers to the order of the polynomial over each
element. The Lagrange shape functions are a nodal basis, and satisfy:

nen

∑
j=1

φ j(Ω j) = 1 (16.15a)

nen

∑
j=1

∂φ j

∂Ω
= 0 (16.15b)

Lagrange shape functions have discontinuous derivatives at element boundaries, but if continuity is desired, then
Hermite shape functions can be used.

16.2.3 Implementation Considerations

The shape functions discussed in Section 16.2.2 would be very tedious to compute for each element, since each element
is positioned in a different location in space with different coordinates that must be interpolated by a polynomial. So,
all shape functions are defined over a “master” element, and all calculations are performed in this master domain.
The master domain can be mapped back to the physical domain, giving the desired numerical solution. This master
domain, for a general 3-D domain, is defined for −1 ≤ ξ1 ≤ 1,−1 ≤ ξ2 ≤ 1,−1 ≤ ξ3 ≤ 1. To solve on the master
domain, all integrals must be transformed to the master domain. The transformation between physical and master
domains is given by:

d #»x = J d
#»

ξ (16.16)
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where the Jacobian matrix of the transformation has entries given by:

dxi =
∂xi

∂x j
dξ j (16.17)

Then, an integral in higher dimensions is transformed as:

∫ b

a

∫ d

c

∫ f

e
f (x1,x2,x3)dx1dx3→

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (x1(ξ1,ξ2,ξ3),x2(ξ1,ξ2,ξ3),x3(ξ1,ξ2,ξ3))|J|dξ1dξ2dξ3 (16.18)

In 1-D, the Jacobian simplifies to J= dx/dξ, which for constant-size elements gives J= he/2. In 1-D, the Jacobian
can be interpreted as the ratio of element length in the physical domain to that in the master domain. While volume
integrals transform according to Eq. (16.18), boundary integrals do not. Boundary integrals transform according
to Nanson’s rule, since the boundary does not necessarily transform in a manner proportional to how the volume
transforms. To transform a boundary integral, denoted here as a 2-D integration:

dx1x2 =
(
|J|J−T · #»n x

)
· #»n ξdξ1dξ2 (16.19)

where #»n x and #»n ξ are unit vectors to the surfaces in the physical and master domains, respectively. The mapping
xi(ξ1,ξ2,ξ3) can take a variety of forms, but is generally categorized into three main types:

1. Subparametric - the mapping is of lower order than the shape functions. This mapping is used when the physical
data is of lower-order than the desired solution order.

2. Isoparametric - the mapping is of the same order as the shape functions. This mapping, which tends to be the
most common, is usually performed using the shape functions of the numerical solution:

xi(ξ1,ξ2,ξ3) =
nen

∑
i=1

Xiφi(ξ1,ξ2,ξ3) (16.20)

where Xi is the physical node coordinate.

3. Superparametric - the mapping is of higher order than the shape functions. This type of mapping is used to
capture physically-curved geometries without needing to use high-order shape functions. In other words, linear
elements can be used to obtain the solution in curved domains, where the domain is approximated using higher-
order mappings.

Quadrature rules are used for approximating the integrals that appear in the residual statements because analytical
integration is generally not possible. An integral is approximated by sampling the integrand at nqp quadrature points,
multiplying each evaluation by a weight w, and then summing over all quadrature points:

∫ b

a
f (x)dx≈

nqp

∑
i=1

wi f (xi) (16.21)

Quadrature rules can often be interpreted as interpolating the integrand into a polynomial, and then integrating that
polynomial exactly. The error in the quadrature rule can then be related to the error in interpolating the integrand into
a polynomial of a certain order. Because all integrals occur over −1≤ ξi ≤ 1, quadrature rules defined over this range
can readily be used. The quadrature rule is selected in LibMesh. Extra computational effort expended in obtaining
higher accuracy numerical integration is better spent refining the mesh than using a higher-order quadrature rule. The
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error is lowest at the quadrature points, and hence some finite element codes use the values at the quadrature points
for the purposes of post-processing.

Two of the most common quadrature sets are the Newton-Cotes and Gaussian quadrature sets. Newton-Cotes
quadrature rules are derived by expanding the integrand in Lagrange polynomials using equally-space quadrature
points, and then analytically performing the integration to determine the weights. All Newton-Cotes quadrature rules
of order N will exactly integrate polynomials of order N− 1. But, odd-N rules gain an extra degree of integration,
due to higher-order derivatives dropping from Taylor series expansions, so an odd-N order quadrature rule will exactly
integrate a polynomial of order N.

Gaussian quadrature rules use unevenly-spaced nodes with locations optimized to maximize the polynomial degree
that can be exactly integrated. The nodes are generally located closer to the domain boundaries, but do not include the
boundaries themselves. Gaussian quadrature is generally preferred to Newton-Cotes quadrature for several reasons:

1. For higher-order polynomials, evenly-spaced node placement causes some weights to be negative, leading to
unpredictable behavior and catastrophic cancellation. For fluids applications, having more quadrature points
closer to the edges of an element is also advantageous from a boundary layer perspective.

2. Closed Newton-Cotes rules, which place some nodes on the boundaries of the domain, incur difficulties when
there are inherent discontinuities at those boundaries. While the solution is continuous at element boundaries
when using continuous FEM, its gradient may not be, which would complicate integration.

3. Gaussian quadrature rules can exactly integrate polynomials of higher degree with less quadrature points. An
N-point Gaussian quadrature rule can integrate exactly a polynomial of degree 2N−1.

While the error associated with a Newton-Cotes quadrature rule can easily and cost-effectively be estimated by
application of two different Newton-Cotes quadrature rules (since nodes are usually repeated in quadrature rules of
varying order), because Gaussian quadrature does not lead to large numbers of shared nodes between different N-point
rules, Gaussian-Kronrod quadrature rules are developed in pairs such that the nodes for the 2N+1 point Kronrod rule
re-use all nodes of the corresponding pair N-point Gaussian rule. Gauss-Kronrod rules provide high accuracy and a
reliable error estimate, and hence form the basis of many quadrature rule packages.

Before solving a matrix system A #»x =
#»

b , Dirichlet coefficients must be removed from the problem, or else the
system is singular and unsolvable. The matrix system can be written as:

[
Auu Auk
Aku Akk

][
uu
uk

]
=

[
bu
bk

]
(16.22)

where u refers to unknown values (non-Dirichlet nodes) and k refers to known values (Dirichlet nodes). Hence
the actual equation that is solved is Auuxu = bu−Aukxk. The known Dirichlet information is subtracted from the RHS
vector. Section 17 discusses the methods used to solve the discretized matrix system and how the solve is marched
forward in time.

An alternative to removing the Dirichlet nodes from the solve is to use the “penalty” method. This method
essentially applies another force to the weak form that simulates a spring force with a very high spring constant
that acts to “pull” the solution to the Dirichlet value on a boundary. A penalty term is added to the stiffness
matrix:

penalty term = P∗
∫

∂Ω

ψ(d−u)dΓ (16.23)

where P∗ is a large positive constant number, and d is the value on the Dirichlet boundary. The penalty
method is associated with several important problems, however. Because P∗ must be very large to get accurate
enforcement of Dirichlet conditions, the stiffness matrix will contain terms that are very large relative to other
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terms at locations corresponding to boundary nodes, and this may produce an ill-conditioned system. However,
if weak enforcement of Dirichlet conditions is acceptable, the penalty method may be useful.

16.3 The Accuracy of the Finite Element Method

This section address the accuracy of the FEM using functional notation. A generic bilinear functional B is an operation
that returns a scalar from an input of two variables and is linear with respect to those two variables. A generic linear
functional L is similar to a bilinear functional, except that it depends on only one variable. This section assumes
that the shape and weight functions exist in the same functional space, i.e. a Bubnov-Galerkin discretization. For a
symmetric stiffness matrix, the weak form can be stated in terms of functionals as:

B(uN ,ψ) = L(ψ) (16.24)

A norm useful for evaluating the accuracy of the FEM is the energy norm, defined as:

‖u‖2
E(Ω) ≡ B(u,u) (16.25)

The error, when measured in the energy norm, satisfies the following convergence property:

‖u−uh‖E(Ω) ≤C(u,N)hmin(r−1,N)
e (16.26)

where N is the order of the shape functions, r is the regularity of the exact solution, and C is an unknown constant
that depends on the polynomial order and the exact solution. For C∞ smooth functions, the regularity is infinite. For
rough solutions, the lowest theoretical value of r is 3/2. When measured in the Hilbert norm for r ≥ s:

‖u−uh‖Hs(Ω) ≤C(u,N)hmin(r−s,N+1−s)
e (16.27)

Both Eq. (16.26) and (16.27) are global norms, where he should be taken to be the largest element in the mesh.
Based on Eq. (16.27), to reduce the error it is almost always preferable to increase polynomial order than to refine the
mesh.

For symmetric B, the finite element method satisfies the “best approximation property.” Eq. (16.24) can be written
for both the true and numerical solutions:

B(u,ψ) = L(ψ) (16.28a)
B(uh,ψ) = L(ψ) (16.28b)

Subtracting the two equations from each other gives:

B(eh,ψ) = 0 (16.29)

where eh is the error on a single element:

eh ≡ u−uh (16.30)
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eh,uh, and ψ all lie in the same space, so subtracting off a function ψ from eh produces another function zh in the
same space. Hence, eh−ψ≡ u−uh−ψ = u− zh is true for any function zh that also satisfies the Dirichlet BCs. Using
this, the following can be defined, where the critical assumption of the best approximation property is that B is linear
such that B(eh,ψ) = B(ψ,eh).

B(eh−ψ,eh−ψ) = B(eh,eh)−���
��2B(eh,ψ) +B(ψ,ψ) (16.31)

where Eq. (16.29) has been used. Because B(ψ,ψ) is always positive:

B(u− zh,u− zh)≥ B(u−uh,u−uh) (16.32)

This is the best approximation property of the FEM. Any function zh that also satisfies the Dirichlet BCs will have
a higher error when measured in the energy norm than the FE solution. Hence, when measured in the energy norm,
the FE solution is the closest possible solution to the true solution. This best approximation property only applies for
linear B, however, and does not hold for the nonlinear system of equations in Pronghorn.

For symmetric systems, the weak form can also be cast in terms of a minimization principle. This is equivalent
to viewing a differential equation as a minimization of total energy, as opposed to the more traditional means
of viewing an equation stating conservation of energy. The weight function is a virtual change, or a variation,
of the primary variable. A potential Y can be defined by manipulation of the definition of the energy norm in
Eq. (16.25):

‖u−ψ‖2
E(Ω) ≡ B(u−ψ,u−ψ)≡ B(u,u)−2B(u,ψ)+B(ψ,ψ)

= 2B(u,u)−B(u,u)−2B(u,ψ)+B(ψ,ψ)

=−B(u,u)+B(ψ,ψ)−2B(u,ψ−u)

=−B(u,u)+B(ψ,ψ)−2L(ψ)+2L(u)

= 2Y(ψ)−2Y(u)

(16.33)

which leads naturally to the definition of the potential as:

Y(ψ) =
1
2

B(ψ,ψ)−L(ψ) (16.34)

Because the energy norm is always positive, Y(ψ)≥ Y(u). In other words, if u represents the true solution and
ψ the FE solution, the FE solution always has higher potential energy than the true solution. In addition, the
true solution has the minimum potential energy. This is often referred to as the “principal of minimum potential
energy,” which can be shown by applying a small perturbation λv to Y(u) and then taking the partial derivative
of Y with respect to λ for λ = 0. The perturbation is set to zero at the minimum because a zero perturbation
corresponds to the exact solution. For instance, for 1-D heat conduction, this minimization process is:

∂Y(u+λv)
∂λ

∣∣∣∣
λ=0

=
∂

∂λ

[
1
2

∫
Ω

k
(

d(u+λv)
dx

)2

dx−
∫

Ω

f (u+λv)dx

]∣∣∣∣
λ=0

=
1
2

∫
Ω

2k
d(u+λv)

dx
dv
dx

dx
∣∣∣∣
λ=0
−

∫
Ω

f (v)dx
∣∣∣∣
λ=0

=
∫

Ω

du
dx

k
dv
dx

dx−
∫

Ω

f (v)dx

(16.35)

This minimization process simply returns the weak form. By setting the above equal to zero, we require that
the potential be at a minimum at the true solution. By taking the second derivative of Y with respect to λ, it
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can be shown that Y represents a minimum (as opposed to a maximum).

∂2Y(u+λv)
∂λ2 =

∫
Ω

dv
dx

k
dv
dx
≡ ‖v‖2

E(Ω) ≥ 0 (16.36)

Only symmetric systems can be written as a minimization problem, however, so the discussion here, like the
“best approximation property,” does not apply to Pronghorn.

16.4 The Choice of Mesh Size

The porous media equations are derived by averaging the local conservation equations over a representative volume
of fluid and solid with dimensions larger than the pore scale, but smaller than the characteristic scale of the system.
This feature of the method should not impact mesh refinement size. The mesh used for the FE discretization should
be made as fine as desired to achieve a given numerical error, with the recognition that a small numerical error does
not necessarily translate to a small error in representing a complicated fluid-solid mixture. The mesh size should be
selected based on the desired numerical accuracy in solving the governing porous media equations.

Several researchers have coupled DEM codes with porous media CFD codes, where the coupling primarily occurs
through the calculation of porosity and specific surface areas for use in the porous media code [56,87]. The commonly-
used approach for computing porosity from a bed of spheres for use in a porous media code is to compute the ratio of
fluid to solid volume in each CFD cell. This approach has two major limitations:

1. If the CFD mesh elements are too small, then the statistical noise in computing porosity is very high, and the
porosity will vary substantially from element to element. In small core regions such as defueling chutes where
small elements are needed for the CFD solution, special treatments for computing porosity such as averaging
over multiple elements, has to be performed [56]. A minimum element size to avoid high statistical noise also
limits the possibility of mesh refinement studies.

2. Computing porosity (and other quantities such as pebble power [56]) by averaging over the element restricts
the representation in the CFD code to elementwise constant values. For Finite Volume (FV) porous media
codes that restrict the solution space to elementwise constant values, this may not be a concern. But for FE
and spectral CFD codes, this loss of information may degrade accuracy, especially when the elements cannot be
made smaller due to the previous issue.

From the theoretical discussion surrounding the choice of averaging volume size in Section 2.2, one solution to this
problem is to compute porosity not on a one-to-one mapping of DEM volume to CFD cell, but by averaging porosity
over a larger space in the DEM solution, and applying the averaged value to the cell at the centroid of that space in the
CFD mesh [76]. For example, the porosity for a CFD cell could be computed by averaging the porosity of that cell,
and all of its neighbors, in the DEM space. The average in neighboring CFD cells would not be completely linearly
independent, but the variation from cell to cell would be smoother than that shown in [56]. For mesh refinement
studies, the number of neighboring cells to average over could be made proportional to the inverse of the element size
to retain approximate equivalence in porosity and other constitutive terms across mesh sizes.
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17 Solution of Nonlinear Equations

Systems of linear equations will always have zero, one, or infinitely many (eigenvalue problem) solutions. Nonlinear
systems, however, can have any number of solutions, and will not necessarily have a solution for every choice of BCs.
There are many examples of the Navier-Stokes equations yielding non-unique solutions and bifurcations from one flow
state to another from the same BCs and ICs [22] (chapter 2). Several of these non-unique solutions are predicted from
theory, so experimental observations cannot simply be attributed to a lack of precision. Non-unique solutions tend to
exist once a representative dimensionless number reaches a threshold value; for linear systems, a steady-state solution
may not exist, but existence is not determined by a dimensionless number threshold. Upon reaching this threshold,
the system state will transition between the possible states stationary and non-stationary solutions; if no stationary
solutions exist, a steady-state solution cannot be obtained, even if the BCs and all source terms are constant. Very
accurate discretizations and solution schemes are required to resolve multiple solutions and bifurcations.

The most well-known example of the non-uniqueness of the Navier-Stokes equations is flow past a circular
cylinder. For this system, the vorticity generated in the boundary layers diffuses into the flow and causes two
symmetrical vortices to develop on the back side of the cylinder. The strength of these vortices increases with
Reynolds number. Beyond a critical Reynolds number, the slightest instability causes one of these vortices to
increase in strength above the other, drawing the other vortex into it and breaking symmetry. This stronger
vortex is convected away from the cylinder, allowing the smaller vortex to increase and continue the same
growth and consumption/destruction process, known as vortex shedding, in a periodic fashion. Provided the
Reynolds number is above the critical threshold, this system never reaches steady state despite steady BCs [22]
(chapter 2). Accounting for the finite length of the cylinder and compressibility still show non-unique solutions
and bifurcations between multiple steady solutions and multiple non-steady solutions, where the Mach number
also dictates the presence of multiple solutions.

This section discusses the method for solving the nonlinear system of equations in Pronghorn. Section 16 discussed
the spatial discretization of the governing equations using the FEM into a form:

#»
R(u) = 0 (17.1)

where
#»
R represents a vector of discretized equations (the residual vector) and u the numerical solution vector. For

simplicity, the remainder of this section departs from the convention in the rest of this manual of indicating vectors
with an arrow. This section discusses the solution to this nonlinear, discretized equation. The nonlinear methods
discussed in this section are all forms of fixed point iteration, where the solution is successively improved by iteration.
Eq. (17.1) cannot be solved directly using linear algebra methods because it is not of the form of a linear problem
such as:

Ax = b (17.2)

where A is a matrix, x is the solution vector, and b is the RHS vector. The first step of solving nonlinear equations
is to linearize the equation into the form in Eq. (17.2). Once in a linear form, one of the linear solution methods
discussed in Section 17.2 is used to solve for the next iterate. So, the numerical method in MOOSE consists of (at
least) two iteration loops -

1. An outer loop over nonlinear iterations that compute better and better guesses to u in Eq. (17.1), and

2. an inner loop over linear iterations that compute better and better guesses to x in Eq. (17.2).

Once the linear solution method has computed x that sufficiently solves Eq. (17.2), that x is used in a simple update
formula to compute the updated u. In the remainder of this section, i is used for the outer loop iteration index and k
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for the inner loop index. MOOSE solves nonlinear equations using the Jacobian-Free Newton Krylov (JFNK) method,
which is a combination of a Newton method for the outer iterations and a Generalized Minimum Residual Method
(GMRES) Krylov subspace method for the inner iterations. After discussing Newton methods in Section 17.1 and
Krylov methods in Section 17.2, Section 17.3 combines the two pieces together.

17.1 Newton’s Method

Newton’s method forms a linear approximation (about the current iterate ui) to the root-finding problem in Eq. (17.1)
by forming the Taylor series expansion for the next solution iterate:

#»
R(ui+1) =

#»
R(ui)+

∂
#»
R(ui)

∂u
(ui+1−ui)+O

(
(ui+1−ui)

2
)
= 0 (17.3)

By neglecting quadratic and higher-order terms, an iterative update formula results:

∂
#»
R(ui)

∂u
(ui+1−ui) = −

#»
R(ui) (17.4a)

J(ui)δi = −
#»
R(ui) (17.4b)

where J is the Jacobian of the Newton solve:

J(ui)≡
∂

#»
R(ui)

∂u
(17.5a)

Jlm(ui)≡
∂Rl(ui)

∂um
(17.5b)

Eq. (17.4) is of the form Ax = b and is solved for:

δi ≡ ui+1−ui (17.6)

using one of the linear solution methods discussed in Section 17.2.

For the conservative equation set in Pronghorn,
#»
R is:

#»
R =

[
#»
R c

#»
R u

#»
R f

#»
R s

]T
(17.7)
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where
#»
R i represents a discretized residual vector:

Rc(ρ f ) =

(
ε

∂ρ f

∂t
,ψ

)
+
(
−ερ f

#»
V ,∇ψ

)
+
〈

ερ f
#»
V ,ψ

〉
#»
R u(ρ f

#»
V ) =

(
ε

∂ρ fVi

∂t
− ερ f gi +Wρ fVi−P∇ε,ψ

)
+
(
−ερ fVi

#»
V − εP,∇ψ

)
+
〈

ερ fVi
#»
V + εP,ψ

〉
R f (ρ f E) =

(
ε

∂(ρ f E)
∂t

− ε
#»g ·ρ f

#»
V +α(Tf −Ts)−q f ,ψ

)
+
(
−εH f ρ f

#»
V +κ f ∇Tf ,∇ψ

)
+
〈

εH f ρ f
#»
V −κ f ∇Tf ,ψ

〉
Rs(Ts) =

(
(1− ε)ρsCp,s

∂Ts

∂t
+α(Ts−Tf )−qs,ψ

)
+(κs∇Ts,∇ψ)−〈κs∇Ts,ψ〉

(17.8)
where the subscripts c, m, s, and f refer to the continuity, momentum, fluid energy, and solid energy equations,
respectively. The solution vector u is a single vector containing all problem unknowns. For example, the
solution vector is of the form:

u=
[
ρ f ,1 (ρ fV )x,1 (ρ fV )y,1 (ρ fV )z,1 (ρ f E)1 Ts,1 · · · ρ f ,n ρ fVx,n ρ fVy,n ρ fVz,n (ρ f E)n Ts,n

]T

(17.9)
where the numbered subscripts denote node numbers, n is the total number of nodes, and the entries of u are
the expansion coefficients C j from Eq. (16.12). The Jacobian is a matrix, where each row corresponds to a
particular governing equation, and each column to a particular solution variable. For the conservative equation
set in Pronghorn, the nonlinear variables are ρ, ρ f

#»
V , ρ f E, and Ts. The Jacobian is then:

J =



∂Rc
∂ρ f

∂Rc
∂(ρ f

#»
V )

∂Rc
∂(ρ f E)

∂Rc
∂Ts

∂Rm
∂ρ f

∂Rm
∂(ρ f

#»
V )

∂Rm
∂(ρ f E)

∂Rm
∂Ts

∂R f
∂ρ f

∂R f
∂(ρ f

#»
V )

∂R f
∂(ρ f E)

∂R f
∂Ts

∂Rs
∂ρ f

∂Rs
∂(ρ f

#»
V )

∂Rs
∂(ρ f E)

∂Rs
∂Ts


(17.10)

Note that the Jacobian is not a 4×4 matrix - it is a 4×4 blocked matrix, where each block is n×n.

For simple roots (roots that do not also coincide with the root of a derivative of
#»
R ), Newton’s method converges

quadratically. However, for multiple roots, Newton’s method only converges linearly. These linear and quadratic
convergence rates are only valid for starting points sufficiently close to the true solution, and if the solve begins too
far away from the solution, Newton’s method may not converge. Damped Newton methods, available in MOOSE,
improve the likelihood of convergence when using a Newton method by restricting the step size taken in each iteration
so that overshoot past small features of

#»
R is reduced. The convergence of Newton’s method is greatly aided when all

of the entries of the Jacobian are known. In general this is not analytically possible, and writing derivatives may be
error-prone. So, while most of the classes in Pronghorn provide on-diagonal and off-diagonal Jacobian entries, some
are only approximated.

17.2 Solution of Linear Equations

After linearization of the nonlinear problem, any number of linear solution methods can be applied to solve the re-
sulting system of equations. The true solution to Eq. (17.2) is denoted as x∗. The residual R is defined in Eq. (16.3),
with uN ← x. The error e is defined in Eq. (16.8), with uN ← x. The error usually cannot be known, since this implies
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knowledge of the true solution, so the residual is often used as an indication of the accuracy of the numerical solution.
However, if a large change in the numerical solution leads to a correspondingly small change in the residual, then the
residual will not be a good indication of convergence. An equivalent form of Eq. (17.2) is:

Ae =−R (17.11)

Eq. (17.2) can be solved with either direct or iterative methods, which are discussed in Sections 17.2.1 and 17.2.2,
respectively.

17.2.1 Direct Methods

Direct methods solve the linear system by factoring A and performing forward and/or backward substitution. Direct
methods are most commonly applied to dense A because the cost of the repeated matrix-vector products required
of the iterative methods discussed in Section 17.2.2 is often of the same order as the factorization. In addition,
iterative methods are not always guaranteed to converge. And, although not applicable for the systems of equations in
Pronghorn, if A is a constant matrix, then direct methods permit a single factorization to be used repeatedly to solve
for x for any number of vectors b. Direct methods are typically not useful for sparse A because factorization can result
in substantial fill-in such that the factorized A can be significantly denser than the original matrix. Because the default
time discretization method is implicit, the governing equations are nonlinear, and direct methods do not perform well
for the sparse matrices that results from the FEM, direct methods are not used in MOOSE and are not discussed further
in this manual.

17.2.2 Iterative Methods

Iterative methods are well-suited for sparse A because the cost of a sparse matrix-vector product is low enough that
multiple iterations are still less expensive than direct methods. The FEM produces sparse systems, so iterative methods
are a natural choice in MOOSE. The remainder of this section presents a detailed description of some of the most
common iterative methods to provide the necessary concepts to understand the GMRES algorithm that is used in
MOOSE. All iterative methods begin from some initial guess x0 and successively update this initial guess at each
iteration:

xk+1 = xk +αk pk

= x0 +
k

∑
i=0

αi pi
(17.12)

where αk is a step length and pk the update vector. By recursion, this update is equivalent to adding k update
vectors to the initial guess x0. By definition of the error in Eq. (16.8), subtracting x∗ from both sides of Eq. (17.12)
gives an equivalent form:

ek+1 = ek +αk pk

= e0 +
k

∑
i=0

αi pi
(17.13)

By the definition of the residual in Eq. (16.3), multiplying Eq. (17.12) by −A and adding b to both sides produces
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a third equivalent form, which by recursion can also be written as successive subtractions from an initial residual.

Rk+1 = Rk−αkApk

= R0−
k

∑
i=0

αiApi
(17.14)

When iterative methods are given good beginning guesses, they can converge very rapidly. For transient simula-
tions, the starting vector is often selected as the solution from the most recently computed time step, which generally
improves convergence properties with every time step (provided the time steps are not extremely large). The differ-
ences in the iterative methods discussed in this section reduce to differences in the selection of the αk and pk. A
useful construct in the development of iterative methods for Symmetric Positive Definite (SPD) systems discussed in
Sections 17.2.2.2-17.2.2.4 is the “quadratic form” Y(x):

Y(x)≡ 1
2

xT Ax−bT x (17.15)

By comparing Eq. (17.15) to Eq. (16.34), the quadratic form is the same as the potential Y introduced earlier, but
written in vector notation. The gradient of the quadratic form with respect to x is:

∂Y(x)
∂x

=
1
2

(
xT A+Ax

)
−b

=
1
2

(
AT x+Ax

)
−b

= Ax−b (if A is symmetric)

(17.16)

Hence, if A is symmetric, the solution to the linear equation occurs where the gradient of Y(x) = 0. In other
words, for symmetric A, the solution to the equation can be equivalently found by setting Y′(x) = 0. The location(s)
at which Y′(x) = 0 depends on the properties of A, which determine the shape of Y(x). A matrix can be either definite
or indefinite, as defined in Section 18.5. If A is symmetric and definite, then the location at which Y′(x) = 0 either
corresponds to minimization of Y(x) (SPD A) or maximization of Y(x) (Symmetric Negative Definite (SND) A). If A
is indefinite, the solution is a saddle point, and Y′(x) = 0 does not correspond to a minimum or a maximum. If A is not
symmetric, then iterative methods that seek to minimize Y(x) actually find a solution to the system (AT x+Ax)/2−b=
0, which is symmetric.

In order to determine why a definite matrix corresponds to minimization or maximization of Y(x), evaluate Eq.
(17.15) at a point slightly perturbed by an error e from the true solution:

Y(x∗+ e) =
1
2
(x∗+ e)T A(x∗+ e)−bT (x∗+ e)

=
1
2

(
xT
∗ Ax∗+ eT Ae+ xT

∗ Ae+ eT Ax∗
)
−bT x∗−bT e

= Y(x∗)+
1
2

(
xT
∗ Ae+ eT Ax∗

)
+

1
2

eT Ae−bT e

(17.17)

If A is symmetric:

Y(x∗+ e) = Y(x∗)+ eT Ax∗+
1
2

eT Ae−bT e

= Y(x∗)+
1
2

eT Ae
(17.18)

If A is SPD, the second term in Eq. (17.18) is always positive, so the true solution occurs at the minimum of
Y(x). If A is SND, the second term is always negative, and the true solution occurs at the maximum of Y(x).
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A SND matrix can always be transformed to a SPD matrix by negating it, so the remainder of this section
will refer to the true solution as the minimum of Y(x), with the understanding that the nomenclature applies
for both SPD and SND matrices. From Eq. (17.18), minimizing the energy norm of the error is equivalent to
minimizing Y.

For symmetric A, the contour lines of Y are n-dimensional ellipsoids. The Steepest Descent (SD) and Conjugate
Gradient (CG) methods discussed in Sections 17.2.2.2 and 17.2.2.4 are methods that utilize information regarding the
contours of Y to iterate an initial guess to a point near where Y′(x) = 0. Other, simpler iterative methods do not utilize
information regarding contour lines of Y. Rather, these matrix splitting algorithms, discussed in Section 17.2.2.1,
convert the system in Eq. (17.2) to a split fixed-point form.

17.2.2.1 Matrix Splitting Methods

The Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) methods are classical iterative methods that are
based on splitting A into multiple matrices, at least one of which is easy to invert. A is split into diagonal, lower
triangular, and upper triangular matrices:

A = D+L+U (17.19)

The simplest example of a matrix splitting method is the Jacobi method. The Jacobi method only uses previously-
known values to update diagonal entries, so the problem becomes:

Dxk+1 = − (L+U)xk +b (17.20a)
xk+1 = Bxk + z (17.20b)

where B is given by:

B≡ D−1(L+U) (17.21)

This method is an iterative method - the solution is obtained by repeatedly applying B to an initial guess. Consider
the generic update in Eq. (17.20)b. Express the previous iterate xk as the true solution plus some error:

xk+1 = B(x∗+ ek)+ z (17.22a)
ek+1 = Bek (17.22b)

Provided the spectral radius of B is less than unity, each iteration reduces the eigenvector components of the error.
Hence, matrix-splitting methods are referred to as “smoother” methods, since with every iteration all eigenvector error
components are decreased. The large-eigenvalue components will be the slowest to converge. However, because the
matrix B has different properties than A, Jacobi is not guaranteed to converge for every A, or even for every positive-
definite A.

17.2.2.2 The Steepest Descent Method

The SD method updates each iterative guess xk by searching along the direction of SD of Y(xk) and selecting the next
guess xk+1 to lie somewhere along this SD direction [124]. By definition, the gradient corresponds to the direction
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of steepest increase of Y(x). So, the SD direction is simply the negative of the gradient given in Eq. (17.16). By the
definition of the residual in Eq. (16.3),

−∂Y(x)
∂x

= R (17.23)

The SD method selects pk = Rk. The step size along this direction is selected such that Y′(xk+1) = 0 along the line
pk (xk+1 provides the minimum of Y(xk+1) along the search direction). This gives:

∂Y(xk+1)

∂α
=

∂

∂α

[
1
2
(xk +αk pk)

T A(xk +αk pk)−bT
k (xk +αk pk)

]
=

∂

∂α

[
1
2

xT
k Axk +αk pT

k Axk +
α2

k
2

pT
k Apk−bT

k (xk +αk pk)

]
(symmetric A)

= pT
k Axk +αk pT

k Apk−bT
k pk

(17.24)

Setting the above equal to zero in order to find the minimum gives:

αk =
pT

k Rk

pT
k Apk

(17.25)

The directional derivative in Eq. (17.24) can also be written in compact, chain-rule form to provide an important
interpretation of this choice of αk:

∂Y(xk+1)

∂α
=

∂Y(xk+1)

∂xk+1

∂xk+1

∂α

= −RT
k+1 pk

= (Aek+1)
T pk

= eT
k+1Apk (symmetric A)

(17.26)

where the update in Eq. (17.12) has been used to compute ∂xk+1/∂α and the last form uses Eq. (17.11). So with
this choice of α, the residual at the next iterate is orthogonal to the previous search direction, which can equivalently
be interpreted as the next iterate’s error being A-orthogonal to the previous search direction. The SD method requires
that the error at the next iterate by A-orthogonal to the previous search direction. The fact that the updated residual
and previous search direction are orthogonal makes sense when considering the minimization process performed in
Eq. (17.24) - the minimum of Y(x) will occur at a location tangent to a contour line of Y, and the gradient is always
orthogonal to the contour lines of a field. For the SD method, where the search direction is taken equal to the residual,
this means that the next searc direction is orthogonal to the previous search direction (likewise, the next residual is
orthogonal to the previous residual).

The SD method has two important downsides - A has to be SPD and the convergence rate of the method is relatively
poor. For a SPD matrix where the condition number is given by Eq. (18.22), the convergence rate is given as:

‖ek+1‖2
A ≤

(
κ−1
κ+1

)
‖ek‖2

A

≤
(

κ−1
κ+1

)k+1

‖e0‖2
A

(17.27)
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Consider an SPD A such that A has n linearly independent eigenvectors. The error can be expressed as a linear
combination of orthonormalized (such that vT

i v j = δi j) eigenvectors:

ek =
n

∑
j=1

ξ jv j (17.28)

where ξ j is the coefficient for each term in the summation. From Eq. (17.13) with αk from Eq. (17.25) and
pk ≡ Rk:

ek+1 = ek +αk pk

= ek +
RT

k Rk

RT
k ARk

Rk

= ek +
∑

n
j=1 λ2

jξ
2
j

∑
n
j=1 λ3

jξ
2
j
Rk

(17.29)

If the initial error has only one eigenvector component, only one iteration is required to reach the exact
solution, since the eigenvectors align with the axes of the ellipsoid and the search direction passes through
the exact solution. Alternatively, if all the eigenvalues are equal, then from Eq. (17.11), Rk = −λek,
convergence is also obtained in exactly one iteration, since the contour lines are circular, and any starting
point has a residual that points directly to the center. For either of these simple cases, choosing αk = λ−1

gives convergence in one iteration. Because there will most often be multiple eigenvector components, the
fraction in Eq. (17.29) can be interpreted as a weighted value of 1/λ, where the weights ξ2

j emphasize that
the largest terms are decreased with highest priority. In any iteration, not all eigenvector error components are
guaranteed to decrease (as they are with matrix-splitting methods), so the SD and CG method discussed in
Section 17.2.2.4 are known as “rougher methods.”

Recall from Eq. (17.18) that minimization of the energy norm of the error is equivalent to minimization of Y.
By Eq. (17.13) and with pk ≡ Rk and αk from Eq. (17.25):

‖ek+1‖2
A = (ek +αkRk)

T A(ek +αkRk)

= eT
k Aek +2αkRT

k Aek +α
2
kRT

k ARk (symmetric A)

=‖ek‖2
A

1−
(
RT

k Rk
)2

(RT
k ARk)(eT

k Aek)



= ‖ek‖2
A

1−

(
∑

n
j=1 ξ2

jλ
2
j

)2

∑
n
j=1 ξ2

jλ
3
j ∑

n
j=1 ξ2

jλ j


(17.30)

For R2, the above becomes:

‖ek+1‖2
A = ‖ek‖2

A

[
1− (ξ2

1λ2
1 +ξ2

2λ2
2)

2

(ξ2
1λ3

1 +ξ2
2λ3

2)(ξ
2
1λ1 +ξ2

2λ2)

]
(17.31)

For a normal matrix, the condition number is given by Eq. (18.22). The slope of ek relative to the coordinate
system defined by the eigenvectors is µ≡ ξ2/ξ1. In terms of these definitions, the above becomes:

‖ek+1‖2
A = ‖ek‖2

A

[
1− (κ2 +µ2)2

(κ+µ2)(κ3 +µ2)

]
(17.32)

If the initial error is an eigenvector (slope is zero or infinite), or if the condition number is unity (contour
lines are circular), then the method converges in one iteration. The worst convergence is obtained for large
condition numbers and poor starting guesses, though the condition number is the more indicative of the two.
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Large condition numbers lead to very skinny ellipsoids, resulting in many back-and-forth iterations that do not
move very quickly to the solution. The worst-case convergence can be bounded by taking the partial derivative
of the parenthesis term above with respect to κ to find that the worst convergence is obtained for µ2 = κ2.
Substituting this into the above gives the convergence rate given in Eq. (17.27).

17.2.2.3 The Conjugate Directions Method

A major drawback of the SD method is obvious from Eq. (17.26) - because each search direction is only orthogonal to
the previous direction, the same directions are searched over and over again without expanding the space of the search
with each iteration. The Conjugate Directions (CD) method is based on the idea that convergence could be obtained
in n iterations, where each iteration exactly zeros one component of the error [124]. This requirement is read as:

eT
k+1 pk = 0 (17.33a)

(ek +αk pk)
T pk = 0 (17.33b)

where Eq. (17.13) is used to rewrite ek+1. Solving for αk gives:

αk =−
eT

k pk

pT
k pk

(17.34)

However, this would require that ek be known at every iteration, which is not possible. Instead, the method of CD
requires that ek+1 be A-conjugate to pk, the same requirement (and resulting formula for αk in Eq. (17.25)) as the SD
method shown in Eq. (17.26). While simply choosing pk = Rk will not necessarily lead to convergence in n iterations,
selecting A-conjugacy of the search directions will lead to exact convergence in n iterations. So for the CD method,
select:

pT
i Ap j = 0, i 6= j (17.35)

To show that Eq. (17.35) leads to exact convergence in n iterations, because mutually A-orthogonal vectors are
linearly independent, the initial error can be expressed as a linear combination of search directions with (positive)
coefficients ξ j:

e0 =
n−1

∑
j=0

ξ j p j (17.36)

where indexing begins at zero such that the indexing is consistent with the zero-indexing in Eq. (17.13). Then,
by A-conjugacy of the search directions, premultiplying both sides above by pT

k A picks out a single term from the
summation in Eq. (17.36):

pT
k Ae0 = ξk pT

k Apk (17.37)
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Solving for δk and using Eq. (17.13) (for ek instead of ek+1 as written) to rewrite e0 gives:

ξk =
pT

k Ae0

pT
k Apk

=
pT

k A
(

e0 +∑
k−1
i=0 αi pi

)
pT

k Apk
(A-conjugate pk)

=
pT

k Aek

pT
k Apk

= −αk

(17.38)

Hence, the step length αk is identical to the length of the error’s pk component - because this term is successively
subtracted from the error, the CD method is exact in n iterations. Eq. (17.13) becomes:

ek+1 = e0 +
k

∑
i=0

αk pk

=
n−1

∑
j=0

ξ j p j−
k

∑
i=0

ξk pk

=
n−1

∑
j=k+1

ξ j p j

(17.39)

So, if k = n, the CD method has converged to the exact solution. A conjugate Gram-Schmidt process is used to
generate the set of A-orthogonal search directions. Starting from a set of n linearly independent (i.e. orthogonal)
vectors ui, subtract from each of these vectors the components that are not A-orthogonal:

pi = ui−
i−1

∑
j=0

βi j p j (17.40)

The choice for βi j can be determined by multiplying both sides above by pT
l A and taking advantage of A-conjugacy

of the search directions. The CG method aims to provide a better set of orthogonal vectors such that better convergence
is obtained. From Eq. (17.13) and by A-conjugacy of the search directions giving the result in Eq. (17.38), with each
iteration, the error is minimized in the space eo +Kk, where Kk is the subspace span of the search directions:

Kk ≡ span{p0, p1, · · · , pk} (17.41)

such that ek+1 ∈ e0 +Kk. Because the error is a vector, “minimization” actually refers to minimization in the
energy norm. To show this, express the energy norm in terms of linear combinations of the search directions, where
ek+1 is given by Eq. (17.39) and A-conjugacy of the search directions is used:

‖ek+1‖A =
n−1

∑
i=k+1

n−1

∑
j=k+1

ξiξ j pT
i Ap j

=
n−1

∑
i=k+1

ξ
2
j pT

j Ap j

(17.42)

Each term in this summation represents a search direction that has not yet been traversed. Any other vector will
have at least one of these additional terms present because this vector would be linearly independent from ek+1, and
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hence ek+1 must have the minimum energy norm in the space e0 +Kk. Minimization of Y along the search direction
in a single step is shown by Eq. (17.26). At further iterations, Y is not only minimized over the single step search
direction, but over the entire space x0 +Kk! This was not the case with the SD method, which only minimizes along a
single line. Because the search directions are mutually A-orthogonal, in a circular contour space, they are orthogonal,
and hence when allowed to search on the hyperplane x0 +Kk, Y is minimized on the plane.

At each step, the hyperplane x0 +Kk is tangent to the ellipsoid on which xk+1 lies based on the choice of αk in
Eq. (17.25). Because the residual by definition is orthogonal to the ellipsoidal contour lines, Rk+1 ⊥ Kk. From Eq.
(17.41), each new search direction is mutually A-orthogonal to all previous search directions, so Rk+1 is orthogonal to
all previous search directions. From Eq. (17.11), ek+1 is A-orthogonal to all previous search directions. It can also be
shown that if Rk+1 is orthogonal to the vectors spanning Kk, that Rk+1 is orthogonal to all of the previous vectors used
to form the initial set of linearly independent vectors ui that were conjugated to form Kk.

17.2.2.4 The Conjugate Gradient Method

The CG method is simply the CD method, with ui taken to be Ri such that the search directions are determined by
conjugation of the residuals [124]. Rk+1 is orthogonal to Kk, so the residual is guaranteed to provide new, linearly
independent search direction for the next iteration. Because the search directions are built by conjugation of the
residuals, the space defined in Eq. (17.41) can be expanded to include Eq. (17.43)b, c, and d:

Kk ≡ span{p0, p1, · · · , pk} (17.43a)
= span{R0,R1, · · · ,Rk} (17.43b)

= span{p0,Ap0, · · · ,Ak−1 p0} (17.43c)

= span{R0,AR0, · · · ,Ak−1R0} (17.43d)

From Eq. (17.14), each residual is a linear combination of the previous residual and Apk. So, because pk ∈Kk,
each successive subspace is formed as the union of the previous subspace and AKk, giving Eqs. (17.43)c and (17.43)d.
A Krylov subspace is a subspace created by repeatedly applying a matrix to a vector. Kk is therefore a Kryolv space.
Because Rk+1 ⊥ Kk, and because Kk+1 ⊥ Kk, Rk+1 ⊥ Kk+1. Hence, because Kk+1 is A-orthogonal to Kk, Rk+1 is
A-orthogonal to Kk. So, the Gram-Schmidt conjugation process becomes substantially easier, since Rk+1 only needs
to be A-conjugated with Kk, since the residual is already A-conjugate to all of the previous search directions except
pk.

17.2.2.5 The Arnoldi Process and the GMRES Algorithm

The GMRES algorithm is one of the most widely used iterative algorithms that alleviates the SPD requirement of the
SD and CG methods. The GMRES algorithm solves a least-squares problem in every iteration to find the best solution
in the space x0 +Kk. To solve this least-squares problem, we require an orthonormal basis for Kk, which is denoted
as:

Qk =
[
q1 q2 · · · qk

]T
(17.44)

where each column of Qk represents an orthonormal vector of length n, and n of these vectors are required to span
Kk. The vectors in Qk can be determined in an iterative procedure via the Arnoldi process. Similar to the process
of determining the next search direction for the CG method (which we simply took to be the residual), each iteration
of the Arnoldi process requires starting from some new linearly independent vector u and orthonormalizing it to Kk
using a Gram-Schmidt procedure. A natural choice would be simply to compute the next vector in the Krylov space,
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AkR0. However, as k becomes large, the vectors in Kk become increasingly linearly dependent because formation of
the Krylov subspace in this manner is equivalent to power iteration. So, the vectors in the Krylov space are not used
directly.

The starting vector uk+1 for computing qk+1 is selected as uk+1 = Aqk. Because qk is orthonormalized against
all previous basis vectors in Qk, this new direction does not tend to be aligned with an eigenvector. In addition, with
this choice, the Arnoldi process can be interpreted as building up a factorization of A (which is needed to solve the
least-squares problem). For each iteration, uk+1 is orthogonalized via a Gram-Schmidt procedure against all previous
vectors in Qk; after orthogonalization, uk+1 is normalized to a unit vector. For each iteration, the Arnoldi process adds
one vector, qk+1 to Qk by the following procedure:

uk+1 =Aqk

uk+1 =uk+1−qT
i uk+1︸ ︷︷ ︸

hik

qi, for i < k+1 (orthogonalization) (17.45)

qk+1 = uk+1/‖uk+1‖︸ ︷︷ ︸
hk+1,k

(normalization) (17.46)

From the definitions of hik and hk+1,k in the algorithm above, we can define a matrix of these values of size k+1×k:

H̃k =


h11 h12 h13 · · · h1k
‖u2‖ h22 h23 · · · h2k

0 ‖u3‖ h33 · · · h3k

0 0 ‖u4‖
. . . h4k

0 0 0 · · · ‖uk+1‖

 (17.47)

Truncating this matrix to size k×k by eliminating the last row defines the upper Hessenberg matrix Hk. In iteration
k, the newly-computed, orthonormalized vector is:

uk+1 = Aqk−h1kq1−h2kq2−·· ·−hkkqk (17.48)

Repeating this pattern for ui, i < k+1 shows that:

AQk =QkHk +uk+1eT
k

=Qk+1H̃k
(17.49)

where ek =
[
0 0 · · · 1

]T
. If the Arnoldi process is performed for k = n iterations, then in the n-th iteration,

we will find that Aqn lies in Kn because the basis Qn is already all of Rn. So, subtracting out all components that are
A-orthogonal results in qn+1 = 0, so there is no hn+1,n ≡ ‖un+1‖ or qn+1 values. So, after performing n iterations in
the Arnoldi process, Eq. (17.49) becomes:

AQ = QH (17.50a)

A = QHQT (17.50b)

Eq. (17.50) shows that complete application (n iterations) of the Arnoldi process reduces A to upper-Hessenberg
form by a similarity transformation. The objective of the Arnoldi process, however, is not to perform n iterations.
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Instead, after some smaller number of iterations, we want to compute the next iterate xk+1 from the space x0 +Kk by
minimizing the L2 norm of the residual over x0 +Kk. Because the vectors in Qk form a basis for Kk, we can instead
specify that xk+1 be in:

xk+1 = x0 +Qkyk (17.51)

for some vector yk ∈ Rk. The residual is:

Rk+1 = b−A(x0 +Qkyk)

= R0−AQkyk

= R0−Qk+1H̃kyk

(17.52)

where Eq. (17.49) is used. Because the first column in Qk+1 is simply the starting point of the Arnoldi process,
R0/‖R0‖, the residual can be expressed as:

R0 = Qk+1η (17.53)

where η =
[
‖R0‖2 0 · · · 0

]T
. So, Rk+1 becomes:

Rk+1 = Qk+1(η− H̃kyk) (17.54a)

‖Rk+1‖2 = ‖η− H̃kyk‖2 (17.54b)

where the norm of both sides is taken, using QT
k+1Qk+1 = I. So, in each iteration of GMRES, the next iterate

solution is obtained by minimization of the L2 norm of the residual by solving a least squares problem for yk, and then
using Eq. (17.51) to solve for the next iterate xk+1:

min
yk∈Rk

‖η− H̃kyk‖ (17.55)

Note that the GMRES algorithm does not perform a least squares minimization over the entire space Kk, but over
the smaller space built up by the Arnoldi process of solving a least squares problem over k basis vectors for Kk.

17.3 The Jacobian-Free Newton-Krylov Method

MOOSE combines an outer Newton iteration to solve for the solution u with an inner Krylov subspace method to
solve for the linear approximation x. This combination is referred to as a “Newton-Krylov” method, though this name
is often used in the literature to imply one extra caveat - that the Jacobian is never explicitly formed. J(ui)δi in Eq.
(17.4) simply represents the directional derivative of

#»
R(ui) in the direction of the vector δi. While the Jacobian holds

directional derivative information for all directions, the goal of iterative methods is to perform searches in a small
number of directions such that the directional derivative information is only needed for a few of these directions such
that formation of the Jacobian is not needed. “Newton-Krylov” methods, or JFNK methods, approximate the action of
the Jacobian on the vector δi using a first-order accurate FD derivative:

J(ui)≈
#»
R(ui + εδi)−

#»
R(ui)

ε
(17.56)
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where ε is a small number, typically chosen as ε =
√

εmach, where εmach is the machine precision, to balance
accuracy of the FD approximation with potential overflow from division by a small number. Eq. (17.56) means
that the user never needs to supply a Jacobian for the kernels in MOOSE - the Jacobians are provided solely for
preconditioning purposes. Due to the importance of preconditioning, however, Jacobians should always be provided
when possible.

17.4 Time Stepping

The MOOSE framework, like virtually all FE codes, uses separable space-time shape functions. Space-time elements,
where ψ=ψ( #»r , t), are typically reserved for research codes and are an uncommon approach to transient finite element
analysis because time steps in the future can impact time steps in the past (which has no physical basis), there is a big
increase in the number of unknowns, and the majority of codes use the Method of Lines (MOL) time discretization,
which would be difficult to adapt. With separable space-time shape functions, the shape functions are only functions
of space, while the expansion coefficients are time-dependent. At discrete points in time, the nonlinear system of
equations is solved, and the solution is then advanced in time using a time integration method.

MOOSE uses the MOL time discretization method, where the solution is marched forward in time with any of
a wide variety of Ordinary Differential Equation (ODE) solvers. To illustrate the MOL method, consider the use of
the Backward Euler (BE) method, the default time discretization method in MOOSE, for a time-dependent diffusion
equation:

du
dt
− k

d2u
dx2 = 0 (17.57)

The weak form is derived by multiplying through by a weight function and integrating the diffusive term by parts
giving a matrix system Mi jĊ j +Ki jC j = 0, where:

Mi j =
∫

Ω

φiφ jdx (17.58a)

Ki j =
∫

Ω

dφi

dx
k

dφ j

dx
dx (17.58b)

and C j are the expansion coefficients of the solution and Neumann BCs have been assumed for simplicity. In
matrix form, the discrete equation is:

Mȧ+Ka = 0 (17.59)

For the BE time discretization method, the MOL becomes:

Mi j
C j,n+1−C j,n

∆t
+Ki jC j,n+1 = 0 (17.60)

The solution at each successive time step is obtained by solving for C j,n+1 in terms of C j,n. For implicit methods
such as the BE method, an iterative method such as a Newton method is required to solve at each time step.

Time stepping to reach a steady-state solution is often performed due to the enhanced stability of the transient
equation. Generally, time-independent fluid equations have different mathematical character (hyperbolic, parabolic,
elliptic) depending on the Mach number [22] (chapter 3). However, the same equations, in transient form, have the
same mathematical character regardless of dimensionless numbers, which permits better selection of a numerical
method to solve for all flow regimes. If difficulty related to stability of steady-state problems is encountered, try time
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stepping to the steady-state solution. For these cases, it is preferable to only approximately solve the system at each
time step because time accuracy is not required - a similar idea is used in coupled Monte Carlo-CFD simulations
[63, 125].
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18 Mathematical Definitions and Concepts

This section discusses some mathematical definitions and concepts that appear throughout this manual.

18.1 The Material Derivative

A material derivative represents a total derivative of a quantity from the Eulerian perspective, and hence accounts for
both local changes (∂(.)/∂t) and changes that occur as the fluid particle moves about (

#»
V ·∇(.)). The material derivative

is defined as:

d(.)
dt
≡ ∂(.)

∂t︸︷︷︸
local derivative

+
#»
V ·∇(.)︸ ︷︷ ︸

convective derivative

(18.1)

The convective derivative portion is equivalent to the component of the gradient of (.) along the streamline (parallel
to

#»
V ).

18.2 Norms

A vector norm is a measure of the “size” of a vector. The p-norm, also known as Lp norm, of a vector #»x of n entries
is defined as:

‖ #»x ‖p ≡

(
n

∑
i=1
|xi|p

)1/p

(18.2)

Other norms are used throughout this manual, and are introduced where appropriate.

18.3 Suffix Notation

Suffix notation, sometimes referred to as “Einsteinien” notation, is commonly used in mechanics fields to shorten
summation notation. Suffix notation obeys the following rules:

1. A single appearance of a suffix in a term does not get summed.

2. Two appearances of a suffix in a term indicates summation (usually up to 3, the typical number of spatial
dimensions used).

3. No more that two appearances of the same suffix can appear in a single term.

For example, a dot product between a vector #»a and
#»

b is represented in suffix notation as:

#»a · #»

b ≡
3

∑
i=1

aibi

=aibi

(18.3)
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A cross product can be represented in suffix notation as:

( #»a × #»

b )i = εi jka jbk (18.4)

where εi jk is the permutation, defined as:

εi jk =


+1 cyclic permutation of 1,2,3
−1 anti-cyclic permutation of 1,2,3
0 otherwise

(18.5)

Another useful term that appears when using suffix notation is the Kronecker delta, defined as:

δi j =

{
+1 i = j
0 i 6= j

(18.6)

18.4 Vectors and Tensors

A vector is an ordered triplet (for 3-D) of numbers, together with a rule defining how the vector transforms under a
change of coordinate axes. This rule can be easily obtained by considering two different sets of axes, each composed
of three mutually orthogonal axes. Denoting one of these axes with primes and the other without, a vector can be
expressed equivalently in either frame:

#»r = xk
#»ek = xk′

# »ek′ (18.7)

Dotting this expression with either #»ei′ or #»ei :

xi′ =
#»ek · #»ei′xk = aikxk (18.8a)

xi =
# »ek′ · #»ei xk′ = akixk′ (18.8b)

where aik is the transformation rule. As long as a matrix satisfies the transformation rule in Eq. (18.8), the matrix
is a vector. Because the transformation matrices are independent of time, they can be differentiated with respect to
time (or multiplied by constants) to show that physical quantities such as velocities and forces are also vectors, so long
as position is a vector.

Tensors t are defined in a similar manner. A tensor is essentially a matrix that transforms one vector to another
vector with the following transformation rule, where a is defined as in Eq. (18.8). Tensors therefore transform vectors
into new vector spaces.

tik′ = ai jaklt jl (18.9)

A symmetric tensor Si j satisfies the relation Si j = S ji, while an antisymmetric tensor Ai j satisfies the relation
Ai j =−A ji. The product of a symmetric tensor with an asymmetric tensor must equal zero:

Si jAi j→ S jiAi j→−S jiA ji→−Si jAi j (18.10)

where the dummy indices were swapped on the last term.
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18.5 Essential Linear Algebra

A matrix is indefinite if:

#»x T A #»x = 0 (18.11)

for some nonzero vector #»x . Contrarily, a matrix is definite if:

#»x T A #»x 6= 0 (18.12)

A definite matrix can be either positive or negative. A matrix is positive-definite if:

#»x T A #»x > 0 (18.13)

Similarly, a matrix is negative-definite if:

#»x T A #»x < 0 (18.14)

A singular matrix does not have a unique solution, and the set of solutions is a line or hyperplane, rather than a
point in Rn. A singular matrix has a zero determinant.

The eigenvectors of A are nonzero vectors #»v that do not rotate(but may change magnitude) when A is applied to
them. This definition is represented in equation form as:

A #»v = λ
#»v (18.15)

where λ is the eigenvalue corresponding to the eigenvector #»v . The eigenvalue represents the scaling of #»v when A
is applied to it. The eigenvalues do not need to be unique. Each eigenvector can be scaled by an arbitrary constant β,
and still have the same eigenvalue:

A(β #»v ) = βA #»v = βλ
#»v (18.16)

Repeated application of A to an eigenvector will cause the resultant vector either to grow to infinity or diminish to
zero depending on the magnitude of the eigenvalue:

Ai #»v = λ
i #»v (18.17)

If A is symmetric, then there exist n linearly independent eigenvectors. A set of n linearly independent vectors
defines a basis in Rn, so any vector in Rn can therefore be written as a linear combination of the eigenvectors. So,
applying A to an arbitrary vector

#»
f is equivalent to applying A to a linear combination of eigenvectors:

Ai #»
f =

n

∑
j=1

C jλ
i
j

#»v j (18.18)

where C j are the coefficients in the linear sum defining
#»
f . Repeated application of A will stretch

#»
f in the direction

of the eigenvector with the largest eigenvalue. If all of the eigenvalues of A have magnitude less than unity, then the
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above result diminishes to zero as i→ ∞. Otherwise, the components with |λ j| > 1 will diverge. The spectral radius
ρ(A) is a useful measure of the eigenvalues:

ρ(A)≡max
j
|λ j| (18.19)

The eigenvalues of a positive definite matrix are all positive, while the eigenvalues of a negative definite matrix are
all negative:

A #»v =λ
#»v

#»v T A #»v =λ
#»v T #»v

(18.20)

Because eigenvectors are non-zero vectors, λI−A must be singular:

A #»v = λI #»v

(A− Iλ) #»v = 0
(18.21)

The condition number κ of a matrix is a measure of how sensitive the output of the matrix is to a perturbation in its
input. For SPD matrices, the condition number is related to the ratio between the maximum and minimum eigenvalues:

κ≡ λmax

λmin
(18.22)
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19 Appendix

19.1 Ideal Gas SUPG

This section presents the matrices involved in the SUPG stabilization when the ideal gas law is used to close the
system.

19.1.1 1-D

A1 =


0 1 0

γ−1
2 ‖

#»
V ‖2

2−V 2
1 (3− γ)V1 γ−1

V1

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V 2
1 +H V1γ

 (19.1)

K11 =
k f

ρCv

 0 0 0
0 0 0

‖ #»
V ‖2

2−E −V1 1

 (19.2)

19.1.2 2-D

A1 =


0 1 0 0

γ−1
2 ‖

#»
V ‖2

2−V 2
1 (3− γ)V1 (1− γ)V2 γ−1

−V2V1 V2 V1 0

V1

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V 2
1 +H (1− γ)V1V2 V1γ

 (19.3a)

A2 =


0 0 1 0

−V1V2 V2 V1 0
γ−1

2 ‖
#»
V ‖2

2−V 2
2 (1− γ)V1 (3− γ)V2 γ−1

V2

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V1V2 (1− γ)V 2
2 +H V2γ

 (19.3b)

K11 = K22 =
k f

ρCv


0 0 0 0
0 0 0 0
0 0 0 0

‖ #»
V ‖2

2−E −V1 −V2 1

 (19.4)
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19.1.3 3-D

A1 =


0 1 0 0 0

γ−1
2 ‖

#»
V ‖2

2−V 2
1 (3− γ)V1 (1− γ)V2 (1− γ)V3 γ−1

−V2V1 V2 V1 0 0
−V3V1 V3 0 V1 0

V1

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V 2
1 +H (1− γ)V1V2 (1− γ)V1V3 V1γ

 (19.5a)

A2 =


0 0 1 0 0

−V1V2 V2 V1 0 0
γ−1

2 ‖
#»
V ‖2

2−V 2
2 (1− γ)V1 (3− γ)V2 (1− γ)V3 γ−1

−V3V2 0 V3 V2 0

V2

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V1V2 (1− γ)V 2
2 +H (1− γ)V2V3 V2γ

 (19.5b)

A3 =


0 0 0 1 0

−V1V3 V3 0 V1 0
−V2V3 0 V3 V2 0

γ−1
2 ‖

#»
V ‖2

2−V 2
3 (1− γ)V1 (1− γ)V2 (3− γ)V3 γ−1

V3

(
γ−1

2 ‖
#»
V ‖2

2−H
)

(1− γ)V1V3 (1− γ)V2V3 (1− γ)V 2
3 +H V3γ

 (19.5c)

K11 = K22 = K33 =
k f

ρCv


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

‖ #»
V ‖2

2−E −V1 −V2 −V3 1

 (19.6)
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20 Notation

All notation used in this manual is defined in this section, along with the equation numbers in which the symbol is
defined. No equations are listed for symbols that do not have a mathematical definition. As with any large document,
full consistency between notation in different sections cannot always be obtained, so contextual clues should be used
to differentiate between identical symbols with different interpretations. When a notation choice can be limited to a
certain section of the manual, this is indicated.

Units are provided for all quantities. Units of “1” signifies a dimensionless quantity, while ./ indicates that the
quantity may have many different units (such as a solution vector). Vector units are indicated with an overarrow, while
matrix or tensor units are indicated by square brackets. Consistent notation for vectors and matrices is not always used
- the symbol in the units column shows the underlying dimensionality of the quantity.

20.1 Greek Symbols

α Fluid-to-solid within-bed convective coefficient, or W/m Eq. (2.203)
Linear update step size (Section 17 only) 1 —

αpg Petrov-Galerkin scaling parameter 1 —
αT Compressibility Pa Eq. (2.238)
αw Within-bed fluid-to-wall convective coefficient W/m —
β Expansivity 1/K Eq. (2.183)
χ Switching method parameter 1 —
δ Diffusivity, or m2/s —

A differential change independent of end states 1 —
δi Newton update for iteration i #»./ Eq. (17.6)
δi j Kronecker delta 1 Eq. (18.6)
δ̃i j 1−δi j 1 —
#»

δr Incremental distance vector #»m —
ε Fluid porosity 1 Eq. (2.15)
εpipe Pipe roughness m —
εr,s Phase s emissivity 1 —
ε∞ Porosity infinitely far from a bounding wall 1 —
εi jk Permutation 1 Eq. (18.5)
εmach Machine precision 1 —
γ Specific heat ratio 1 Eq. (7.11)
Γ Boundary ./ —
κ Effective thermal conductivity W/m·K —
κ Condition number 1 —
κ f ,A Axial component of κ f tensor W/m·K Eq. (12.3)
κ f ,R Radial component of κ f tensor W/m·K Eq. (12.3)
κfluid conduction Solid-to-fluid-to-solid conduction component of κs W/m·K —
κradiation Solid-to-solid radiation component of κs W/m·K —
κsolid conduction Solid-to-solid contact conduction component of κs W/m·K —
λ Solid-to-fluid thermal conductivity ratio, or 1 Eq. (11.1)

Newtonian fluid constitutive term, or Pa · s Eq. (2.85)
Eigenvalue ./ —

λm f p Momentum exchange mean free path m —
λ̃m f p Modified mean free path m —
Λ Normalized radiation thermal conductivity 1 Eq. (11.12)
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µ Dynamic viscosity Pa·s —
µ̃ Effective porous media viscosity Pa·s —
η Fuel-to-graphite-matrix heat transfer coefficient W/m2K —
ν Specific volume, or m3/kg —

Poisson ratio 1 —
ω Vorticity

#   »

1/s Eq. (2.73)
Ω Domain ./ —
ρ Density kg/m3 —
ρ f Intrinsic fluid density kg/m3 —
ϖ Fluid constant in stiffened gas EOS 1 —
φ Shape function 1 —
φg, f Gravitational potential 1/s2 Eq. (2.115)
Φ Generic field, or ./ —
ϕ Contact area fraction, deformation ratio 1 —
ψ Weight function 1 —
ψ∗ Element-discontinuous weight function 1 —
ψ̃ Petrov-Galerkin shape function 1 Eq. (15.16)
Ψ KTA correlation parameter 1 Eq. (9.5)
σ Stefann-Boltzmann constant W/m4·K —

σi j Stress tensor
[
N/m2

]
Eq. (2.52)

ς GLS linear combination parameter 1 —

τ Deviatoric stress tensor
[
N/m2

]
Eq. (2.92)

τadv Advection-dominated component of τSUPG s —
τadv,com Advection-dominated compressible component of τSUPG s —
τadv,inc Advection-dominated incompressible component of τSUPG s —
τc Continuity equation τSUPG component s Eq. (15.50)
τcd Convection-diffusion stabilization parameter s —
τdi f f Diffusion-dominated component of τSUPG s —
τe Energy equation τSUPG component s Eq. (15.50)
τSUPG SUPG stabilization parameter matrix [s] —
τSUPG,comp τSUPG for compressible flows [s] —
τSUPG,inc τSUPG for incompressible flows [s] —
τtemporal Transient-dominated component of τSUPG s —
τui i-th momentum equation τSUPG component s Eq. (15.50)
θ angle 1 —

ξi j Antisymmetric stress tensor
[
N/m2

]
Eq. (2.68)

#»

ξ Position vector in master finite element #»m —
ζ Bulk viscosity Pa·s Eq. (2.93)
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20.2 English Symbols

a κs correlation parameter 1 Eq. (11.8)
ai j Tensor transformation matrix [1] Eq. (18.8)
aw Wetted convective heat transfer length m Eq. (2.204)
A Generic operator ./ —
Ac Churchill correlation parameter 1 Eq. (9.11)
Aw Eisfeld correlation parameter 1 Eq. (9.8)
A Generic matrix [./] —
Ai i-th inviscid flux Jacobian matrix [./] Eq. (2.226)
Ãi i-th chain rule inviscid flux Jacobian matrix [./] Eq. (2.236)

A Second-order viscous stress approximation tensor
[
1/m2

]
Eq. (2.120)

b Linear RHS vector #»./ —
#»

b Body force vector, i.e. #»g if only gravitational
#       »

m/s2 —
B Geometric shape factor, or 1 Eq. (11.7)

Bilinear functional (Section 16 only) ./ —
#»
B Boundary flux vector #»./ —
B Jacobi application matrix [./] Eq. (17.21)
Bc Churchill correlation parameter 1 Eq. (9.12)
Bw Eisfeld correlation parameter 1 Eq. (9.9)

B Third-order viscous stress approximation tensor
[
s/m3

]
Eq. (2.120)

Br Brinkman number 1 Eq. (2.298)
c Speed of sound m/s Eq. (2.269)
ci jkl Newtonian fluid proportionality tensor [Pa · s] Eq. (2.85)
C Vector of numerical solution expansion coefficients #»./ Eq. (16.1)
Cp Isobaric specific heat J/kg Eq. (2.176)
Cv Isochoric specific heat J/kg Eq. (2.177)
C Third-order fluctuating velocity approximation tensor m/s Eq. (2.121)
dbed Cylindrical bed diameter m —
dc Radius of pebble-pebble contact area m —
dp Pebble diameter m —
D Hydraulic diameter m Eq. (2.288)
D Generic diagonal matrix [./] —

D Darcy prefactor tensor
[
s/m2

]
Eq. (2.146)

D Fluid energy equation diffusivity m2/s Eq. (12.4)
DA Axial fluid energy equation diffusivity m2/s Eq. (12.5)
DR Radial fluid energy equation diffusivity m2/s Eq. (12.5)
e Internal energy per unit mass, or J/kg —

Error (Sections 16 and 17 only) #»./ Eq. (16.8)
ei j Symmetric stress tensor N/m2 Eq. (2.67)
#»e i Mutually orthogonal basis vectors, i = 1,2,3

#»
1 —

E Total energy per unit mass, or J/kg Eq. (2.154)
Young’s modulus Pa —

E Second-order pressure approximation tensor [1] Eq. (2.122)
Ec Eckert number 1 Eq. (2.297)
f Phase function, or 1 Eq. (2.10)

Thermal dispersion correction factor, or 1 —
Force vector #»./ —

#»
f Stress vector

#         »

N/m2 Eq. (2.52)
fs Surface tension force N —
F Collinear force N —
#»
F Inviscid flux vector #»./ Eq. (2.224)
F Forchheimer prefactor tensor [1] Eq. (2.148)
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#»g Gravitational acceleration vector
#       »

m/s2 —
G Gibbs function J/kg Eq. (2.179)
#»
G Diffusive flux vector #»./ Eq. (2.224)
h Enthalpy per unit mass J/kg Eq. (2.159)
hc Convective heat transfer coefficient W/m2 —
he Finite element size m —
hi j Arnoldi process matrix [./] Eqs. (17.45) and (17.46)
H Total enthalpy per unit mass J/kg Eq. (2.160)
H(Ω) Hilbert-Sobolev space {1} —
H Upper Hessenberg matrix of hi j entries [./] —
H̃ Matrix of hi j entries [./] Eq. (17.47)
i Nonlinear loop iteration index 1 —
I identity matrix [1] —
J Jacobian matrix of the Newton solve [./] Eq. (17.5)
J Jacobian matrix of physical-to-master transformation [1] Eq. (16.17)
k Thermal conductivity, or W/m·K —

Linear loop iteration index (Section 17 only) 1 —
k̃ Isotropic diffusion stabilization thermal conductivity W/m·K —
kd Thermal dispersion thermal conductivity W/m·K —
Ki j Stiffness matrix [./] Eq. (17.58)b
Ki j Diffusive flux Jacobian matrix [./] Eq. (2.227)
K̃i j Diffusive flux chain rule Jacobian matrix [./] Eq. (2.234)
KT Isothermal bulk modulus Pa Eq. (2.188)

K Permeability tensor
[
1/m2

]
Eq. (2.129)

KD Normalized gas diffusion thermal conductivity 1 Eq. (11.5)
Kk Krylov space of dimension k (Section 17 only) {./} Eq. (17.41)
KSF Normalized radiation-conduction thermal conductivity 1 Eq. (11.6)
KR Normalized radiation thermal conductvitiy 1 —
Kn Knudsen number 1 Eq. (2.1)
l Pore flow length scale m —
L Engineering flow length scale, or m —

Linear functional (Section 16 only) ./ —
L Generic lower triangular matrix [./] —
L Fourth-order fluctuating velocity approximation tensor [1] Eq. (2.121)
M Chain rule differentiation matrix [./] Eq. (2.233)
Mi j Mass matrix [./] Eq. (17.58)a
M Third-order pressure approximation tensor

[
m/Pa

]
Eq. (2.122)

Ma Mach number 1 Eq. (2.296)
nel Number of elements 1 —
nen Number of nodes per element 1 —
ns Number of spatial dimensions 1 —
nqp Number of quadrature points 1 —
N Number of shape functions per numerical variable 1 —
Nc Coordination number 1 —
NA Number of spheres per unit area 1/m2 Table 17
NL Number of spheres per unit length 1/m Table 17
N Polynomial order 1 —
Nu Nusselt number 1 Eq. (2.290)a
Nuh Nusselt number 1 Eq. (2.290)b
Nulam Gnielinski correlation parameter 1 Eq. (10.6)
Nuturb Gnielinski correlation parameter 1 Eq. (10.7)
#»n Unit outward normal vector #»m —
O Of order 1 —
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p Linear update vector #»./ —
P Thermodynamic pressure Pa —
P
′

Reduced pressure Pa Eq. (2.102)
Pd Hydrodynamic pressure Pa Eq. (2.192)
P∞ Fluid constant in stiffened gas EOS Pa —
P Generic normal tensor [./] —
Pe Peclet number 1 Eq. (2.295)
Peel Element Peclet number 1 Eq. (15.3)
PeA Peclet number based on axial component of κ f 1 –
PeA,∞ PeA in an unconfined bed 1 —
PeR Peclet number based on radial component of κ f 1 –
PeR,∞ PeR in an unconfined bed 1 —
Pr Prandtl number 1 Eq. (2.294)
q Volumetric heat source W/m3 —
#»q Heat flux vector, or

#          »

W/m2 —
Columns of Q (Section 17 only) #»./ Eq. (17.44)

q̄ Known heat flux W/m2 —
qB Binding energy of fluid in stiffened gas EOS J/kg —
Qk Orthonormal basis for Kk [./] Eq. (17.44)
r Radial coordinate m —
rth Thermal resistance K/W —
R Universal gas constant, or J/kg·K Eq. (7.10)

Scalar residual ./ Eq. (16.3)
Rbed Bed diameter m —
Rp Pebble diameter m —
#»
R Strong residual vector #»./ Eq. (2.225)
#»
R u Vector of momentum equation strong residuals

#                  »

kg/m2 · s2 —
Rn Space of real numbers of dimension n 1 —
Re Reynolds number 1 Eq. (2.287)a
Reb Reynolds number 1 Eq. (2.287)d
Reh Reynolds number 1 Eq. (2.287)b
Rei Reynolds number 1 Eq. (2.287)c
Rek Reynolds number 1 Eq. (2.287)e
s Arc length, or m —

Entropy J/K —
S Surface m2 —
#»
S Source term vector #»./ Eq. (2.224)
Se Non-interface portion of a surface m2 —
Si Phase-interface potion of a surface m2 —
SF Component of collinear force that is aligned with gravity 1 Table 17
SR Geometrical factor in Chan and Tien correlation 1 —
t Time s —
ti j Generic tensor [./] Eq. (18.9)
∆t Time step size s —
T Temperature K —
u True solution, or ./ —

Numerical solution (Section 17 only) #»./ —
uN Numerical solution over the entire domain #»./ Eq. (16.1)
#»
U Vector of conserved quantities #»./ Eq. (2.224)
U An upper triangular matrix [./] —
V– Volume m3 —
#»v Extrinsic, superficial, or Darcy velocity, or

#    »

m/s —
Eigenvector #»./ Eq. (18.15)

#»
V Intrinsic phase velocity

#    »

m/s —
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#»
V
′

Relative velocity of fluid with respect to interface
#    »

m/s Eq. (2.248)
V Velocity of material interface

#    »

m/s Eq. (2.251)
w Quadrature weight 1 —
#»w Velocity of the phase interface m/s —
W Porous media friction coefficient 1/s Eq. (2.152)
#»
W Vector of weight functions

#»
1 —

x Linear solution vector #»./ —
#»x Position vector #»m —
x∗ True linear solution vector #»./ —
X Physical coordinate m —
Y Finite element potential function ./ Eq. (16.34), Eq. (17.15)
z Height m —
Z Nondimensional distance 1 Eq. (8.2)

20.3 Math Symbols

Some of the math symbols are described using dummy variables x and y for clarity.

dx/dt Material derivative of x Eq. (18.1)
⊗ Outer product —
∂x/∂y Partial derivative of x with respect to y —
Tr(x) Trace of x
‖ Parallel to —
� Placeholder variable —
〈x〉 Spatial average of x —
〈xk〉 Spatial phase (extrinsic) average of x Eq. (2.11)
〈xk〉k Spatial phase (intrinsic) average of x Eq. (2.12)
(x,ψ) Volume inner product Eq. (2.300)a
〈x,ψ〉 Boundary inner product Eq. (2.300)b
‖x‖i Li norm of x Eq. (18.2)
‖x‖E(Ω) Energy norm of x Eq. (16.25)
‖x‖H l(Ω) Hilbert-space norm of x Eq. (16.14)
|x| Absolute value of x (if x is a scalar), or —

Determinant of x (if x is a matrix) —

20.4 Subscripts

e Pertaining to a finite element
f Fluid
h Pertaining to a finite element (of size he)
k Generic phase k
max Maximum
min Minimum
o Reference value
p Pebble
s Solid
stag Stagnation value
x,y,z x,y,z components of Cartesian space
0 An initial value
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20.5 Superscripts and Overbars

Some of the overbars are described using a dummy variable x for clarity.

x̄ Area average of x
x̂ Spatial fluctuating component of x
+ nondimensional quantity
∗ Hermitian complex conjugate
T transpose
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