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1 Introduction

This manual is intended to provide a thorough description of the governing equations, the relations used for material,
heat transfer, and fluid flow parameters, and the numerical method utilized in Pronghorn. Detailed derivations of the
governing equations are given, beginning from first principles in order to be as explicit as possible about assumptions
made along the way [[1]]. Additional explanatory or tangential information that is not required for detailed under-
standing of the governing equations used in Pronghorn is shown in gray boxes in the text. The convention used in
this document is to represent all class names (or file names) in typewriter font. An extensive verification process
is completed for each class; details of this verification process can be found in doc/verification. Pronghorn is
under a continual validation process to expand the range of code applicability; details of this validation process can
be found in the doc/papers directories. The most up-to-date theory manual can be found in doc/manual. Any er-
rors in this manual should be reported to the Pronghorn development team by email (any of novak@berkeley.edu,
ling.zou@inl.gov, or jw.peterson@inl.gov if outside the[[daho National Laboratory (INL)|organization).

Knowledge of the assumptions made in the governing equations is crucial to the correct use of any code. The table
below collects the most important of these assumptions to serve as a concise reference for categories of simulations
for which Pronghorn may give erroneous results. Other assumptions that are standard in the computational fluids
community are detailed in the text, but are not included in the table below because they constitute assumptions made
in virtually all choices of fluids simulation tools.

Table 1: Summary of major assumptions made in the governing equations in Pronghorn. The section where each
assumption is discussed is also given for reference.

Assumptions made Do not use Pronghorn if modeling: Section
Continuum approximation is valid Kn<1 2.1
No isolated voids Non-connected voids of fluid 2.2.1
Single-phase flow Multi-phase flow 2.2.2
All fluxes are differentiable Shock waves or discontinuities R3
The only body force is gravity Electromagnetic fluids 2.4
Fluid is Newtonian Certain oils or fluids with internal structure 2.4
Zero viscous dissipation Strong shock waves 2.4
Fluid is pure Chemically-reacting flows 2.5
Local thermodynamic equilibrium Strong shock waves 2.5
Negligible viscous stress in fluid Highly viscous fluid, Re < 1 2.4012.10
Negligible viscous heating of fluid Large deformations in the fluid, Br/Pe > 1 2.50[2.10
Solid velocity is zero Moving solid phase 2.5/12.10
Porosity independent of time Moving solid phase 2.11
Beds of spherical particles Beds of non-spherical particles or broken pebbles 2118
No internal bed structure Beds with inserted control rods 3
Bed to pebble diameter ratio greater than 10  Narrow beds or large particles 8L 19

This document is organized as follows. In Section [2} the governing equations used in Pronghorn are derived and
discussed. These equations rely on closure relationships that are discussed in Sections[7{14] Methods used to stabilize
the governing equations are discussed in Section [I5] The numerical method used is discussed in Sections [I6and
Finally, important mathematical definitions and notation are given in Sections[I8]and 20
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2 Physical Models

A porous media consists of a solid matrix with interconnected voids filled with gas and/or liquid. On a spatial scale
on the order of the pore size, the flow characteristics are highly irregular. On the engineering scale, flow properties
are regular and predictable. Porous media models use averaging processes to relate pore features to engineering-scale
phenomena such as pressure drop and average temperature rise. This averaging can be performed in either a spatial
manner, in which case quantities are averaged over a physical volume to give a representative value, or in a statistical
manner such as the ensemble-averaging process commonly used to describe turbulent flows. The spatial averaging
technique is used in Pronghorn because it removes the need to average repeated simulation results and is simpler to
implement. The development of porous media models is primarily motivated by three considerations:

1. The computational cost of modeling the complex solid-fluid structure is prohibitive even for regularly-spaced
voids due to the high number of mesh elements required. For a non-porous simulation, not only is the solid-fluid
structure complex, but resolution of boundary layers is needed. Fig. [T|shows an example of such a finely-refined
mesh required for a [Computational Fluid Dynamics (CFD)| simulation of a subsection of a
Cubic (BCC)|lattice. For a steady-state @' simulation of eight fuel pebbles, roughly 2 x 10° elements and
about 40 [Central Processing Unit (CPU)| minutes of runtime are required. To model the same volume with a
porous media model requires only 20% of the mesh elements and only about 0.5 [CPU] minutes due to simpler
models [2]. Extrapolating these numbers to a full core containing 470,000 fuel pebbles [3], a full-core [CFD|
simulation would take 39,000 hours, while a full-core porous media simulation would only require 490
hours. Porous media simulations require only about 1% or less of the runtime of a comparable
simulation. Even compared to subchannel codes, porous media codes are still less expensive [4]].

2. Mesh generation for touching solid bodies is difficult, since the meshes at pebble contact points must be made
to share nodes, which often results in highly distorted meshes that can impact convergence [5]]. The “near miss”
method, where the pebble diameter is set to 99.5% of its actual value to avoid the difficulty of mesh contact,
is often used to avoid this issue [5H10]; this method is shown in Fig. m For a porous media simulation, the
mesh can be a simple structured mesh, such as the GeneratedMesh feature in|the Multiphysics Object-Oriented|
[Simulation Environment (MOOSE)|

3. Even if computational cost were not an issue, the precise knowledge of the physical geometry of the structure
likely cannot be known, and some type of averaging process has to be performed anyways, or else effort spent
on making a guess for the solid geometry and running repeated calculations to determine sensitivity of results
to assumed pebble distribution.

Figure 1: Computational mesh for fluid flow analysis of a subsection of a@lattice [[7].
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With porous media models, all quantities, such as velocities, densities, and temperatures, are volume-averaged,
which eliminates the need to explicitly mesh the solid (and, technically, the fluid). Without a porous media model,
roughly 10! elements would be needed for the core. In addition, [High Temperature Gas Reactor (HTGR)| cores are
often surrounded by large graphite reflectors that are not fully solid, but contain channels for core bypass flows that
further extend the size of the mesh. Porous media models have a huge advantage in terms of mesh simplicity, which
directly translates to a runtime reduction. An example of the difference between a porous and a non-porous mesh is
shown in Fig.

(a) Non-porous media model (b) Porous media model

Figure 2: Difference between a mesh needed for (a) generic calculations (no boundary layer mesh is shown) and
(b) a porous media model.

Despite these substantial advantages of porous media models, porous media codes are not without their disadvan-
tages. Porous media models cannot:

* Provide the exact fuel temperature profiles in the pebbles, since only a volume-averaged solid surface tempera-
ture is known. 1-D conduction solutions can be performed in the pebbles, but this only simulates “representative”
pebbles. Peak fuel temperatures are roughly 100 °C higher than the surrounding gas temperatures [2] or molten
salt temperatures [11]]. This makes analysis of reactivity effects that are strongly dependent on fuel temperature
distribution, such as the Doppler effect, challenging. Surface fuel temperature profiles shown in are very
complex, and reveal that temperatures are highest at stagnation points and in the recirculation flows that form
behind the pebbles [8]], and lowest at contact points aligned with the flow direction. The surface temperature
on a single pebble varies by about 100-200°C for an ordered packing in flibe at nominal conditions, with the
majority of the surface varying between 50-100°C [10].

* Reveal the locations of stagnation points. Stagnation points usually occur at or near the pebble contact points
that are not aligned with the flow direction due to vortex formation and back flow [7,[12}[13]]. Pressure is at a
maximum at these stagnation points [7]. Fig. [3| shows the velocity vectors and fluid temperature for a
lattice. As can be seen, velocities are very low at the tops and bottoms of pebbles. Because convective cooling
is directly dependent on fluid velocity, the lowest cooling occurs at the stagnation points, which may prove
important for assessing fuel integrity and fluid phase change. The highest-temperature regions directly correlate
to the lowest Nusselt numbers. Nusselt numbers typically range between 10 and 150 over the surface of a single
sphere and fuel temperatures vary by about 20 °C [2]. Porous media models cannot fully capture any spatial
variation over pebble surfaces or interiors.

12
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(a) Velocity vectors (b) Fluid temperature

Figure 3: (a) Velocity vectors and (b) fluid temperature for alattice .

» Show velocity variation within the pores. The velocity in the center of the pores is about an order of magnitude
larger than that on the edges as seen in Fig. [3[a), which like stagnation points, also has important consequences
for heat transfer and drag [13].

Despite these disadvantages, it is generally agreed that porous media codes can reasonably capture global thermal-
hydraulic characteristics like average velocities, temperatures, and pressure drops [2]]. High-fidelity multiphysics sim-
ulations of pebble bed reactors usually allocate most of the computational cost to the neutronics solution, while porous
media thermal-hydraulics is an acceptable simplification for the fluid flow and heat transfer provided the neutron mi-
gration length is larger than the porous media averaging length [15[16]). Fig. ] shows fluid velocities obtained with
(a) non-porous and (b) porous media@ Porous media simulations represent homogenization of the flow results
- multiplying the non-porous velocities by the porosity of about 0.38 according to Eq. (2.31) gives roughly the ve-
locity magnitudes shown in the porous media solution. However, porous media models will not perfectly correspond
to averaged results - porous media models generally overpredict pressure drop relative to [CFD] models [2}[7].
Provided appropriate error bounds are assumed for the porous media results, porous media codes provide approximate
spatially-averaged solutions.

Inlet

il

Velocity (m/s)

Figure 4: Velocity simulation results for a regular lattice for (a) non-porous and (b) porous . The porous media
results are constant over the cross-section because constant porosity was used in the model.
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Some of the limitations of porous media models could be partially overcome by coupling Pronghorn with a [CFD]
code, which would use bulk simulation results from Pronghorn to evaluate more accurate Nusselt numbers and drag
coefficients accounting for the velocity, temperature, and pressure distributions discussed above. However, care must
be taken here, because the pebble packing arrangement in a bed is random, and simulations performed for[BCC|
and|Face Centered Cubic (FCC)|lattices actually show substantial variation from one another [_8}/17]]. Due to the tighter
packing, enhanced turbulent mixing, and lack of larger pore spaces to support heat-transport-degrading vortices, [FCC|
lattices have higher velocities (about 35% higher peak velocities) and better convective cooling (about 50% higher
Nusselt number) than lattices, which may be nonconservative in predicting fuel temperatures [10}|14]. More
tortuous fluid paths in lattices do result in higher pressure drops, which is conservative [|[10]. However, both
and [FCC| lattices differ considerably from randomly-generated beds. Pressure drops for a randomly-generated
gas-cooled bed were 5.5 times larger than that in a[BCC]|lattice of nearly equal porosity, while velocities were two
times larger [17]]. So, even|[CFD|simulations cannot escape the need to generate many random meshes and evaluate by
ensemble averaging the sensitivity of flow results to the geometry.

The majority of porous media research is found in the chemical, geological, and mechanical engineering fields.
Example application areas include analysis of groundwater flow, heat transfer in tube-in-shell heat exchanges, and
chemical reactions in complicated composite materials. In these fields, there are several common assumptions that are
not valid when applied to nuclear reactors:

* The solid and fluid are in thermal equilibrium (at the same temperature). This is the default assumption in many
codes such as FLUENT, and has been used incorrectly for the analysis of nuclear reactors in the past [7]]. This
assumption does not capture convective heat transfer between the solid and fluid.

* The flow is creeping, such that inertial and time dependent effects are neglected. This is an acceptable approxi-
mation for some experiments such as the SANA experiments [[18]], but is in general not valid.

» The porosity is constant in space. For geological applications, the domain is often so large and without a
bounding, impermeable wall, that porosity can be treated as constant. Porosity variation near walls, discussed
in Section 8] is essential to capturing flow channeling near reflector surfaces.

* The bed consists of fairly small particles on the order of 1 mm (except for the[Pebble Bed Water Reactor (PBWR)|
design, which uses pebbles on the order of 2-10 mm housed in assemblies [9]). This can have a substantial
impact on the fluid thermal dispersion (Section [I2)) and convective heat transfer (Section[I0) for larger pebbles
such as the 6 cm diameter fuel pebbles proposed for[HTGR] designs [19]. For example, the number and size of
vortices in the pores generally increases with pore size [[13]].

These differences are important to keep in mind when borrowing models from these fields. These four assumptions
cannot be made in Pronghorn, and for this reason the governing equations used are more complex than those found
in many chemical and geological engineering papers. However, advantages in Pronghorn relative to the chemical,
geological, and mechanical engineering fields include:

e All particles in the porous media are spherical. This eliminates difficulties associated with finding a repre-
sentative particle diameter for correlations originally developed for beds of packed spheres. Throughout this
document, it is assumed that the particles are spheres, and geometric shape factors appearing in correlations are
neglected for simplicity.

* The particles are not themselves porous; no fluid flow occurs through the solid. Like the assumption of perfectly
spherical particles, this also simplifies correlations.

Pronghorn solves the porous media equivalents of the Euler equations (conservation of mass, momentum, and en-
ergy in the fluid) and the solid conservation of energy equation. The discussion up to this point has focused exclusively
on pebble bed systems. However, the porous media equations are valid for any mixture of solid and fluid provided the
appropriate closure relationships describing interactions between the phases are used. Pronghorn is currently only ap-
plicable to pebble bed reactors. But, with the inclusion of anisotropic drag and effective thermal conductivity tensors,

14



Pronghorn may be used for plate and prismatic fuel systems. Porous medial models have been used for non-pebble
bed type reactors in many cases [4]. Future work will involve this extension.

The development of Pronghorn was motivated by the fact that [High Temperature Reactor (HTR)k are subject to
different modeling limitations than [Light Water Reactor (LWR)E, such as:

* While coolant in may experience a temperature increase of about 20-50°C across the core, op-
erate with a several hundred °C increase, making incompressibility and Boussinesq assumptions invalid [20]].
Pronghorn does not assume incompressibility.

 Many[HTR contain significant quantities of graphite, a high heat capacity material that greatly extends the time
duration of equivalent transients in [LWRK. The time to reach peak temperature in an accident can be on
the order of several days [21]]. In addition, the renewed interest in salts, with higher heat capacities than helium,
further increases the effective heat capacity of the core. The longer the transient, the more desirable a fully
implicit solve that eliminates or reduces stability-related time step constraints. contains both explicit
and implicit solution methods.

* Pebble bed are often designed with sloping entrance and exit sections that may require unstructured
meshes. geometries, which always consist of parallel tubes in a cylindrical core, generally can use struc-
tured meshes. Pronghorn uses the [Finite Element Method (FEM)] which permits use of 3-D unstructured grids.

. are designed with a larger variety of coolants, such as helium, and fluoride salts. This requires a generic
[Equation of State (EOS)| capability. Because Pronghorn uses the [EOS| from RELAP-7 or any custom user-
provided [EOS] Pronghorn can easily be used to model any type of fluid.

However, Pronghorn is also applicable to water-cooled pebble bed reactors such as the [9] provided the
appropriate fluid properties are used and the constitutive laws hold for the range of dimensionless numbers expected.
In this section, the governing equations will be presented by first deriving the non-porous media form of the governing
equations. In order to derive the porous media versions of these equations, Section[2.2]introduces the spatial averaging
theorems used. A summary of the equation set is given in Section

2.1 Preliminary Considerations

The derivation of the conservation equations relies on the continuum approximation. As long as the flow length scale
is much larger than the length scale on which atoms/molecules in the fluid exchange momentum, the fluid can be
treated as a continuum. A fluid particle is defined as having a size intermediate to the flow and momentum exchange
length scales, and consists of a group of atoms/molecules.

The validity of the continuum approximation can be quantified with the Knudsen number:

_ Mngp

where A, 7, is the mean free path on which particles exchange momentum and L is the flow length scale. Using
a highway as an example, small Krn signifies that heavy traffic results in one car influencing the behavior or
another, while large Kn signifies a nearly empty highway where cars behave almost independently. For large
Kn, statistical mechanics should be used to analyze fluid flow. Large Knudsen numbers are most likely to
occur in gases; for gases at atmospheric pressure, A1, ~ 10~8 m. For reactor conditions, the mean free path
will be even smaller due to operation at higher pressure.

This separation of scale is necessary in order to classify the types of forces experienced by a fluid particle and how
those forces scale with the volume and surface area of the particle. There are two general types of forces experienced
by a fluid particle:
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1. External forces, or body forces, act on all molecules in the body. It is assumed that these forces, such as gravity,
vary slowly over a fluid particle such that the force is proportional to the particle volume.

2. Internal forces, or surface forces, are exerted on a fluid particle by the surrounding fluid. It is assumed that these
forces, such as shear stresses, are proportional to the surface area of the particle because the fluid particle is
large relative to the length scale on which the atoms/molecules of the flow exchange momentum. This limits the
momentum exchange to a thin surface layer.

The derivation of the governing equations for conservation of mass, momentum, and energy from first principles
leads to the inclusion of terms that are often dropped in reactor applications because certain physics are insignificant.
The ability to neglect terms in the governing equations depends on the magnitudes of certain parameters that can
be obtained by non-dimensionalizing the governing equations. Because Pronghorn is intended to be a general code
applicable to any reactor, it is imperative to ensure that dropping terms from the equations is valid for all classes
of reactors (with single-phase coolant). It will be noted in this manual when terms are being neglected, and then in
Section [2.10.5] representative values will be given for a variety of reactors to justify these simplifications.

Pronghorn can solve the governing equations derived in this section with one, two, or three dimensions. Reduced-
dimension equations are theoretically obtained by averaging the general 3-D equation over one or more dimensions.
This averaging process gives rise to additional terms that reflect averaged flow effects of the collapsed dimension(s)
that must be provided by closure relationships [22]] (chapter 1). While solving turbulence models in lower dimensions
may justify including these terms, additional closure terms are neglected in all Pronghorn equations.

2.2 The “Math” Behind the Porous Media Equations

This section presents mathematical properties of averages that are required for the porous media equation derivation.
The porous media equations are obtained by averaging the governing equations over a representative volume that
contains both solid and liquid so that instead of solving for actual fluid and solid fields, we solve for the averaged
fields. While solving for an averaged quantity initially seems easier than solving for the true physical quantity, the
more you average the equations, the more supplementary information is required from experiments to regain lost
information. This averaging approach is nearly equivalent to the temporal averaging of turbulent fluctuations that
yield the [Reynolds Averaged Navier Stokes (RANS)| equations, except that here the averaging is done in space. This
section presents theorems for relating a field @ to its spatial average (®). A k subscript is used to denote that a field ®
pertains to the k phase.

When a differential equation is averaged, the equation becomes an equation for the average of the original equation
variable. For this average value to be a meaningful solution variable, it should not be dependent on the size of the
volume that was used to compute it. For very small volumes, (®;) may be zero if there happens to be no phase & in
that volume. As we increase the averaging volume size, (®y) will display statistical variation as the fraction of the
phases in the volume varies. For a sufficiently large averaging volume, these variations will tend towards zero and
the average becomes independent of the size of the averaging volume (provided the medium is fairly homogeneous).
This requirement is no different than the requirement we flip a coin enough times to obtain a meaningful estimate
of the fraction of the tosses that yield a heads-up coin. This independence of the average variable on the size of
the averaging volume requires that the averaging volume be much larger than the volume on which the microscopic
solution varies appreciably. This requirement can also be phrased in terms of length scales - if L is the length scale
characterizing the averaging volume and / the length scale characterizing the scale on which the microscopic solution
changes appreciably (often taken to be proportional to the pore diameter), then we require:

<L (2.2)

The requirement that an average be independent of the volume over which it is averaged is equivalent to the
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requirement that the average of the average simply equals the average:

(@) = (P) (2.3)

Eq. (23) also implies that (P )K)k = (D)%,

Taking the average of the Taylor series expansion of (®) about the centroid of the averaging volume can be
used to estimate the order of accuracy of the assumption made in Eq. (Z3). Denoting the centroid with a

€ 9

subscript “c”, this Taylor series expansion is:

_ ([ 9(®P) xixj [ 0X(®) o
(®) = (D). +x; ( o )C + 5 <8x,~8xj + O(xixjxz) 2.4)
Taking the average gives:
D)\ 1 S [X@) ) 1 N o
(@) = @)+ ( G @V +5 < o, ) ¥ /V AV xix; +0 (xix ) 2.5)
2 o(?)
o@/L?)

where all terms that have been subscripted with “c” are independent of the averaging volume, and hence can
be brought outside the integrals. The second term on the right-hand-side (RHS)|is zero because the coordinate
x; is measured from the centroid of the averaging volume, so the integration represents an integral of an odd
function. So, Eq. (2.3) is valid provided />/L? < 1, which is the same requirement in Eq. 2.2).

There is no inherent reason why volume integration, as opposed to area integration, would be preferred for the
porous media derivation. Volume and area averages will be equivalent with second-order accuracy provided [ < L.
This result is most commonly used to equate porosity computed as a volume average and as an area average.

Express an area average as ®:

- 1
=— [ ®dS 2.6
5. (2.6)
where S is a surface. Then, a volume average can be defined in terms of the area average by integrating all of

the area averages taken perpendicular to the integration direction over the length / of the averaging volume:

1 r+i/2 _
<®:1[W¢m .7

Expand the area average in a Taylor series about the centroid; because the integration is one-dimensional in
space, suffix notation is not needed:

S 0D ¥ (D [P B

Substituting this Taylor series into Eq. (2.7)), the odd-order terms cancel because they represent integrations of
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an odd function:

|/ D X2 [P X [0°g 4
@ =7 [, =\ *r 2l fz(a;@) shas ) T
_ 2 [2d . 2.9)
—<I>c+24<axiz> +0(I%)
N

O(1/L?)

So, area and volume averaging are equivalent provided Eq. (2.2) is valid.

2.2.1 Properties of Averages

In order to characterize the distribution of solid and fluid, a phase function f} is defined to be unity in phase k and zero
elsewhere:

1 in phase k
fi= P (2.10)
0 not in phase k

(®y) is defined to be the average of @ in the k-phase over the entire volume:

@)=, [ OF0T @.11)

(®y) is often referred to as the phase, or extrinsic, average. Likewise, averages can be taken over the volume of
just phase k:

1
(@)= - [, d¥O(FOAE) (2.12)
k

(®;)* is often referred to as the intrinsic phase average. Consider a domain consisting of solid and fluid. The
density of the entire domain is the sum of the fluid density multiplied by the fluid volume and the solid density
multiplied by the solid volume. In this case, (®;) represents the solid density averaged over the entire volume (the
density of the volume if the fluid were void), while (®;)* represents the average solid density (since the solid density
is not necessarily constant in the solid volume). Both (®;) and (®;)* are defined over all space, and are not restricted
to existing in one or the other phase. Combining Eq. (2.12) and 2.11):

(D) = e (D) (2.13)

where a porosity for phase k is defined as the fraction of the total volume that is made up by phase k:

(2.14)
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In Pronghorn, the convention is that €/ — € represents the porosity of the fluid, while & — 1 — € is the porosity of
the solid. In general, porosity is a function of space; models for porosity are discussed in Section[8] Isolated voids are
not considered, so porosity is here strictly defined to refer to the ratio of connected void volume to total volume.

= (connected) void volume (2.15)
total volume

Taking averages of these averages just introduced gives two important identities for later use:

((@p)*) = (Pp) (2.16)

((Pp))* = (Px) 2.17)

Eq. (2:16) is derived by swapping the order of integration:
1
&)k :f/ &)V
(@0 =5 [ (@0
1/ (1 dVd)("t)f("t))dV
=5 17 X, X,
¥V J¥ Vk Vk k

i1 I @.18)
-z /vk<VAZdVd>(x,t)fk(x,t)> v

1

— | (@)av
Vk Vk

= (Pp)f

Likewise, the same procedure of swapping the order of integration can be used to give Eq. (2:17).

The porous media equations are derived by taking the spatial average of the governing equations. The goal of the
derivation is to convert the solution variable from the microscopic variable to an averaged version of the same variable.
The governing equation contains gradients, and hence identities to relate the averages of gradients with the gradients
of averages is required. This derivation requires applying the general transport theorem in Eq. (2.44) to a material
volume [23]]:

/ VCIDde:V/ <I>kdv+/ Dy 7 dS (2.19)
1% ¥V S;

where S; is the phase interface portion of the surface enclosing ¥. Then, dividing each term by ¥, Eq. (2.19) gives
Eq. (2:20), where equality between the average of a gradient and the gradient of an average is offset by the integral of
the solution over the phase interfacial area [24]. Eq. (2.20) shows two equivalent forms. @ can be a scalar, vector, or
a second-order tensor, and extension to cases where @y, is a vector simply change the gradients to divergences.

1
(Vo) = V(i) +; [ @iiias (2200

1 [ .
=g V(P + v /S | d 7 dS (2.20b)
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To derive Eq. (2:19), consider a point in the porous media located on a curve with an arc length s. At each
point on this curve, we can define an averaging volume ¥(s) and the surface bounding that volume S(s). By
assuming that there is a continuous and invertible mapping between time  and arc length, 7 in Eq. (2.44) can

be replaced by s:
d dx¥ _,
j/ DAV = /‘/d{dwr/ @ x. 7dS @2.21)
S

where the velocity of the surface V=0% /ot also substituted arc length for time. @ only depends on arc
length implicitly through its dependence on the spatial coordinate, so the first term on the [RHS]is zero. Due
to the no-penetration condition, which requires that the normal component of velocity at a boundary must be
zero, the nonzero component of dX /ds is perpendicular to the unit normal vector at the solid-fluid interfaces
(giving a zero dot product). Hence, the area S(s) that appears above can be simplified to the total area minus
any solid-fluid interface area S;(s). For simplicity, this non-interface area is denoted as S, (s) = S(s) — Si(s):

4 / oav=[ o 7as (2.22)
ds J¥(s) Se(s)  ds

Finally, each point along the curve is described by a position vector X (s) relative to some arbitrary origin. Let
the vector P (s) represent the location of the points on the enclosing surface relative to a point on the curve.
The vector representing points on the surface is then the sum of the vector to a point on the curve plus the
vector to the point on the surface:

X (s) = Xo(s) + P(s) (2.23)

By the chain rule, the directional derivative with respect to the arc length is given as:

d_ddy
ds  dx; ds (2.24)
dx ’
—v. 2t
ds
Using Eq. (2.23) and (2.24) in the transport theorem gives:
dx dp
=3 v/ odv— [ @rds)=[ oL .5as (2.25)
ds Y(s) S (s) Se(s)  ds

where d X /ds was removed from the integration because it is independent of the area integration variable for
a fixed value of s. As long as ¥ (s) is translated along the curve without rotation, then any differential change in
P is parallel to the surface, and hence the RHS|term above is zero. Then, because the vector X was arbitrary,
the expression must hold for any vector ¥, which means that the remaining multiplied term must be zero:

V/ DV — PRdS =0 (2.26)
¥(s) Se(s)
By the divergence theorem, a volume integral can be related to surface integrals:

/ VodV = / dRdS+ [ DdRAS 2.27)
V(v) () Si(s)

Substituting Eq. (2:27) into Eq. (2.26) for the surface integral over the non-phase interface S,(s) gives Eq.
a.

. J

Define a phase variable to be the sum of its average and a fluctuating component &y; this is the same technique
used in the derivation of the[RANS|equations, except that the porous media equations are averaged in space, while the
RANS|equations are averaged in time. By definition, the spatial average of the fluctuating component is zero.
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Dy fi = (i) + Prfi (2.282)
= (Py)* + Dy fi (2.28b)

The presence of the phase function f; indicates that ®; and ®; both are zero in the non-k phases, which is why
Eq. (2:28)b is also valid. Taklng the average of the advective operator will require taking the average of a product,
giving a term of the form (V «®r). By Eq. (2:14), an average over the entire volume can be related to an average over
the phase volume, giving Eq. (2:29)a. Substituting Eq. (2:28) into Eq. (2:29)a for both V' and @y gives Eq. Z29)b

and (2:29)c, where Eq. (2:29)c reuses Eq. (2:14).

(Vi®r) = & (Vi Dy) (2.292)
=& (Vi) (@) + (Vi) (2.29b)
= (Vi) ( @)k + <‘A;kq3k> (2.29¢)

For some advective terms, an average of three terms will need to be performed. In this case, Eq. (2:29) becomes:

(axbrer) = ex{arbrer)”

A R N (2.30)
= (bt + (arbi) (e) + (arer) (i) + (@xbi) {ar) +exfar) (br) ()

According to Eq. (2:29)a, two different velocities can be defined for a porous media. V' represents the fluid velocity
averaged over the entire medium (over solid and fluid). This velocity is often referred to as the Darcy velocity, the
extrinsic phase velocity, or the superficial velocity. vV represents the fluid velocity averaged over only the fluid, and is
referred to as the intrinsic phase velocity. Note that neither of these velocities are the actual local velocity of the fluid.
These two representations of velocity are related to each other by the Dupuit-Forchiemer relationship, which derives

from Eq. (2.29)a:

=&V 2.31)

where the €7 — € notation has been used. Eq. (2.31) is used extensively in this manual, and is often referred to in
the literature as the Dupuit-Forchheimer relationship.

Enough tools now exist to derive Eq. (Z:20)b. Beginning from Eq. (2.14), use Eq. (2:28)a applied to gradients.
Then, use Eq. (2.16) to rewrite ((V®;))* and Eq. (Z.17) to rewrite ((V®;))%. Eq. (2.14) is then used to
transform the last term.

(VD) = g, (VD )K
o\ k
—g <<vq>k> + <vq>k>>

=& (V@) + (Vo))
= & (V(Dp)") + (Vy)

(2.32)

Finally, apply Eq. (2.20)a to both terms on the Because there are no jump discontinuities in (@ )* across
the phase interface, the integral that arises due to (®; )X is zero. Then, because the mean of any quantity related
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to the fluctuation is zero, Eq. (2.20)b results.
1 P
(V) — & [v<<q>k>k> +W} + V) + Q/s &t dS (2.33)

Adding Egs. (2:20)a and (2:20)b and using Eq. (2.28) gives:

1 -
v /S _<c1>k>k mydS = — (D) Ve (2.34)

The integrals that appear in the two forms in Eq. (2.20) are specified by various constitutive relationships derived
experimentally or semi-empirically for porous media. There is not general agreement on which form of Eq. (2:20)
should be applied for each gradient and divergence that appears in the governing equations. So, great care must
be taken when using correlations from the literature, since the author must specify whether Eq. (2:20)a or (Z.20)b
defines the constitutive relationship definition. Provided the author specifies whether the original or modified gradient
averaging theorem is used, Eq. (2.39) can then be used to relate the author’s correlation form to the other averaging
theorem form. Gray shows this relationship for the mass transfer tortuosity, which is defined according to Eq. (2.20)b
in Gray’s work but according to Eq. (2:20)a in Slattery and Whitaker’s works [23].

Finally, in order to express averages of time derivatives in terms of time derivatives of averages, divide each term
in the general transport theorem in Eq. (2:44) by ¥ and use the definitions of averages presented earlier [23]:

d 1 1 0D, 1 N
L - =— | ZLagvi+—_ | & - dS 2.35
atv Jy k vy o +V/s,— KWk Tk (235
d<<pk> 8<I>k 1/ &>
_ [ =k — | ® -T.dS 2.35b
ar < 3 +V s, KWk Nk ( )

where W is the velocity of the phase interface. Now that all of the mathematical tools for deriving the porous
media version of an equation have been derived, Section [2.2.2]derives the porous media version of a generic transport
equation.

2.2.2 A Generic Transport Equation

Consider a generic transport equation for phase k:

od

§+V-(CI>\7):V-I—VTP+S (2.36)

where @ is the conserved variable, ‘7 the velocity, T a generic deviatoric tensor, P a general normal tensor, and S a
source. The porous media version Eq. (2.36)) is derived by first taking the phase average of each term by multiplying
by fx and integrating over the entire averaging volume:

<a§;k> H(V( @V ) = (V1) — (VPe) + (k) (2.37)

Transform the time derivative using Eq. (2:33)b:

<a¢"> _, %0 —é / O TxdS (2.38)
Si

ot ot
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Then, use Eq. (2.20) to transform the advective term, normal stress, and deviatoric stress terms. Two equivalent
forms are given for each, and later discussion will select the most appropriate form for each.

— — 1 =
(V- (DrVi)) =V~<CD]<V]<>—|-§/S D VinidS (2.39a)
=2 \k 1 f D s
=gV- <‘I)ka> + v / D,V indS (2.39b)
Si
1
<V(Pk> = V<fpk> + ﬁ/ kaﬁ’de (2.40a)
Si
1 N
=g V(P + v / Pr1tdS (2.40b)
Si
1 -
<V~’Ck> =V~<‘Ck>—‘ra/ T N xdS (2.41a)
Si
1
=gV (u) + v / 4 7T rdS (2.41b)
Si

Finally, the source term is transformed using Eq. (2.29)a:

(Sp) = es(Ss) (2.42)

Combining Eqgs. (2:37)-2:42) provides the generic porous media transport equation. The appropriate version in
Egs. (2.39)-2.41) must be selected. It is assumed that the fluid is single phase such that no phase change occurs.
Pronghorn is therefore incapable of explicitly modeling phase change in liquid-cooled systems and several important
transients, such as the pressure increase following water ingress [26]. In the case of no phase change, the velocity of
the phase interface, w, will snnply equal the velocity at the interface, V. So, for the advective term, the first form
in Eq. 239) is selected because V; = Wy and the integral in Eq. (Z.39) cancels the integral in Eq. (2.38). The
next sections in this manual derive the conservation of mass, momentum, and energy equations for the fluid and solid
phases for a porous media, beginning from the equations for a non-porous medium.

2.3 The Continuity Equation

Because mass is conserved, the rate of change of the mass within an arbitrary volume ¥ (¢) consisting of a system must
be zero, because a system is defined such that its boundaries are closed to mass flow.

d
= d¥ =0 243
dt /V(z) P ( )

where d(.)/dt represents the material derivative of (.), defined in Eq. (I8.1). Taking the time derivative of an
integral whose bounds depend on time requires the use of the general transport theorem:

dt/ od /v, atd¥+/ o (2.44)
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where W is the velocity of the surface S, which in general does not need to equal the fluid velocity. If the general
transport theorem is applied to a material volume that is enclosed by a material surface, then the velocity of that
surface is simply equal to the fluid velocity. For application to material volumes, the general transport theorem is often
referred to as the Reynolds Transport Theorem. By Eq. (2.44) applied to a material volume, the system perspective is
converted to a control volume perspective:

ap =2
—dv+}4 V.7dS=0 2.45
/Vm ot so” " (24

Throughout this manual, the divergence theorem will frequently be used to transform a surface integral into a
volume integral. Inherent in this action is the assumption that the integrand of the surface integral is differentiable,
which is not always true. For shock waves or discontinuities near surfaces, the fluxes that appear in surface integrals
are not differentiable, and the divergence theorem cannot be used. In addition, if convective fluxes are not kept as
surface terms, numerical errors in their volumetric representation will pollute the solution and cause violations of basic
conservation of mass, momentum, and energy [22] (chapter 1). Despite this possibility, it is assumed in Pronghorn
that all fluxes are continuous such that the divergence theorem can be used to convert a surface integral into a volume
integral:

ap —
Py / V. (pV)d¥ =0 2.46
/V(z) at’t V() (PV) (240

Then, because the selection of ¥(¢) is arbitrary, the integrand must be zero, giving the conservation of mass
equation, often referred to as the “continuity” equation:

ap

P v (p7) =0 (2.47)

Like all of the conservation equations to be derived in this manual, there are several mathematically equivalent
forms. For instance, Eq. (2:47) can also be written as:

%Ft’+‘7.vp+pv.vzo (2.48a)
%’ 4oV T =0 (2.48b)

All of these forms are not necessarily equivalent once discretized with a numerical scheme [22] (chapter 1).
When possible, all equations in Pronghorn will be solved in conservative form because it is then possible to
exactly conserve mass, momentum, and energy. The conservative form of the continuity equation is given in
Eq. (2:47), while the two above forms are in non-conservative, or “quasi-linear” form.

The porous media version of the continuity equation is derived beginning from Eq. by replacing (®;)* by
(ps)’. The time derivative is transformed with Eq. (2:38) and the advective term is transformed with Eq. (Z:39)b. The
deviatoric and normal stress terms are zero for the continuity equation. Because single phase fluid is assumed, there
are no mass sources. The porous media continuity equation becomes:

@ +V-(pV ) =0 (2.492)
a(ea‘:f ) iv. (ep,V) =0 (2.49b)



N
In Pronghorn’s notation, ps represents the intrinsic phase average of the fluid density, and V' the intrinsic phase
average of the fluid velocity.

2.4 The Momentum Equation

The momentum equation is derived in a similar manner as the continuity equation. Throughout the derivation of
the momentum equation, suffix notation is used, which is described in Section for those unfamiliar with the
notation. The conservation of momentum equation is derived beginning from a general treatment of a balance of
linear momentum for an arbitrary continuum. Consider a general balance of momentum:

mass - acceleration = body force + surface force (2.50)

Based on the continuum approximation, the mass-acceleration and body force terms scale as L3, while the surface
force scales as L2. Dividing Eq. (2.30) through by L2, and then taking the limit as L — 0 shows that at a point, surface
forces are in equilibrium:

lim 175 F(@)ds=0 2.51)

where 7 is the stress vector. It is the change in the stress, not the absolute value, that produces forces. Applying
the principle of local stress equilibrium in Eq. (2.51)) to a generic shape in a coordinate frame with mutually orthogonal
axes e; will show that the surface force acting on the fluid particle is a linear, homogeneous function of the component
of the unit normal 7. The coefficient of proportionality, which is independent of the surface normal, is defined to be
the stress tensor G:

fi(7) = fi(&)n;

= Gijn;

(2.52)

To illustrate Eq. (2:52), consider the tetrahedron in Fig. [5] with surface dS on the slanted face and unit normal
7 on the slanted face.

Figure 5: Tetrahedron defined in Cartesian space.

—
A stress vector f produces a net force on this tetrahedron. The force acting on the slanted face must balance
the forces acting on the other three faces. The area of one of the non-slanted faces is given by projecting the
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slanted area onto the unit normal vector in that direction (i.e. the face perpendicular to the x-direction has area
ndS).

F(7)-dS+ f(—21) -ndS+ f(—22) -nydS+ f(—23)-n.dS=0 (2.53)
By Newton’s third law, f (77) = — f (— 7). Inserting this above and canceling dS gives:
F(@) =F®@er+FGlez+ T @)es (2.54)

In other words, fi(7) = f;(€j)nj. fi(€;) is defined to be the i-component of the stress vector acting on a
surface of constant e;, though this definition is sometimes reversed in the literature.

A general balance of linear momentum for a system follows the form in Eq. (2.30):

d
— Vid¥ :/ bidVJr% o;in;idS 2.55
dt/vmp vt sw 7 (23

rate of change of momentum body force surface force

-
where b is the body force vector, which for systems in which gravity is the only body force is g, the gravity
vector. The surface integral is converted to a volume integral using the divergence theorem:

d 00;;
4 v,»dv:/ b,-dv+/ i gy 2.56
dt /Vmp V(z>p V(1) 0x; (2:50)

In order to differentiate under the integral sign, the integral on the [left-hand-side (LHS)| of Eq. (2.36) is split up
into a finite series of N elements:

i/ V'dV%iiV( dv) (2.57)
it v ar :

Because the mass of each element is constant by the assumption of conservation of mass in a system whose
boundaries are closed to mass flow, the time differentiation can be moved inside the summation to act only on the
velocity. Extending this argument to the continuous form in Eq. (2.36), and since Eq. (2.56) must apply for any
arbitrary volume:

dV, _ 8(5,-j
P dt _pbl_'_ axj

(2.58)

Eq. (2:38), often called the Cauchy equation, represents a balance of linear momentum for an arbitrary continuum,
where the only assumption is that mass is conserved in that continuum. In its most general form the stress tensor
contains nine unknowns (i = 1,2,3 and j = 1,2,3). The stress tensor is symmetric if the only moments on the fluid
particle are due to the resultant body and surface forces. It is rare that a fluid experience moments in excess of the
body and surface force moments, and symmetry of the stress tensor is assumed in virtually all fluids codes, reducing
nine unknowns to six.

The conditions under which the stress tensor is symmetric can be shown by applying conservation of angular
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momentum to a fluid particle:

d

l T X VidV:/ Txpb)id¥+¢ (X xoun)dS 2.59
iy V0¥ = [ xpF) (% x oum) 259)

S(t)

The divergence theorem is used to convert the surface integral to a volume integral, and the cross product on
th(: lﬂf SO)IS e‘./x>panded after assuming conservation of mass as in Eq. (2:57) such that the time integration only
actsof X X V:

d¥ - v - P)
— XV4+Xx— dV:/ B b,~dV+/ — (X xoy)id¥ 2.60
/Va)(‘” Car ),»p o <PP) iy O (20

The material derivative of X is expanded as follows, where d¥ /ot is zero due to the assumption of a fixed
reference frame:

d?c’ - 8” +V_8xj
dt t " Ox;
=Vi§;;
=V

2.61)

After inserting suffix notation for cross products according to Eq. (I84)), where €; j is the permutation symbol
defined in Eq. (T8:3), and recognizing that the selection of the volume is arbitrary:

dv, d
PEijkX; 7; = p&;jxx bk + aTCl(Eijkx jOk1) (2.62)

The stress tensor is symmetric if the only moments in the material are due to the body and surface forces.
Because Eq. (2.58) represents a balance of linear momentum due to only body and surface forces, inserting
Eq. (2:38) into the[CHS|of Eq. (2:62) for pdV/dt satisfies this assumption:

ale ale ox;
;KX (ng + o ) €;jkXjPbr +€ijk ijxl + achc” (2.63)
Canceling terms, and recognizing that % =31, Eq. (2:63) reduces to:

€;jkOjk = 0 (2.64)

A useable form of the momentum equation is obtained by inserting a constitutive relation for 6;; into Eq. (2.58).
To understand this constitutive relation, the kinematics of deformation must be understood. The motion of a material
element can be decomposed into three contributions - 1) translation, 2) rigid rotation, and 3) stretching. To understand
the form of each of these components, consider two points in a fluid that are sufficiently close such that their separation

—>
dr can be approximated by a one-term Taylor series:

— R d

‘/l(7+ }",l) 7‘/1( I”,t) = 7(8’7)
(2.65)

The ~ symbol is replaced by = for the remainder of this discussion. Translation of a fluid particle is simply related
to the magnitude of the velocity. The other two components require more explanation. Any tensor can be written as
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the sum of symmetric and antisymmetric parts:

v 1 f(avi av;\ 1 (av; av;

SRR AL ) R Pdaad] 2.66

axj' 2 <ax]'+ax,' +2 ax]' E)xi ( )
symmetric antisymmetric

where the symmetric and antisymmetric components are denoted as:

1[av; oV
1 (v, v
&ij=5 (axj - axi> (2:68)

Within the applicability of a one-term Taylor series, &;; represents a rigid rotation of the fluid particle.

To understand &;;, assume for the time being that ¢;; = 0. Combining Eqgs. (2.63) and (2.68):

d
E(Sri) = Srjé:;ij (2.69)

Taking the scalar product with &r; gives:

57,'%(87‘1') = 8r,-6rj§,-j (270)

dr;dr; is symmetric, while &;; is antisymmetric. The product of any symmetric tensor with an asymmetric
tensor must be zero by Eq. (I8:10), so the above becomes:

1d 2
—— (0r;))°=0 2.71

T (8r;) (2.71)
Hence, if only the antisymmetric component &;; is present, because 87?7 is constant in time, 8r; is also constant
in time, and &;; cannot represent stretching, since stretching would change 8r;. Because translation is accounted

for simply by the magnitude of the velocity V;, &;; therefore represents a rigid rotation.

To determine the angular velocity characterizing this rigid rotation, Eq. (2.:68) can be rewritten as:

1
&ij= _Egijk(’)k (2.72)
where ® is the vorticity:
0=VxV (2.73)

Hence, the angular velocity of the rigid rotation is /2. Because the symmetric component must be associated with
stretching, the vorticity can also be interpreted as twice the instantaneous angular velocity of a material line element
that is originally aligned along one of the eigenvectors of ¢;; (in which case e;; does not contribute anything to the
angular velocity).
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Within the limits of the one-term Taylor series, e;;, which is often referred to as the “deformation tensor,” represents
stretching of the fluid particle along the principal axes (eigenvectors) of e;;. The rate of stretching along an eigenvector
is given by the eigenvalue corresponding to that eigenvector. When both ¢;; and &;; are nonzero (a material line not
parallel to one of the principal axes of e;;), the fluid particle is both stretched and rotated.

To understand ¢;, consider for the time being that &;; = 0. Then, Eq. (2.63)) reduces to:

d
E(Sri) = Srje,-j

v

(2.74)

Apply the chain rule to the velocity gradient term, and in the last step switch the dummy index i with k:

aV; dxy,
i s 4
J
Oxy 0x;
aV;
= 87‘ j—’&- j
axl'
where A, are the eigenvalues and Srj are the eigenvectors. Because e;; is a 3 X 3 symmetric, real, matrix,
there will be three unique, real, and mutually orthogonal eigenvectors. These eigenvectors are referred to as
the “principal axes,” and the eigenvalues as the “principal strain rates” of e;;. Because the relative velocity is
along Or;, e;; represents stretching with rate A, in three mutually orthogonal directions (along the eigenvectors
of €ij.

< (o) =3
(2.75)

The diagonal components of e;; represent stretching, while the off-diagonal components represent rotation of
eigenvectors relative to another eigenvector (as opposed to &;; representing instantaneous rotation).

—
In order to interpret the shear components of ¢;;, consider two material line elements / and 7 which at7 =0
are orthogonal. Applying Eq. (2.63) to these two line elements gives:

4iy=1,2% 2.76
i ox; 2.76)
d aV;

Taking the scalar product of each equation with m; and [;, respectively, and then adding these two equations
and reversing the chain rule:

d V; oV
E(lim,') = miljg; T limjg;
v, av; (2.78)
=mlj=— +1m= ’
Y a)Cj U ax,-
= 2milj€,'j

where the indices have been exchanged on the second term because the summation is symmetric with respect
to i and j and Eq. (2.67) has been used to insert ¢;;. Using Eq. (I83)), and defining ! =/ and ni = m, the

[CHS]|expands to:
d /> _, d/n N (o Xd
= (1 m) —Im (Zm) +ME (Im) (2.79)
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where the fact that [ and 7 are orthogonal at ¢ = 0 cancels the second term. Combining Eqs. 2-79) and
(2-78)), and using the properties of a dot product T -t = Imcos (0):

d A do N
ECOS (6) = 2l’ﬁiljeij — E = —2rﬁ,-lje,-j (280)
—
where again, 8(t = 0) = 7t/2 has been used. Because [ and 77 are assumed orthogonal, the only nonzero terms
—
occur for i # j. From this result, 2e;, is the magnitude of the angular velocity of [ relative to 7. Hence, the
off-diagonal components of e;; represent a rotation of eigenvector i relative to eigenvector j.

From Eq. (2.67), the trace of the deformation tensor is equal to the divergence of velocity:

Tr(eij) = V-V (2.81)

For a small volume, the time rate of change of the volume is approximately equal to the velocity of the surface
dotted with the unit normal, which can be rewritten using the divergence theorem:

diz?{ V.ids
dr Js()

:/ V.Vdv
V)

If the volume is sufficiently small such that the divergence of the velocity can be taken as constant over the volume,
the divergence of the velocity can be interpreted as the fractional rate of increase of an infinitesimal volume:

(2.82)

—T vV (2.83)

Knowing that V - v represents a volume expansion, the motion at a point described by Eq. ( can be separated
into 1) an isotropic radial expansion (characterized by V - V) 2) a volume-preserving motion obtalned by subtracting
off the volume change from e;;, and 3) a rigid rotation:

Vi(7 +8m1) — Vi(7 1) = 5rj%
J

1
= 87']'6,']' — ESrje,-jkwk (2 84)
1 = 1_ = 1
= §8r,-V~V +8I‘j e,»j—gv-VS,-j —ESrjsijkcok
—— ——

radial expansion constant-volume motion rigid rotation

A factor of 1/3 appears to cancel the 3 that results from summation over i and j in §;;. To formulate the Navier-
Stokes equations requires a constitutive relation for the stress tensor 6;;. The Navier-Stokes equations assume a
Newtonian fluid constitutive relationship. A fluid is defined to be Newtonian if 0;; is a linear, isotropic, function of the
deformation tensor ¢;;. Because & ;j causes a rigid rotation, but no deformation, there is no contribution in the stress
tensor due to &;;. For simple fluids, the Newtonian approximation is an excellent assumption over a wide range of
strain rates, but for molecules consisting of long chains of atoms, or with suspended solid particles, shearing the fluid
breaks down an internal structure that can align the molecules such that the shear stress is not a linear function of the
velocity gradient. For example, paint on a brush has high enough viscosity to not drip off the paint brush, but once
sheared on a wall, viscous forces decrease such that it can be easily applied. Conversely, quicksand becomes more
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viscous the more it is sheared. Neither paint nor quicksand are well-described as Newtonian fluids. The constitutive
relationship for a Newtonian fluid is, in its most general form:

Gjj = —Pd;j+ cijuen (2.85)

where P is the thermodynamic pressure determined from an equation of state and ¢;j; is a fourth-order tensor. The
first term on the represents isotropic shear stresses due to pressure forces, a requirement to match hydrostatic
observations.

A decomposition of the stress vector into normal and shear components is:

F=Fwi+(F-7 77 (2.86)
—— —, —
normal shear

—=
In the absence of deformation, the shear stress is zero, so f must be parallel to 72, and hence the hydrostatic
term in Eq. (2:83)) is multiplied by §;; to reflect the fact that pressure only acts normal to a fluid particle surface
when there is no motion.

In order to reduce the 81 components of ¢;j; to a fewer number of unique parameters, isotropy of the stress is
assumed. If the axes of a rectangular prism of fluid are aligned with the eigenvectors of e;;, then the fluid element
will not rotate, but will experience a stretching along the eigenvectors of e;;. For an isotropic fluid, the stresses on the
faces of that prism should be purely normal - if this were not the case, then the fluid would have a preferred direction
of deformation, a characteristic that is anisotropic. In order to show that selecting axes along the principal axes of e;;
for an isotropic fluid produces a diagonal e;; (since a diagonal e;; means that there are only normal stresses inducing
stretching, and no shear stresses inducing rotation), it must be required that when the principal axes of ¢;; coincide
with the principal axes of ¢;;, 0;; is diagonal (no shear stresses).

In order to demonstrate that the principal axes of e;; coincide with those of G;; for an isotropic fluid, and that
both are therefore diagonal, consider a change of axes that gives the following transformation rule:

1 0 0
0 -1 0 (2.87)
0 0 -1

—
a,-j:e,wej:

where q;; is a transformation matrix given by Eq. (I8:8). By the transformation rule for tensors given in Eq.
G;jt = QikajiOkl (2.88)

For the test problem in Eq. (2.87), due to Eq. 2:88), 612 = —012. By applying the vector transformation rule
in Eq. (I88) to ¢;;, the components of ¢;; are unchanged by the coordinate transformation. Hence, from Eq.

G12 = C12ki€kl (2.89a)
—O12 = C12kI€ki (2.89b)

The only way these can simultaneously be satisfied is if 6jo = 0. Similar arguments can be made for each
component of G;;.

This requirement gives cor; = O for all k and /. Physically, this means that the same stress rate in different
coordinate frames does not give rise to different shear stresses. This reduces the 81 components of ¢;j; to nine.
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Isotropy also requires that c{122 = c1133, since rotation of axes by 90° should not change the fluid response. With these
requirements, the constitutive relationship for a Newtonian fluid is:

Cij = —P&;j+2ue;j + AV - ‘78[/’ (2.90)

where u is the dynamic viscosity and A is a second parameter that is in general very difficult to measure. By
investigating the form of 611, 2u = c1111 — c1122 and A = c¢y122; hence, u and A just represent combinations of the
entries of the ¢;jy; tensor. For Newtonian fluids, the dynamic viscosity is only a function of pressure and temperature,
while for non-Newtonian fluids, there is a nonlinear relationship between u and pressure, temperature, and the rate of
shearing strain (assuming that the Newtonian constitutive law is still used).

The viscosity of gases is commonly described by Sutherland’s model, where u oc T3/2 /(T +110). That is,
for gases, viscosity increases with temperature. For liquids, viscosity decreases with temperature. While
Newtonian fluids in general allow viscosity to also be a function of pressure, the dependence is generally very
weak [22] (chapter 1).

Interpreting the significance of each of the terms in Eq. (2.90) is difficult unless the equation is rearranged similar
to Eq. (2.84) by subtracting out the component associated with a volume change:

1 34 2 —
ij = —P8;;+2u (e,,- -3V V6,-j) + <x+ 3“> V.-V (2.91)
deviatoric stress tensor volume dissipative term

The deviatoric stress tensor T, also known as the viscous shear stress tensor, represents volume-preserving defor-
mation (no volume change), which can be represented in both suffix and vector notation as:

1 —
T= 2y <€,’j— gV VS,‘j)

, (2.92)
= u (VVi + (VV,»)T) - ?’UV V1

Due to competing effects of volume change and isochoric deformation, measuring A is virtually impossible. The
Navier-Stokes equations are therefore usually posed in terms of u and {, the bulk viscosity:

g=n+ 2 (2.93)

The second law of thermodynamics requires u and { to be positive, while nothing can be said of the sign of A.
The bulk viscosity, also referred to as the second coefficient of viscosity, is only important for highly compressible
fluids (very high temperatures and pressures) [22]] (chapter 1). In compression or expansion, internal processes act
to restore thermodynamic equilibrium. These restoration processes usually act very quickly such that they almost
exactly coincide with the change in volume of the fluid particle. However, if there is a significant discrepancy between
the attainment of thermal equilibrium and the change in volume, then { may be much larger than u, and cannot be
neglgcted. The term proportional to { is often referred to as the viscous dissipation term. This term _is only present if
V-V 20, and hence is zero for incompressible fluids. In situations with significantly nonzero V - V, the physics are
often so different that an entirely different constitutive equation should be used.

Substituting Eq. (2.91) into Eq. (2.38) gives the Navier-Stokes equations, where Eq. is used to insert the
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definition of ¢;; and Eq. (2.93) for the definition of {:

dv; d 1{dV; 9V 1_ - —
L= bi+=—<¢ —Po;i+2 = ! L] -=v. ij V. 81"
pdl P +axj' 6]+ # 2<8xj+8xl-> 3 VSJ +C v J (294)

— pbi—VP+ V- [y(vw+(vw)T) _23’”v-x71} 4V (z;v-V)

The volume dissipative term is commonly neglected by setting A = —2u/3, i.e. setting { = 0 [27]]. This gives the
conservation of momentum equation most commonly used:

ApV)
ot

+V-(pVV)=pb —VP+V.1 (2.95)

where V'V is short-hand notation for V @ V = ViV, which represents an outer product of V with itself.

Eq. (2:95) has been expressed in conservative form by using the chain rule such that the time rate of change
term acts on momentum, instead of velocity.

. - a3V o |0 S
—(pV)+V-(pVV) =pS-+V - | Z+¥V) | +pV VY (2.96)

continuity
Conservation of mass is assumed in the Cauchy momentum equation, and hence can be canceled. This same

process can be performed for any material derivative of the form pd®/dt, where p® is a conserved variable
and mass is conserved, and will be used frequently throughout this manual.

Many equivalent forms of Eq. (2.93) can be derived through manipulations of mechanical and thermodynamic
relations. The Crocco-Vazsonyi and Bernoulli forms are derived here for later use in specifying stagnation
Condition (BC)k. By expressing 0V;/dx; in terms of e;; defined in Eq. (2.67) and &;; defined in Egs. (2:68) and 2.72)),
and taking the inner product with V;, gives:

v, 1\ & =
Vis—=V|(ZV \%4 297
i3y, (2 )+w>< (2.97)

Inserting the above result and the enthalpy differential defined in Eq. (2:167) into Eq. (2.93) gives the Crocco-
Vazsonyi form of the Navier-Stokes equations:

v 1 S|
+V<V2+h+gz>—TVs—V><0)—V-T—O (2.98)
ot 2 p

where it was assumed that b = @ and gravity was moved inside the gradient by assuming that @ = —g &, such

that V(gz) = g¢,. Eq. (2.98) reveals that steady flow will be rotational in a stationary reference frame unless the
flow is isentropic, frictionless, isoenergetic (term in parentheses is constant), and the inlet is irrotational. The
Bernoulli equation can be derived from Eq. (2.98) using two different approximations. If the flow is isentropic, steady,
irrotational, and frictionless:

1
\Y (2v2 +h +gz> =0 (2.99)
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Eq. (2:99) applies anywhere in the flow field. The second approach for deriving the Bernoulli equation takes the
scalar product of Eq. (2.98) with velocity to obtain a form of the equation that only applies along a streamline in
isentropic, steady, and frictionless flow:

> 1
7% (2V2+h+gz> =0 (2.100)

Eq. (2:100) does not require the irrotational assumption made in Eq. (2:99). It is also frequently assumed in the
Bernoulli equation that the flow is incompressible, in which case e = e(p,s) is constant, and 4 in Egs. (2.99) and
(2:T00) could be replaced by P/p. These equations will be revisited in Section [7| for defining stagnation for the

ideal gas

The incompressible form of Eq. (2:94) is derived by expanding all terms and setting V - V = 0. This gives, in
vector notation, the Navier-Stokes equation for an incompressible fluid:

av > R
pI:pb*VP+V'(HVV) (2.101)
For constant viscosity, the Laplace operator V - V(.) can be seen to represent isotropic diffusion. Assuming
b =g, Eq. 2.101) is sometimes written without the gravitational term by bundling gravity into the pressure

term by assuming incompressible flow. Assume that gravity is equal § = g¢ 3 and introduce a reduced pressure
P

P' = P+ pgz (2.102)

Then, as long as p is uniform (incompressible flow), the gravitational term appearing in Eq. (2.101) can be
represented as:

pg —pge: — V(pgz) (2.103)
Then, gravity can be bundled in with the pressure term in Eq. (2.10T):

av

. dt

If there are no free surfaces in the domain, then pressure will not appear as a[BC| and within the constraints

of incompressible flow, gravity does not impact the solution. The thermodynamic pressure P must be used in

force calculations, but you can compute forces using the reduced pressure provided a buoyancy term is added
to compensate.

— VP 4V.1 (2.104)

By nondimensionalization arguments, the Navier-Stokes equations will only provide a good representation of a
fluid if both the normalized velocity and surface force (drag) are dependent only on the scaled spatial and time scales
and Re. This is often referred to as “Reynolds number similarity.”

Nondimensionalize Eq. (2.104) with the following nondimensional variables:

\% t / P —P,
V+:i, x+:£’ t+:7) P+: (2.105)
Vo L L[V, vy
where the pressure is scaled such that it balances p d v /dt. After dividing by the coefficient on the advective
term:
av+ / 1
— =-VP 4+ —VyT 2.106
drt + Re ( )
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An alternative nondimensionalization of P+ = (P’ — P..) /(uV, /L) could have been selected had the problem
been expected to be dominated by viscous forces. With this selection, Re would appear on the advective term
instead of on the viscous term. By inspection, the nondimensional solution depends only on the nondimen-
sional spatial and time scales and Re:

Vi=f(x"r"Re) (2.107)

For a fluid to satisfy the NaVieE;Stokes equations, Reynolds number similarity requires that the above observa-
tion must hold. The solution V' /V,, should be the same for geometrically similar bodies on a nondimensional
time scale with the same Reynolds number. However, pressure need not be the same between two physical
scenarios that match the terms on the [RHS| of Eq. (Z.107). Reynolds number similarity can be extended to
show how the surface force on a body should scale with nondimensional quantities. The surface force on a
body is:

F, = 7{ G;jn;dS (2.108)
S(1) ’
Introducing the following nondimensional quantities:

ds + G[j

+- 22
ds =717 (sl-j—pvo2

(2.109)

Then, the force on a body is nondimensionalized such that it is only a function of nondimensional time and
Re:

F N

pV(;ZLZ 7{90) Unj f(x 9l 9 e) ( )
For geometrically similar objects, the resultant surface force is only a function of the nondimensional time and
length scales and Re. Some fluids that have different viscosities when being stretched or sheared may appear to
be Newtonian at low shear stresses, but fail to satisfy Reynolds number similarity. This provides an additional
method of verifying that a fluid is Newtonian.

To derive the porous media version of Eq. (2.93), replace ®; by px Vk in Eq. (2.37). The time derivative term is

rewritten using Egs. (2.38)) and (2.29):

<a<pv>> | Aelpn) (V) eV

—— [ pV W Ry 2.111
ot ot + ot ¥ sipfvfwf nydS ( )

The advective term is rewritten using Eq. (2.39)a and Eq. (2.29):

S TN T S 1 > > (2.112)
VOV AV + o) ViV )+ (55V V)] +§/5» prVyVy-7isdS
The normal stress term is P = P, and is transformed using Eq. (2.40)b:
1 R
(VP;) — eV (P + v / Py7iydS (2.113)
Si

This averaging theorem, rather than Eq. (2.40)a, is the form used by many authors because the correct zero-velocity
physics are obtained using the porous media closure relations readily available in the literature [28]]. If Eq. (2.40)a
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were used instead, then for a zero-velocity, non-constant porosity system, the gradient in porosity would induce a
nonphysical flow. The deviatoric stress term is transformed using Eq. (2.41)a:

1 -
<V-rf>—>v-<rf>+§/rfnfds (2.114)
Si
Finally, the source term is Sy = —p V@, ¢, where it has been assumed that b= ¢ and ¢, ¢ is the gravitational
potential function:
Vg r=—g€: (2.115)

Using Eq. (2.29), then Eq. (Z20)b, gives:

(Sp) = —(PrVoer) (2.116a)
— — (P (Vigr) — W (2.116b)
= —e(ps) V{og ) — pf / g /7 (2.116¢)

where the fluctuating product is zero because the gravitational acceleration is assumed constant. Combining all of
these terms gives:

RoAY SV = o v
a<e<pf>a T A5VD) o [eto 17 017 7+ 047,

~
—~
<¢
-
~
~
[E—

7 oV (V=) s+ - [0,V 0V ) +00) (V¥ ) +p,7 V) = @117)

R 1 [ /s R . .
Vil ty /S Ty dS—eViPr) — 5 /S , (Pf — Py q)g.,f) 7 pdS —ep(py)’ V{g.s)!

where (p f>f has been moved inside the surface integral of the gravitational force for later illustration. Assuming
no phase change between the fluid and solid, V #—wy=0. For flows in which thermal and pressure gradients are not
very large, density gradients will be much smaller than velocity gradients at the microscopic level. Therefore, terms
containing p ¢ can be neglected [23]]. This simplifies Eq. to:

—

Aelp ) (V) -
REALVA) v Telpp! (T (T + (0 (7,7 )] = -
1 N 1/ N\ - :
Vet 4y /si Tyt pdS—eViPr) =4 /s,- (Pr = (0 b ) 7S — &1 (p 1)V (04.)
Assuming a Newtonian fluid such that t is given by Eq. (2.92), V- (15) becomes:
— — 2 —
V- (t) 2 Ve VIV )+ V- @V (V) = SV @V (V) +

(2.119)

V-2V R7dS+V- = | (VTR dS+2VE | Vi 7 rdS
V/si FupdS+ V/s,-< £) Ty t3Vy s Vo

where it has been assumed that the dynamic viscosity does not change appreciably over the averaging volume such
that Eq. (2.29) is not needed for products of viscosity with velocity gradients and divergences. Because the no-slip
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condition is satisfied at the phase interfaces, provided the medium does not deform very rapidly, all three integral terms

in Eq. (2.119) are zero.

The t,7 s integral in Eq. (Z.118) represents the average viscous drag of the solid on the fluid. This average viscous
stress can be expressed in terms of the difference in intrinsic velocities between the phases, since the viscous stress
should be zero if neither phase is moving. Express the dependence as a second-order Taylor series expansion as a
function of the phase velocity difference:

é/s,- Ty 7 pdS — perA ((Vsy _ <‘7’j>f> +uesB <<‘7’S>f _ <\7;>f) . (<‘7’S>y _ <‘_/’f>f) (2.120)

ENN

where A is a second-order tensor and B a third-order tensor [23]]. The (V ¢V f) term will only be zero if the fluid
moves at the same velocity as the fluid-solid interface. This requirement can also be expressed as a two-term Taylor
series, where Eq. (2.14)) is first used to obtain an intrinsic phase average:

f
— €7C- (<Vx>s - <‘7f>f) el (<\7_\,>s - <\7f>f) (<7S>S _ <‘7f>f) (2.121)

where € is a third-order tensor and £ is a fourth-order tensor. Because (\7 f\?f)f is symmetric, both of these
tensors must be symmetric in their first two indices, and £ also in the last two indices. Only one more constitutive
relationship is required to fully express the momentum equation. This can be reasoned by showing that the fluctuating
pressure and gravitational field are nonzero perturbations that can still satisfy V{(Py)/ + (p )/ V (9, ¢)/ = 0, such as in
cases where the fluid is hydrostatic. Therefore, using a second-order Taylor series in terms of the known quantities,

é/S,- <pf s >f$g’f) TS = e/ <V<Pf>f +{ps)! V<¢g,f>f> +

(2.122)
e (VPR + () V(0e.) ) (VP! + (0¥ (01))

where € is a second-order tensor and M is a third-order tensor that is symmetric in its second and third indices.
A factor of € arbitrarily appears for later convenience. Combining Eqs. (2.119)-(2.122) into Eq. @2.118) gives the
porous media momentum equation for a Newtonian fluid:

LV ) .
AR 4 v [elor) (Vs

—

V(uv- (V)+ (2.123)

—er (1) (VP +(p)) Vo))

2 (VAP 07V ) (VUP + () V(0s))

At this point, experimentally-determined values for all of the tensors that appear in Eq. (2.123) do not exist.
But, simplifications can be made for isotropic flows or slow flows such that advection and the time rate of change of
momentum can be neglected.
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M, €, and B are third-order tensors that are symmetric in two of their indices. There are no isotropic symmetric
third-order tensors, so all of these tensors must be zero for isotropic media [23]]. The only symmetric second-
order tensor is a multiple of the identity matrix, such that A = AI, where A is a constant. Likewise, &7 (I4 &) =
E1. Therefore, Eq. (2.123) becomes for isotropic flows:

XN V) Ly [efp1/ (7 /(7 ] +
V. [e,»(pﬁfﬁ : <<‘—;v>s - <Vf>f) (<—>V> <vf> )] (2.124)

—

V- (VT )+ V- (T ) = SV (7)) +

er (Vo) (V)7 ) = E- (V4P +(ps) V10 1))

Eq. (2:124) can be further simplified. A generic fourth-order isotropic tensor can be written in component
form as:

l
L,jkl_LS,JSlir (8581 + 8id k) + q (Subir—Bdx (2.125)

where L, [, and g are constants. Because £ is symmetric in its first two indices, as well as in its last two indices,
the last term above is zero. This only requires the definition of the constants L, /, and A. So, the momentum
equation for an isotropic porous media is [23]:

—

WO V) Ly [efp,1/ (7 (7 ] +
V- e L (o = T ) (o= (7)7) |+
V- [eslon)1 (Wor = T (Vo= 7)) | = @.126)

—

V- (VT )+ V- V(T )~ SV (V) +

werd (Vo) = (V7 ) —E- (VP! + (01 Vibg))

For slow flows where the advection and time rate of change of momentum is negligible, Eq. (2:.123) instead
simplifies to:

—

V)T —§V(,N +,L18f.A< O —(V )+
werB: (Vo =Vl ) (Vo = (Vo)) — e, (1+8)- (v P) +( p,»fv<¢g,f>) (2.127)
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The second-order Taylor series terms and the viscous stress terms are also negligible for slow flows [23]]. Eq.
(2:127) then reduces to Darcy’s law:

V- (urV(V )+ V- (Y

X (V<Pf>f+ <Pf>fV<¢g,f>f> = gy <<Vx>s - <Vf>f) (2.128)

where the second-order permeability tensor X is defined as:

K=e;(I+E)A! (2.129)

The permeability depends only on the geometry of the medium (i.e. not on any fluid properties)
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In Pronghorn, mechanical effects of the solid on the fluid are neglected such that € = 0 and £ = 0. Second-order
effects of the pressure and gravitational forces are also neglected such that M = 0. Both of these approximations are
valid for relatively slow flows [23|]. Viscous effects are neglected such that all terms in Eq. are assumed zero.
This approximation is valid for porous media because the length over which the deviatoric stress acts is on the order of
several pore diameters, and hence can be neglected [28]]. The solid is assumed stationary. Finally, €su¢A(I+ &)~ and
erurB(I+ &) ~! are approximated as vectors, instead of tensors. The sum of these two terms (with A divided by (p )/
to obtain the proper units) is denoted as W. W represents a combined Darcy and Forchheimer friction coefficient. This
gives the porous media momentum equation used in Pronghorn:

a 3 f ‘_/> 3 f b - g
Wer VA 49 (erpp (T (V1) = ~Wlop) (V) +e, V(B +erlpy)/ Vo) (2130)
@Jrv. (50, VV) = ~Wp,V +eVP+ep, 7 (2.130b)

In Pronghorn’s notation, p s represents the intrinsic phase average of the fluid density, V the intrinsic phase average
of the fluid velocity, and P the intrinsic phase average of the pressure. It has been argued that in porous media, because
the flow of the fluid is continually disrupted by the presence of solid particles, the transfer of momentum is severely
impeded such that the advective term can be neglected. This is not done here, however, because Pronghorn is intended
to model nuclear reactors that have much higher velocities than the groundwater flows for which porous media models
were initially developed. Eq. could also have been derived by assuming directly in the Cauchy momentum
equation balance in Eq. (2:38) that:

b=g+WV 2.131)

In other words, the body force on a fluid particle is the sum of the gravitational force and the distributed friction
force.

2.4.1 Porous Media Momentum Losses

Eq. (@2I30) contains W, a friction coefficient that accounts for additional drag on the fluid caused by solid flow
obstructions. The Navier-Stokes equations by themselves do not contain any friction factor terms, because in principle
the Navier-Stokes equations are exact (within the limitations of a Newtonian fluid constitutive law). But, to accurately
capture the momentum losses experienced by a fluid flowing in the presence of a solid, whether this solid be pipe
walls or a porous solid matrix, the solid material must be modeled in complete detail. All of the surface roughness
and pocks and grooves in the solid surface must be modeled exactly if the Navier-Stokes equations are to correctly
account for momentum losses due to friction and form drag at the solid surfaces. Because this level of modeling is
not possible, especially when considering a porous media, the most common approach to account for this microscopic
effects is through the use of a friction factor. In other words, the effect of shear stresses on the fluid is assumed to be
distributed - this type of model is often referred to as a distributed loss model [22] (chapter 2). When included in the
Euler equations, the equations are no longer isentropic because energy is always dissipated along the fluid path.

The previous section showed how this friction factor arises from the spatial averaging technique; this section
describes the physical meaning of the components of W. While the title of this section refers to porous media, the
discussion here is actually of a more general nature - the use of friction factors in non-porous media is also very
common to capture the engineering-scale effects of shear stresses on fluid flow. With the use of an anisotropic friction
factor for pipe flow and a porosity of 1, Pronghorn can also be used to model channel flows, such as present in holes
in reflector blocks or pipes. These anisotropic friction factors are provided at the end of Section[9]

Friction factors are provided in the literature by dimensionless semi-empirical correlations in terms of the solid
surface roughness, the Reynolds number, and the packing of the solid for porous media. Friction factors represent a
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normalized pressure drop. At low flowrates, the pressure drop is linearly proportional to velocity (a viscous effect):

VP R (2.132)
while at high flowrates, the pressure drop is proportional to the square of velocity (a kinetic effect):
pv?
VPoc — 2.133
D ( )

For steady, laminar, fully-developed, and incompressible flow with negligible gravitational forces, the momen-
tum equation reduces to:

pV -VV = —VP+V.uVV (2.134)

Assuming unidirectional flow (Vg =V, = 0) along an axis z aligned with the length of the circular pipe, and
fully-developed flow such (V; # f(z)), all advective terms cancel, giving:

OP  ud [ dV(r)
% ror <r or ) (o)

The above equation could also have been obtained for a generic 1-D system if the advective effects were
neglected (in which case the following results are interpreted as viscous effects). Integrating twice and assum-
ing that the pressure drop per unit length is constant for fully-developed flow, a parabolic velocity profile is
obtained. By symmetry, the velocity profile satisfies V,(R) = 0 and dV,(0)/dr =0

1 oP
VZ(r) = 4,u aZ

In order to relate the friction drag to the velocity in the pipe, an average velocity V, must be defined by
integrating the velocity over the cross-sectional area of the pipe.

(”* —R?) (2.136)

2
5" de f(f pV,(r)rdr
pRR2
1 oP
D2
32,u 0z
At high Reynolds numbers, viscous effects can be neglected, in which case the momentum equation instead
simplifies to:

v,

(2.137)

pV .VV =—-vp (2.138)

While analytic solution to this nonlinear equation is more difficult than for the linear equation encountered for
viscous flows, the pro jonlonallty of pressure drop to the square of velocity for 1-D flows is clear. Expressing
the gradient VvV asV /D, where D is a characteristic length of the system, gives Eq. (2.133). These results
also hold in the presence of gravitational effects, in which case the reduced pressure defined in Eq. (2.102) is
used.

The total momentum loss can be approximated well as the sum of the viscous and kinetic losses [29]:

V2
VP — Aﬁ+3% (2.139)

where A and B are constants of proportionality. Two different normalizations are possible for defining the friction
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factor, by normalizing the pressure drop per unit normalized length by either the dynamic pressure pV?/2 or the
viscous shear stress uV /D:

2D 1
e
D2
VP— =A+BRe (2.140b)
uv

where the coefficients A and B in Eqs. (2.140)a and (Z.140)b are not the same. The normalization shown in Eq.
(2.140)a is used almost exclusively in the literature, for both porous and non-porous flows, though Eq. (2.140)b is
sometimes plotted in order to make evaluation of A and B simpler.

For a cylindrical body of fluid in steady, fully-developed, unidirectional flow, a balance of pressure and viscous
shear stresses on the surface of the body reveals that:

AT
D
where T,,4; is the viscous shear stress at the wall. Inserting Eq. (Z.147)) into Eq. (2:140)a shows that a friction
factor defined as the normalized pressure drop normalized by the dynamic pressure is equivalent to the wall

shear stress normalized by the dynamic pressure:

—vp=

(2.141)

VP2£ _ 8’twall
pvz  pVv?

(2.142)

The proportionality of the viscous and inertial pressure drops with porosity is different, though many earlier re-
searchers did not recognize this, which severely limited the ranges of applicability of their friction factor correla-
tions [30]. The most common method for expressing these friction effects uses the hydraulic radius model, in which
case appropriate scalings of velocity and characteristic length D for spherical porous media are introduced. For Eq.
(2:132)), V can be transformed to v using Eq. (2:31)), and D can be interpreted as the hydraulic diameter in Eq. (2:289),
neglecting the factor of 4/6:

(1-¢)7 u
SR (2.143)

VP,iscous o<

Likewise, the kinetic term proportionality on porosity is:

(1—¢) Pr 2

V Pinetic < &3 dp

(2.144)

These scalings are valid for beds of spherical pebbles, and must be respected in all friction factor correlations for
porous media, or else the correlation would not be independent of porosity under appropriate transformations to a
non-porous media system [30]. For plate or prismatic solid geometries, Eq. (2.143) and (2.144) have different forms
due to the different interpretation of the hydraulic diameter. Using these proportionalities in Eq. (2:139) gives:

3
e 2d 1—¢
e’ 2 Re
P __
VP(I_E)zl;_A+Bl_€ (2.145b)
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With the scaling in Eq. (Z.143)a, at Re > 6 x 10* (or lower values on the order of 4 x 10° [|6]), the friction factor
becomes relatively independent of Re [31]]. At intermediate to low Re, the friction factor scales as (1 —€)/Re [30].

There are a large number of porous media friction factor correlations available in the literature. There is a strong
relationship between these friction factor correlations and the early models for flow in porous media. For example,
Darcy’s law is a simplification of the Navier-Stokes momentum equation for stationary, creeping, and incompressible
flow. The original form derived by Darcy assumes constant porosity, but this can be rearranged to the non-constant
porosity form by multiplying both sides by porosity [32]]:

eVP=—uK eV
eV (2.146)
=—DV

By comparing Eq. (2.146) with Eq. (2.132)), it can be seen that correlations for the permeability are proportional to
correlations for the viscous friction factor. So, Darcy’s law is none other than a viscous drag proportionality between
pressure gradient and velocity, because the kinetic friction losses were assumed negligible. The permeability must be
proportional to:

(1—¢)? 1
5 @ (2.147)

K o

For simplicity, the coefficient on V can be bundled into D, which will be referred to as the “Darcy prefactor” in
this manual. For isotropic media, D simplifies to a scalar. Because Darcy’s law assumes negligible kinetic friction
losses, it is only valid as a model for low Reynolds number flows. As Re increases, the drag transitions from linear to
nonlinear behavior as boundary layers begin to separate, and neglecting the kinetic friction losses is no longer valid.
Darcy could not obtain very high flowrate data because his water source was a hospital - perhaps if he had a reliable
experimental setup, he would have included a kinetic friction loss term [33]].

Other early researchers built upon Darcy’s law by recognizing that the kinetic friction component should also be
included. Forchheimer’s law is one such extension, which simply adds the kinetic friction component to Darcy’s
flow model. So, Forchheimer’s law is none other than a balance between pressure gradient and the sum of viscous
and kinetic friction effects. The original form derived by Forchheimer assumes constant porosity, but this can be
rearranged to give the non-constant porosity form by multiplying both sides by porosity [32]:

eVP = — uK eV —eCy KV 2p 4| 7|V
= —uK eV —eCi K Pepg VIV (2.148)
—— DV —Fp[V|V

where Cy is a form drag coefficient. By comparing Eq. (2.148)) with Eq. (2.144), it can be seen that correlations
for C fﬂi_l/ 2 are equivalent to correlations for the kinetic friction factor! This term must be proportional to:

(-1 (2.149)

/ e d,

In a porous media, Forchheimer’s law accounts for nonlinear flow effects that are not necessarily present because
of turbulence. Forchheimer’s law accounts for streamline bending around particles and expansion/contraction be-
tween the large and small pore spaces [34]]. The analytical proportionalities for sudden expansions/contractions from
fundamental fluid mechanics also scale as pv?.
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To simplify later description of these kinetic friction factor correlations, the coefficient on p| \7| V will be bundled
into F, which will be referred to as the “Forchheimer prefactor” in this manual. For isotropic media, & simplifies to a
scalar. Correlations for D and F are provided in Section[9] With the hydraulic radius model, D and JF scale as:

a2
D o “d ©) (2.150)
€
(1-¢)
F o 2.151)
dp

From these definitions it can be seen that the friction drag scales as the inverse of the pebble area, while the form
drag scales as the inverse of the length of the wake region (on the order of d,, since the next pebble in the flow field
disturbs the wake). Based on the definition of W, it is clear that:

D —
W= 177 (2.152)
Pr

In addition to Darcy and Forchheimer models, other researchers have suggested alternative €V P scalings. For
example, Brinkman extended Darcy’s law to include a viscous term similar to the traditional Laplacian found
in the incompressible Navier-Stokes equations in order to enforce the no-slip condition at solid walls [32]]:

eVP = —uK eV +eaV:v (2.153)

where f1 is an effective viscosity. There is substantial disagreement on the correct selection of fi, though
several researchers have obtained experimental fits as a function of Re [35]]. Generally, & increases with Re
due to enhanced mixing, though some particle shapes show no dependence on Re. The selection of i only
impacts the flow field in the vicinity of the wall (within about a half pebble diameter), since Brinkman’s model
is only used to capture the near-wall maxima of velocity [35,/36]. Most porous media codes do not include a
Brinkman term, but Auwerda et. al select niu somewhat arbitrarily as 100u for helium-cooledm due to
a lack of experimental correlations; variation by two orders of magnitude results in fairly similar temperature
profiles [36]. Brinkman’s model is essentially an attempt to capture additional wall shear stress [37].

Brinkman’s equation does not have the same experimental validation basis as either Darcy’s or Forcheimer’s
laws, and is generally thought to only be applicable for € > 0.8. At low porosities, the solid matrix impedes
direct transfer of momentum due to viscous forces and the majority of stresses are communicated via pressure
[32]. The Brinkman model is not used in Pronghorn, but is shown here for perspective on how a no-slip
condition could be obtained in an inviscid flow model. Some authors staunchly defend Brinkman’s hypothesis,
however [38]].

2.4.2 The Trans-Forchheimer Regime

The quadratic drag effect modeled by the Forcheimer relationship is only applicable for laminar flow. That is, Forch-
heimer’s law only applies to inertia-dominated laminar flows, and represents fundamentally different physics than the
quadratic velocity dependence that is also observed for turbulent flows [39]]. Researchers have observed six general
flow regimes in porous media, which are shown pictorially in Fig. [6][28|[39140].

1. Pre-Darcy regime - non-Newtonian fluid behavior causes small countercurrents to form at the pore walls. In
this regime, the pressure drop actually increases as the flow is reduced, and a finite pressure drop exists for
zero Re. Fand estimates this pre-Darcy regime to occur in an exceptionally narrow Reynolds number range, but
Kececioglu estimates the pre-Darcy regime width to be the same as the Darcy regime [28,40].
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2. Darcy regime - the flow is dominated by viscous forces.

3. Transitional regime - transition from Darcy to Forchheimer flow; this flow regime is often referred to as the
“weak inertia” regime.

4. Forchheimer regime - steady, nonlinear laminar flow, characterized by the onset of boundary layer separation.
The Forchheimer regime is often referred to as the “inertial” regime.

5. Transitional regime - oscillations and vortices begin to develop.

6. Turbulent regime - highly unsteady and chaotic flow that is dominated by eddies.
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Figure 6: Flow regimes in porous media [40]. Solid lines represents friction coefficients normalized by the viscous
friction component according to Eq. (??). If a single Darcy-Forchheimer relationship with a single set of A and B
coefficients were viable over the entire range of Reynolds numbers, then a single straight line would be observed.

The Reynolds numbers defining the bounds of these flow regimes as determined by several researchers is shown in
Table[2] A complication associated with characterizing flows with a Reynolds number is that the length and velocity
scales used in the Reynolds number can vary widely. The Reynolds number used to characterize the onset of various
flow regimes must take into account the sphere diameter, because the largest spheres trigger turbulence as the fluid
must travel a longer path length without boundary layer separation if the flow is to remain viscous-dominated. Rey, the
Reynolds number based on the square root of the permeability as a length scale, shows the smallest variation between
researchers. Sources that reported bounds in terms of other Reynolds numbers are approximately converted to Rey
assuming a porosity of 0.4.

Table 2: Differences in flow regime boundaries as computed by various researchers. The transitional regimes are not
shown, and are inferred to complete the range gaps between the regimes in the table.

Source  Darcy Forchheimer Turbulent
" [28l[40]  Rex < 0.26 0.57 <Rey <9.00 Re; > 13.5
[28] 0.06 < Rex < 0.12  0.34 < Rep, <2.30 Rep >3.40
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The Darcy-Forchheimer flow model in Eq. (2.1438) is technically only applicable up to and including the Forch-
heimer regime. There is not general agreement on how to model the Trans-Forchheimer regime characterized by
Rer > 10. Some researchers propose that Eq. be used throughout all ranges in Reynolds number using a
single set of proportionality constants, while others believe that a different model is required. Researchers have even
taken data thought to demonstrate a continuous Darcy-Forchheimer regime, and shown that a different interpretation
of the data clearly illustrates a Trans-Forchheimer regime [41]. Among the researchers who believe a new model is
required, there is not consistent agreement on what that model should look like, let alone what physical behavior is to
be expected in the Trans-Forchheimer regime.

Of the researchers that believe a new model is required for the Trans-Forchheimer regime, there is disagreement
on how the viscous and kinetic friction components differ between the Darcy-Forchheimer and Trans-Forchheimer
regimes. Many authors report a drag-reduction effect in the fully turbulent regime, whereby the Darcy prefactor tends
to increase, but the Forchheimer prefactor decreases [281/33/4042]. At the high velocities characteristic of turbulence,
the Forcheimer term dominates, and the overall effect is to observe a reduction in drag. Drag reduction effects might
be explained by:

* At higher flowrates, the fluid follows streamlines more efficiently, reducing inertial losses in circulating motions
in the bed [33]).

* Atlow flowrates, only the largest flow channels contribute to the overall flow. At higher flowrates, the resistance
of the smaller flow channels becomes less important, and more flow channels contribute to the overall flow so
that the flow becomes more evenly distributed [33]].

* The separated boundary layer region in a porous medium cannot grow unbounded, so at very high velocities the
drag effect is limited by the solid obstacles [43]].

A drag reduction effect for turbulent flows is not in agreement with trends observed for internal pipe flows, how-
ever. From the Moody diagram, extrapolation of the friction factor for laminar flows to higher Re would be lower,
not higher, than that actually observed in the turbulent regime [44]. Lage states that the Forchheimer prefactor can
either increase or decrease relative to its laminar value upon reaching the turbulent regime, which would explain the
disagreement amongst researchers on this effect. Whether the coefficient increases or decreases generally depends on
whether the transition to turbulence is triggered by viscous or kinetic effects. If the transition is dominated by kinetic
effects, then the Forchheimer prefactor should decrease, but if the transition is dominated by viscous effects typical
of transitions in internal pipe flows, the Forchheimer prefactor should increase [44]. Because porous media consist of
many closely-packed bodies, rather than a single body for which the transition is well-known to be kinetic-dominated,
it is unclear immediately if the Forchheimer prefactor change upon the onset of turbulence can be well-characterized.
Most researchers report a decreased Forchheimer prefactor, so it can be inferred that a porous media transitions to
turbulence due to kinetic transitions, though this is not always supported by experimental evidence. For example,
Lage reported a Forchheimer prefactor increase, which was attributed to the use of a non-conventional porous media
where the flow transition is controlled by viscous drag effects [44].

Considering all of the different interpretations of how the drag coefficients should change upon turbulence, there
are four common approaches for modeling the Trans-Forchheimer regime:

1. Use a single Darcy-Forchheimer correlation for the entire range in Re [291|30L/45]]. When the Darcy and Forch-
heimer prefactors are only generated according to low Re data, an order or magnitude higher deviation is ob-
tained than when the coefficients are fit with a wider range of Reynolds number data, illustrating the error in
extrapolating too far between regimes [44]).

2. Modify the Darcy and Forcheimer coefficients once reaching the turbulent regime to a different set of constants.
This approach is performed in [28,40].

3. Add a term proportional to v to Eq. (2.148). Forchheimer’s was the first to suggest such a cubic dependence
[33]. From Reynolds number similarity requirements, the drag must scale as pv? at high Re, so this approach
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is theoretically only valid in the transitional flow regime between Forchheimer and fully turbulent flows. This
transitional regime is very narrow for 3-D flows, and can effectively be neglected [39]]. Nevertheless, Lage added
a cubic velocity proportionality to his correlation, and found that when low-Reynolds number data is used to
obtain the Darcy and Forchheimer prefactors, that this method provided the best experimental fit [44]].

4. Use non-constant Darcy and Forchheimer prefactors. Researchers using this method have reported drag reduc-
tion effects [|33142].

Turbulence is expected in nuclear reactor systems, so the correlations for W discussed in Section [9 will provide
one or more of the four options listed above.

2.4.3 Anisotropic Porous Media

The drag models discussed up to now are almost always reduced to isotropic forms due to a lack of modeling informa-
tion for how to properly treat anisotropies. However, anisotropy may prove critical for accurate modeling of porous
media [34]. Anisotropy arises from the geometry and the flow field itself. Anisotropic geometries will cause the flow
to have preferred directions of motion that do not perfectly align with the pressure gradient. Anisotropies in the flow
field, such as different heating rates in different sections, will cause natural anisotropies in the flow.

The error in approximating the Darcy and Forchheimer drag coefficients as constants depends on the degree of
anisotropy in the system. In spherical particle porous media, the largest anisotropies exist at the walls, where the wall
significantly retards flow perpendicular to the wall, but the high-porosity region aligned with the walls encourages flow
parallel to the walls. The porosity appears greater looking at the wall, but is much lower looking parallel to the wall.
The establishment of natural circulation can be sensitive to anisotropy, since boundary layer thickness at the walls can
severely retard circulation flows [46]. Depending on the core design, the presence of thermalizing graphite reflectors
at the bed edges may further contribute to the importance of anistropic effects. A proper anisotropic treatment should
also consider the anisotropy of the heat transfer coefficient and effective thermal conductivities.

Anisotropic porous media have most frequently been studied for banks of cylindrical tubes due to modeling sim-
plicity [46,47]]. These researchers have concluded that correctly accounting for anisotropy can yield as large as a 100%
change in the heat transfer and fluid flow. There are generally two approaches pursued to model anisotropic porous
media -

1. Use a tensorial D and JF, heat transfer coefficient, and effective thermal conductivities.

2. Approximate anisotropy by replacing \‘7\ in Eq. (2.148) by the vector velocity. Likewise, any time a Reynolds
number appears in a drag/heat transfer coefficient/effective thermal conductivity correlation, the velocity in the
Reynolds number should be the component velocity. In other words, use correlations developed for isotropic
porous media, but apply them in a vectorized form.

This second approach is the easiest to implement, but is inaccurate in that isotropic correlations are used to ap-
proximate anisotropy. However, to a first order approximation, the use of component-wise velocities should be used
to account for the fact that the smallest velocity components do not experience the same drag as the large compo-
nents [46,47]]. Using a vectorized drag coefficient would likely have a large impact in Pronghorn, because the majority
of flow is oriented upwards. A vectorized drag coefficient is not the standard, however, and the majority of researchers
use velocity magnitudes, rather than components, in Reynolds numbers and in the Forchheimer prefactor [48]].

Wang et. al shows that F responds very strongly to anisotropy, increasing by a factor of 17 for some systems
as anisotropy is increased. D is less sensitive to anisotropy (though it also increases with anisotropy). By varying
anisotropy in only one direction, all components of the D and JF tensors are affected because fluid becomes forced
through other regions. However, the magnitude of the anisotropy is greatest in the directions with greatest anisotropy.
Anisotropic models for friction and heat transfer are not yet implemented in Pronghorn, so all friction coefficients
discussed in Section[9|use an isotropic treatment.
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2.5 The Fluid Energy Equation

This section presents two derivations of the conservation of energy equation. One of these equations will be an
equation for total energy (a conserved quantity), while the other equation will be an equation for temperature (not a
conserved quantity). Therefore, these two versions of an “energy” equation will be referred to as “conservative” or
“non-conservative,” referring specifically to the fact that energy, but not temperature, is physically conserved.

The first law of thermodynamics relates the rate of change of energy in a volume to the rate of energy and heat
addition. The total energy is the sum of internal energy and kinetic energy. The internal energy per unit mass, e,
represents the potential energy due to bond stretching plus the mean kinetic energy of molecules when moving in a
frame of reference moving with the center of mass velocity (i.e. vibratory motion). The total energy per unit mass, E,
is the sum of this internal energy and kinetic energy of the body per unit mass.

1
E=ect ViV, (2.154)

Conservation of total energy requires a balance between the power supplied by the contact and body forces and

the heat addition. This balance is obtained by multiplying all the forces in the momentum balance in Eq. (2.36) by
velocity, since power equals force times velocity.

d
4 EdV  — / bVdY + 74 VioindS —7{ ,»,-dS+/ AV 2.155
dt /Va)p v’ sy U s ™" v (153

rate of change of total energy ~ power from bpdy forces  power from viscous forces heat addition

where ¢ is the heat flux vector representing heat flow out of the fluid particle and ¢ is a volumetric heat source
in the fluid particle that has been included in addition to the forces present in the general momentum balance. The
divergence theorem is applied to convert surface integrals to volume integrals:

9q;
EdV = / dev+/ (Vioij dv/ —’dv+/ 1d ¥ 2.156
d/ P P ¥() 0 / V(1) 0x; Vi (2130

By the same argument that was used to bring the time differentiation under the integral in Eq. and by
recognizing that the choice of the volume is arbitrary, Eq. (2.156) simplifies to:

dE - -
Par PPV 5 (Vo) =V g
=pb-V+ Via” + ijfl . (2.157)
X j a)Cj

contact power  deformation power

By inserting the constitutive relation for 6;; from Eq. (2.91) into Eq. (2.157), a form useful for implementation is
obtained in Eq. (2.158)a. Eq. (2.158)b uses the continuity equation to rewrite the material derivative in terms of the
conserved total energy.

E - — — —
p%:pb~V—V~(PV)+V-(1:V)—V~§’+L] (2.158a)
a E — - o —
(PE) V-((pPE+P)V)=pb-V4+V-(1V)=V-G+g (2.158b)
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The enthalpy per unit mass 4 and total enthalpy per unit mass H are defined as:

oh = pe+ P (2.159)

pH =pE +P (2.160)

where a differential in /2 is provided, where v is the specific volume. Inserting Eq. (2.160) into Eq. (2.I58)b,
neglecting the V - (’CV) viscous heating effects, and assuming that ¢ = —kVT represents the conduction heating, the
conservative energy equation becomes:

a(gtE)+V~(pH\_;)*pZ"_;*V'(kVT)*q:O (2.161)

where k is the thermal conductivity. The body force b in the above equation can have two different forms,
depending on the interpretation of the derivation of the porous media equations. Eq. m was derived by averaging
the momentum equation in space. Whether b in Eq. (2:161) should be interpreted as g or as g + wv depends on
whether the porous media version of the energy equation should be derived by using a) the non-porous or b) porous
Cauchy equation in the derivation of the energy equation. In other words, should the process used to obtain the Wp fV
term for the momentum equation be carried through to the energy equation? Another simple example of this issue is
obvious for 1ncompres31ble flows. The mlcroscoplc continuity equation is V - V - should the porous media version of
this equation by V- (6V) = 0 or d¢/dt + V- (¢V) = 0? [PEBble Fluid Dynamics (PEBFD)|assumes the latter form [49].

Nield suggests that Eq. (2.131) be used for b he refers to the p b -V term as the “viscous dissipation” [43]]. While
the Forchheimer drag term is independent of y, pJ| v \V V still represents a viscous loss because form drag arises due
to the interaction of inertial, viscous, and pressure forces. Without viscosity, there is no boundary layer, and hence no
boundary layer separation to result in form drag.

This issue in selecting b only arises in the use of the conservative energy equation. How_gver it appears that most
porous media codes using the conservative energy equation neglect the wvV component in b [50]. Whether the wv
portion can be neglected for different reactor designs will be addressed in Section [2.10.5]

The thermal conductivity of gases generally increases with temperature, while it is nearly constant for liquids.
Both gases and liquids show very weak dependence of thermal conductivity with pressure [22] (chapter 1).

The derivation of the non-conservative energy equation is more lengthy. Equilibrium thermodynamics is used to
relate total energy to entropy, and then entropy to temperature to transform Eq. to an equation entirely for
temperature. In order to obtain the entropy equation, the mechanical energy component of Eq. (2.157) is subtracted
out by first forming the mechanical energy equation by taking the scalar product of the Cauchy momentum equation
in Eq. (2:38) with velocity (since power equals force multiplied by velocity).

bivi v, 2% vy Vi
P ox; P

=0i (2"

Recognizing that V;do;;/0x; appears in the total energy equation in Eq. (2Z.I57), a balance of internal energy
equation is obtained by subtracting Eq. (2.162) from Eq. (2.157):

(2.162)

de aV;

= —_6.—_-V.7 2.163
pdl szaxj q ( )
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Consider a simple shear flow with V = kx, € with b= ¢ = —g¢». Eq. 2:162) simplifies to V;do;; /dx; = 0.
Recognizing that V;00;;/dx; appears in Eq. (2.157), the total energy balance becomes:

dE aV;

— =0;; — —

P dt Y ox j
Hence, 6;;0V;/dx; represents deformation work, and is often referred to as the “viscous dissipation rate.” It is
this phenomenon that causes heating of boundary layers, and represents the conversion of mechanical energy
to thermal energy. Because this deformation work is present in the internal energy equation in Eq. (2:163),
this term contributes to an increase in internal energy, but not kinetic energy, producing heat.

V-7 (2.164)

In order to obtain equations for temperature and entropy, relations from equilibrium thermodynamics are needed.
But, the dissipative terms on the of Eq. do not represent equilibrium conditions at all. Hence, local
thermodynamic equilibrium must be assumed. While in a global sense the system is not in thermodynamic equilibrium,
each fluid particle is assumed to be in equilibrium, a valid approximation provided a fluid particle reaches equilibrium
with its surroundings quickly. The time scale on which a fluid particle reaches equilibrium with its surroundings can
usually be cast as some multiple of the collision frequency. Provided this time scale is much smaller than the time
scale characterizing the problem, local thermodynamic equilibrium can be assumed. In other words, local equilibrium
is attained when local changes in pressure and temperature are relatively small with respect to the far-field values of
pressure and temperature.

The classification of a system depends on the number of available energy transfer modes. Any system always has
at least two modes of energy transfer - work and heat. Simple systems only experience pressure-volume work, and
are not subject to work by electromagnetic fields or other means. Hence, there are two ways by which to change the
energy of a simple system - by pressure-volume work and by heat transfer. One thermodynamic property is needed to
fix the state of a system for each mode of energy transfer, so the state of a simple, pure system can be fixed with two
properties. From the first law of thermodynamics, for a simple, pure system:

de =08q+ dw (2.165)

where g represents heat addition and w represents work done on the body. 8 indicates a change that is not dependent
solely on the beginning and end states. For an internally reversible process, 8¢ = T'ds, where s is the entropy of the
fluid. For a pure fluid, the only mode of energy transfer besides heat addition is pressure-volume work, so dw = —Pdv,
where v is the specific volume. While no fluid is truly pure, a fluid can be approximated as pure as long as 1) the
components are well-mixed, 2) there is no significant reaction between the components, and 3) the components do not
break apart in the flow. Inserting these definitions into Eq. (2.163)), the Gibbs identity is obtained:

de = Tds — Pdv (2.166)

Because local thermodynamic equilibrium is assumed, the Gibbs identity also applies for irreversible processes.
The Gibbs identity is an exact differential, meaning that any form of a differential in e, s, and v produce the form

above. Substituting Eq. (2.1539) into Eq. gives a differential for enthalpy:

dh = de+ Pdv +VvdP

(2.167)
=Tds+vdP

Using Eq. (2.166)), the internal energy equation in Eq. (2.163) can be formulated into an equation for entropy
conservation.

ds dv aV; N
T——P—|=06;——-V- 2.168
p( dt dt) G”axj 4 ( )
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The second term on the [LHS]|can be related to the velocity using the continuity equation, Eq. (2.47):

- (2.169)

Inserting this into Eq. (2.168), and using the constitutive relation for a Newtonian fluid from Eq. (2.90):

ds = v o q
pTS. —PV-V = (—P&j+2ueij+W' VS,»,-) 0x; v (2.170)
ds Vi vV |
TS = 2peijot +MV-V)2=-V-7
p dr ’"‘e’fax,»+ ( ) !

Using the definition of 0V;/dx; in Eq. (Z.67), Eq. (2.170) can be rephrased using the property of the multiplication
of the symmetric tensor e;; with the antisymmetric tensor &;; given in Eq. (I8-10).

ds - —
pT = 2ueij(eij+5ij) +MV-V)? =V §
= 2ue}; + MV V)2~V ¢

2 2
2 1_ - — 2.171
=2u * + =V. = Sij + fV'VS,'j +}\,(V'V)27V'7 ( )
2u 2u) - 3
Tz \2 —
=5-+4(V-V)"=V-q
2u

and 10;; = Tr(t) = 0 because the volume change has been subtracted out in the definition of the deviatoric stress
tensor. In addition, 9;;8;; = 3. Egs. (Z.I71) and (2.T70) show that the flow is nearly isentropic (along streamlines) for
1) low-viscous-dissipation, 2) minimally compressive (no shock waves), and 3) adiabatic (no heat conduction) flows.

The classical Euler equations are a simplification of the Navier-Stokes equations for inviscid flow with no external
heat sources or conductive heating. Based on the equations derived previously, several analytical tools can be used
to assess numerical errors made in solving the Euler equations. For the steady Euler equations with no external body
forces, Eq. (2.161) shows that H should be constant along streamlines. If the inflow specify a constant H, then
the entire flow field is characterized by a constant H. Eq. (2.171) shows that for initially continuous flow variations
(such that £ ~ 0 can be assumed without significant loss of accuracy), s should also be constant along streamlines. If
the inflow [BCh specify a constant s, then the entire flow field is characterized by a constant s. Therefore, for totally
uniform inflow [BC, the classical Euler equations are equivalent to the potential flow equations, and the entire flow
field has constant entropy and total enthalpy.

- )

Divide Eq. (2.171) by T and then integrate over a volume:

i V)2

iyv-v .q /
/ p—dsdvz/ 2”C()a"'l—/ V-4 qu+/ 1av (2.172)
V() dt V() T Vo T Yo T

where a generic ¢ is added for completeness. Apply the chain rule to V- (¢ /T) term to introduce an equivalent
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expression for the (V- ¢)/T term, and then apply the divergence theorem:

p@dwrf 7" s —/ 94y —
V) dt S(r) V(

T [) T
entropy generation  entropy with heat flow  heat production (2 173)
2 )2
5 +e(V-V) q-VT
[ BT, T,
¥@) T Yo T

The second law of thermodynamics can be phrased in many equivalent manners. The Clausius-Duhem in-
equality is one manifestation of the second law of thermodynamics, and requires that the entropy generation
be greater than or equal to sum of the entropy with heat flow and heat production. This is equivalent to re-
quiring that the in Eq. be greater than or equal to zero. For the Clausius-Duhem inequality to
hold:

1 .
712 +¢(V-V): >0 (2.174a)
u

7-VT <0 (2.174b)

For the case of incompressible flow, V - V =0, so p > 0. For a spherically-symmetric radial expansion,
e;j =0, so € > 0. The second requirement shows that k > 0. The second law of thermodynamics therefore
places restrictions on allowable constitutive laws. Performing a change of variables according to the procedure
described in Section [2.8]to entropy variables discretely satisfies the second law of thermodynamics without
the need to include additional dissipative mechanisms such as the stabilization schemes discussed in Section

13 (51).

Equilibrium thermodynamics is now used to provide a relationship between entropy, temperature, and one other
state variable. Pressure is selected as this state variable because it is directly related to the and forces. A choice
such as p would complicate the equation, since it itself is a function of the other state variable, temperature. With this
choice, the derivative of entropy is given by the chain rule as:

ds ds\ dT ds dP

Specific heats are defined according to the amount of heat required to increase temperature, where several equiva-
lent forms are obtained using Eqgs. (2.166) and (2.167):

C,= (g;) (2.176a)
P
oh
- (8T>P (2.176b)
0s
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_ (9q
C, = <5T)v (2.177a)
de
_ (aT)V (2.177b)
ds
7 <8T>V (2.177¢)

Hence, the coefficient on the first term on the of Eq. is C,,/T. The second coefficient in Eq. (2.173)
can be determined by manipulating the Gibbs identity in Eq. (2:166). This manipulation gives a thermodynamic

relationship known as the Maxwell identity:
) 0
(E) (X (2.178)
oP ), oT ) p

The Gibbs function G is defined as:

G=e—Ts+Pv (2.179)
The derivative of G is, by the chain rule:
dG =de—Tds — sdT + Pdv +VvdP
= —sdT +vdP

where Eq. (2.166) has been used. Because the Gibbs identity is an exact differential, Eq. (2.180) can be
manipulated to provide the following relationships:

3G
. (aT>P 2.181)

oG
V= (8P>T (2.182)

Combining Eqs. (2.18T)) and 2.182)) gives Eq. (Z.178).

(2.180)

The expansivity, or volumetric coefficient of thermal expansion, is defined as:

1 [av
b=5(57),
_ Lo
P \IT/p
where dv /0T = 9(1/p)/dT was expanded to give the second form. Combining Eqs. 2-183), Z.178), 2.176), and
T3 sives:

(2.183)

ds C,dT  dP
e (2.184)

Substituting Eq. (2.184) into Eq. (2.171), assuming ¢ = —kVT, and including a volumetric heat source ¢ in the
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same manner as was done in Eq. (Z.153) gives the nonconservative energy equation:

dT dP ,52 =2
PC o — TR = 4 L(V-V) 4+V-(VT)4g (2.185)
u ———— —_———

d f X . volume viscous heat heat source
stored energy ~ compression wor viscous heat

An alternative form of the temperature equation is sometimes seen in the literature. Instead of taking entropy
as a function of pressure and temperature as in Eq. (2.173), the entropy could alternatively have been taken as
a function of specific volume and temperature.

ds ds\ dT ds\ dv

From Eq. [2.177)), the first coefficient on the is Cy/T. The second coefficient can be expanded:

os os oP
(av)T = (ap)T (av>T G

An isothermal bulk modulus is defined as:

oP
Kr=—-v| — 2.188
! Y <aV>T ( :
From Eq. (2.178), Eq. (2.183)), and Eq. (2.186):
d G dT dv
e e BKr—
de T dt dt (2.189)
_ Gl g 1dp |
T dt T'02 ar
Then, the entropy equation in Eq. (Z.171)) becomes:
dT  TBKrdp 7 o S
pCy— — Pkrdp _ v V-V)?2=-V-G+q (2.190)

dt p dt 2u
This is an equivalent expression of nonconservative equation, except that some authors erroneously conclude

that for negligible viscous heating and for incompressible flow, the equation reduces to pCydT /dt = —V - q.
This is incorrect, however, since the condition for incompressible flow given in Eq. is not the same as

(1/p)dp/dt =0.

By neglecting compression work, viscous heating, and volumetric viscous heating, the non-conservative form of
the energy equation is:

oT —
pCp§+pCpV-VT—V-(kVT)—q:O (2.191)

The porous media versions of Egs. (2-161) and (2.191) can be derived using properties defined in Section 2.2]
Both versions of the energy equation will be derived simultaneously because there is some overlap.

Eq. (2:191) has neglected compression work. Some accuracy could be regained by using a low Mach num-
ber model [20}/52]. Low Mach number models are based on splitting the pressure into a spatially uniform
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thermodynamic pressure P and a nonuniform hydrodynamic pressure P; < P:

P*(7,6) = P(O) +Ru(71) e

where P* is the total pressure. A pressure term appears in both the momentum equation in Eq. (2.94) and the
energy equation in Eq. (2:183). Low Mach models split the pressure such that the thermodynamic pressure
is used in the energy equation, while the hydrodynamic pressure is used in the momentum equation. This
decouples variations in density from acoustic waves, and essentially filters them out. The pressure [EOS]is
assumed to refer to the thermodynamic pressure. Substituting the [EOS]into the continuity equation provides
the additional equation needed to close the system. Two common additional simplifications are the 1) variable
density model, in which P is assumed constant, and 2) the Boussinesq model, where in addition to a constant
P, p is constant except in the buoyancy term in the momentum equation. Application of the Boussinesq model
and the more general low Mach model to an[HTR]suggests that a compressible model needs to be used for gas
reactor applications [20].

The time derivative in Eq. (2.161) is rewritten using Eqs. (2:38) and (2:29), giving Eq. (2:193)a. If fluctuations in
density are neglected, and no phase change occurs and the solid is stationary such that Wy = 0, Eq. (Z.193)a simplifies

to Eq. (Z.193)b.

APE)\ _ oerlpp)/(Ep))  OBrky) L[ o
< % >—> 3 o —Q/S[prfo'n/dS (2.193a)
f f
_, 9erlpr) (Ep)) (2.193b)
ot
The time derivative term in Eq. is first expanded using Eq. (2.30) to give Eq. (2.194).
or A O, . o, A oT
pCp <at> - <Pprfatf> + <Pfa[f> (Cor) + <Cpfatf> (pr)+
(2.194)

erton o+ 3s ] (22 )

Then, neglecting fluctuations in density and specific heat relative to fluctuations in temperature gives Eq. (2:193)a.
Next, Eq. (2:38) is used to rewrite the time derivative, as shown in Eq. (Z:193)b. Then, all variables are expressed
in terms of intrinsic averages and no phase change and a stationary solid are assumed such that W = 0, giving Eq.

ZI%)c.

T oT
PCy <at> = (P (Cop) <atf (2.1952)
. aTF) 1 L
— (ps) (Cpyp) <<tf> - Q/s. Ty - nde> (2.195b)
o (Ty)f
— () (Cpp) % (2.195¢)

The advective term in Eq. (2:161)) is first rewritten using Eq. (2.20)a, giving Eq. (2:196).
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— = 1 7 =
(V-(prHrVi)) = Vo AprHp Vi) + /S PrHV g1 ydS (2.196a)

— 1 =
— V~£f<prfo>f+ v /S prHfV p- 1 pdS (2.196b)

Then, Eq. (2.30) is used to expand the gradient argument. Then, neglect fluctuations in density to give Eq.

@.197)b.
er(prHyV 1) = (ep(ps) (Hp) + DAV 1) + BV ) B + (o) BV )+ (V) (2.197a)
= &7 () ()Y (V) + (o) (V) (2.197b)

Inserting Eq. (Z197) into Eq. I96)b, with the assumption of no phase change or moving solid such that V ; =0,
gives the final form of the advective term for the conservative energy equation:

(V- (psHfV ) = V- (Sf<pf>f<Hf>f<‘7f>f+ <Pf)f<ﬁf?f>) (2.198)

The advective term in Eq. (2.197) is first rewritten using Eq. (2.30):

(
N A A . - 2 2.199
o) (V1) €V + (GG T + o7 o) -vrpie &

'+ <f3fépf‘_7f>> (VIy)
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Then, neglecting fluctuations in density and specific heat simplify Eq. (Z.199) to Eq. (Z.200)a. Then, apply Eq.
(2:20)b to express the gradient term, giving Eq. (2.200)c.

0sCosV - VT7) = () (Cop) (V5 V) +210p) (Cop) (V) - (V) (22000
= PN (Cop) (V¢ -VI) + (0 ) (Cop) (V) - (V) (2.200b)
S (P Cop (V- VI) +(p) (Cop) (V1) - (efv<Tf>f + é /S ‘ Tfﬁ’fds> (2.200¢)

The integral in Eq. (2:200)c represents the tortuosity advective flux, or the increase in advection caused by me-
chanical effects of the solid on the fluid. It is neglected in Pronghorn. Averaging the heat conduction term first using

Eq. (Z:20)b gives Eq. (2:201)a. Then, apply Eq. (2:29) to give Eq. (Z:201)b, followed by Eq. (Z20)b to give Eq.
(2:201)c. By neglecting the fluctuation in thermal conductivity, Eq. (2.201))d results.
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1
<V~kaTf> — V. <kaTf> + v /S kaTfﬁ)de (2.201a)

s a1
= Veeglg) (VI + V- (VI + / kVT 7 pdS (2.201b)
Si
17 s a1
— Vo (k) <sfv<Tf>f +y / Tfﬁ’fds> +V kI + / keVT; 7 rdS (2.201c¢)
Si Si
1. 1
= V- (k) <efv<Tf>f + / Tf7z’de> +y / keVTs pdS (2.201d)
S; S;

The first integral in Eq. (2:201)d is often represented as the tortuosity heat flux (though some authors define the
tortuoisity heat flux based on the use of Eq. (2.20)a, rather than Eq. (Z:20)b) [53]]. This tortuosity heat flux is often
very small because convection dominates conduction, and hence it can be neglected [53]]. The second integral in Eq.
(2.201)d represents the average heat flux from the fluid to the solid at the fluid-solid boundary. This can be expressed
using Newton’s law of cooling as:

é/s KV pdS = o (L) = (17)) (2.202)

where a is the convective heat transfer coefficient between the two intrinsic phase averaged temperatures. To
obtain the correct units for the convective cooling term, ¢ represents the heat transfer coefficient /. (which appears in
Nusselt number correlations) multiplied by a,,:

o= ayh, (2.203)

where a,, represents the ratio of the wetted area through which heat transfer can occur in a length of dx per unit
volume of length &x, in the limit of dx going to zero. In other words, a,, represents the heat transfer area per unit
volume.

wetted heat transfer area of length dx

(2.204)

= 0 volume of length dx

For spherical particles, a,, is defined in terms of the solid area and volume, and then multiplied by (1 —¢€) to
reflect the portion of the volume that is solid.

 ad2)
= e yayzr Y
6(1—¢)
dp

(2.205)

Dixon and Cresswell suggest that a,, has an additional component in pebble bed systems that accounts for the
presence and shape of the solid particles [32]:

kg
. § 2.206
w = Aw 10k; + Nuk ( )

_
Correlations for Nu are discussed in Section Finally, the source term is Sy = —p;V s+ g — g for the conserva-
tive equation. For the nonconservative equation, the gravitational acceleration term was subtracted out earlier in the
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formation of the internal energy equation, and is not needed. Eq. (2:29) is used to rewrite the product term, giving Eq.

207

(S) = — PV B) —{ap) (2.207a)
— —erlp) (Vi) - (BY —e,(psV 5) - (BY —(ap) (2.207b)

For flows in which thermal and pressure gradients are not very large, density gradients will be much smaller than
velocity gradients at the microscopic level. Combining these derivations together gives the porous media versions of

Egs. 2.161) and 2.197):

%W +V-[es o) (H (VT |+ V- [(p) (B, V)

— —

=V (epkp) VAT ) + 0 (T = (T3)*) —elp) (V) B — {ag) =0

(2.208)

d f A =
(o) (Cor)? LD 4 (0 11 1Co (V93 20 (Cop) (V)97 + 200

V- (&) V(T ) + o (1) = (T,)°) — day) =0

This equation still leaves one term that needs to be described with a constitutive model. Thermal energy dispersion
arises due to additional mixing caused by the porous media due to 1) changes in flow direction initiated by the solid
particles, 2) recirculation flows within the pores, and 3) eddy diffusion in turbulence. Following a procedure very
similar to the derivation of the Reynolds stress transport equation, it can be shown that this thermal dispersion term
can be approximated with a gradient diffusion hypothesis as [53]]:

A

(P (o) (V VI m =V (kaV(Tp)) (2:210)

where k; is a thermal dispersion conductivity. The thermal dispersion conductivity captures enhanced diffusion
due to velocity and temperature perturbations in the porous media, and only appears in the fluid energy equation. The
thermal dispersion conductivity is in general a second-order tensor. Correlations representing k¢ + k; are frequently

given in the literature as the “effective fluid thermal conductivity”k,. Correlations for ks are discussed in Section|T2}
Egs. (2.208) and (2.209) written in Pronghorn’s notation become:

d(epsE - N

%‘FV'(SprfV)_V'(KfVTf)—Epfb -V-l—OL(Tf—TS)—qf:() (2.211)
d(eT N

PrCos % +epsCofV - VT + V- (kVTy) + Ty = To) — g5 =0 2.212)

Hence, E¢, Hy, Ty, Cpy, and k¢ represent the fluid intrinsic average total energy, total enthalpy, temperature, specific
heat, and thermal conductivity, respectively. o represents the extrinsic average convective heat transfer coefficient
(which is the same for both the fluid and solid, and hence can also be interpreted as the intrinsic average convective
heat transfer coefficient). g represents the fluid extrinsic average heat source.

Eq. (2.212) is sometimes shown in a conservative (but more restrictive) form in terms of pC,T. The conserva-
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tive time and advection of pC,T' can be expanded as:

@ +V-(pC,TV) = CPTW—F
d (2.213)

oT aoC - —
+pCp +pTa—tp +pC,V -VT +pTV -VC,

where the continuity equation cancels. Provided the specific heat is constant in both space VC, = 0 and
time dC,/dr = 0, the following equality exists, and the nonconservative energy equation can be written in
conservative form:

d(epC,T)
or

where porosity has been inserted as appropriate.

- T -
+V-(epC,TV) = pcp% +epC,V -VT (2.214)

As a final remark, the governing equations in Pronghorn allow for compressibility of the fluid, so long as the
compression is not so large that compression work or volume dissipative effects become important.

2.6 The Solid Energy Equation

To obtain the solid energy equation, simply set V =0in Eq. 22T1)) or (2.212) with € replaced by 1 — € to reflect the
fraction of the volume that is solid. The assumptions made in the derivation of the solid energy equation are therefore
the same as those made in the derivation of the fluid energy equation, except that the solid is also assumed stationary.
Because [EOS] are often only available for solids in terms of pressure and temperature, the nonconservative energy
equation in Eq. (Z.212) is used exclusively for the solid:

(1 - 8)pscps% -V (KSVTS‘) +a(TS‘ - Tf) —qs = 0 (2215)

where K is the effective solid thermal conductivity that represents the effective thermal dispersion in the solid
phase, py represents the solid intrinsic average density, and Cp, represents the solid intrinsic average specific heat.
Correlations for K are generally more complex than those for K¢, because K captures the combined effects of solid-
to-solid radiation, solid-fluid-solid conduction, and solid-to-solid conduction. Models for these components of K, are

given in Section

Ks = Kradiation 1 Kfluid conduction + Ksolid conduction (22 1 6)

Even if there are no heat sources in either phase, the temperatures of the phases will not match at the edges of the
bed if any heat transfer occurs from the bed to the ambient. The velocity channeling effect at the bed edges causes
higher convective heat transfer between the walls and the fluid [54]. Because the fluid has some nonzero heat capacity,
there is a time delay for heat transfer to the solid, by which time the fluid has continued through the bed, resulting in a
temperature difference between the solid and fluid phases. Fig. [7/|shows solid and fluid temperatures for flow towards
the right of a 300 K inlet temperature with walls held at 400 K [5]]. This effect has also been observed in the SANA
validation tests [55]].

58



|!h
08
et

Figure 7: Solid and fluid temperatures for two vertical planes cut through a cylindrical bed [5]]. Flow is to the right,
entering with a temperature of 300 K with walls held at 400 K. The slight discontinuity in the temperatures is caused
by neglecting axial conduction.

Similarly, if there is a large k,/ky, differences in conductive heat transport will also produce temperature differ-
ences. So, even if the phases are in approximate thermal equilibrium, using two energy equations will still provide
more accurate results. Fig. [7]also illustrates why radiation heat transfer from the pebbles to the wall can be significant
- despite touching the wall, the solid is not necessarily at the same temperature as the wall.

While the volume averaging approach was used to obtain Eq. (2:213)), most porous media codes interpret Ty as a
volume-averaged solid surface temperature, rather than as a volume average over all regions of the solid [[10,[3649,/50L
56]. This assumption permits a relatively straightforward solution of the solid temperature profile. This approach is
most commonly performed by using an element-wise average or maximum 7 as a Dirichlet[BC|imposed on the solid
surface. For pebble fuels, because each solid is relatively small, without significant loss of accuracy a single Dirichlet
temperature [BC|is imposed over the entire surface, reducing the solution of the fuel temperature profile to a 1-D heat
conduction problem in many independent pebbles:

oT,
(PCp), 5 =V (kpVT,) = (1—€)ds =0 (2.217)

where p subscript refers to “pebble,” but strictly speaking the above formulation is also valid for non-spherical
solid shapes. ¢; is the heat source in the solid phase, and to properly conserve energy in the fuel temperature solution,
this quantity must be scaled by 1 — €. No pebbles are explicitly modeled in the flow field, but are rather superimposed
on the problem, i.e. a “representative” pebble is modeled at spatial locations that may or may not actually correspond
to a physical pebble location.

For steady-state 1-D radial conduction with constant thermal properties and uniform ¢;, the analytical solution
for a single-region pebble is linear in ¢ and 7,,(R,) and quadratic in R),:
(1—-2)g

Tp(r) _ = s (rz _RI2;) + TP(RP) (2.218)
P

Unfortunately, for the [TRistructural ISOtropic (TRISO)|that is used in pebble fuels, a significant level of hetero-
geneity exists in a single pebble. Fuel kernels on the order of a mm in size are packed in a graphite matrix that is
most often surrounded by a graphite shell, with a pebble diameter on the order of cm. This poses significant problems
for even performing a 1-D conduction solution in a pebble due to the randomness and complicated mesh required.
While Eq. (2:217) can be used in the homogeneous graphite shell, a common simplification of the fuel-graphite matrix
region involves homogenization with spatially-uniform thermal properties. A homogenized fuel temperature 7). and
graphite matrix temperature 7, are then solved in this region, with each equation having the form in Eq. m,
with the inclusion of an extra phase coupling term to simulate heat transfer between the [TRISO] particles and their
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immediately-surrounding graphite matrix [57]]:

ATy, .
(PCp)py—, =V (kp VT, )+ (Tpf - Tp,,,) —(1-8)g;=0 (2.219)
a7,
(PCp)pn =, =V (kpu VTp,) =M (Tpf - Tpm> =0 (2.220)

where p subscript denotes the homogenized fuel temperature, p,, the homogenized graphite matrix temperature,
and 7 is a coupling coefficient between the phases. Average values for (pC,), and k, need to be determined. The
simplest averaging techniques involve parallel and series heat transfer arguments such as sometimes used in evaluating
Ky in Eqs. (I1.2) and (TT.3). Strictly parallel or series heat transfer provide bounds on the actual thermal properties,
but differences in pebble centerline temperatures have been shown to differ by 60°C between these two methods for
gas reactor systems [[57]]. Even simpler, some have just used graphite thermal properties for the fuel region, since the
graphite matrix constitutes the majority of the region [58]]. More advanced Monte Carlo methods have been developed
to solve the conduction problem to provide reference solutions for least-squares fitting of (pC,), and k,, but are
relatively expensive [57,59].

These Monte Carlo methods are based on similarity in the Poisson equation and the neutron diffusion equation
with no fission or absorption. If custom cross sections are defined for the simulation to obtain equivalence be-
tween the thermal conductivity and the neutron diffusion coefficient, then the Monte Carlo results are stochastic
solutions to the heat conduction equation, and tallies can be used to evaluate effective thermal properties [59].
Special treatments are required at boundaries, since the Dirichlet or Neumann-type[BCh used in the heat equa-
tion do not have immediate analogues in the neutron diffusion equation and the diffusion equation is invalid
near boundaries. Scaling the problem to obtain a smaller mean free path and/or imposing transport-corrected
m on the Monte Carlo output results have both been shown to be effective [59].

It may simply be sufficient to evaluate (pC,), and k, as the average of the series and parallel heat transfer bounds
to a first order approximation [59]. Reference solutions or other analytical approximations are required for estimating
M, however. Assuming a method exists for computing a homogenized solid temperature profile, for[TRISO] fuel, this
homogenized temperature does not correspond to the fuel kernel temperature, which is most often the parameter of
interest for reactivity feedback calculations. To obtain the temperature distribution within a single [TRISO] particle,
another similar level of multiscale extrapolation is performed. A 1-D heat conduction solution can be performed
within a “representative” particle by applying a Dirichlet temperature obtained from either the fuel region
average or peak temperature, depending on the metric of interest. This multi-level superposition of pebble in a bed
and fuel particle within a pebble has been frequently used [[11}/57]], and is very straightforward to implement within the
[MOOSE MultiApp system. Each “animal” is a MultiApp that has many capabilities in place to exchange
information with otherMOOSE|Mult iApps. The tree-level coupling hierarchy between applications permits
straightforward multiscale analysis of pebble bed reactors.

A MasterApp controls the execution of a coupled simulation of any number of applications. A multiscale core
[Thermal-Hydraulic (T/H)|simulation can be performed by setting Pronghorn as the MasterApp that controls many par-
allel instances of a fuels performance MultiApp such as BISON [60]. This fuels performance MultiApp receives fuel
surface temperatures from Pronghorn and solves many fuel pebbles independently. Each of these fuels performance
MultiApps would then each control a[TRISO] performance MultiApp that solves for a representative [TRISO] particle
in each fuel pebble. This multiscale coupling capability is available in Pronghorn and all other MOOSE]applications,
and will be described in more detail in the user manual.
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2.7 The Legacy Pronghorn Equations

In order to compare physical results with the legacy version of Pronghorn circa 2008, additional kernels and [BC
are included that represent additional assumptions that are more restrictive than the governing equations discussed
in Sections and [61]]. Pronghorn includes capabilities for using the same equations as the legacy
Pronghorn, except that density may come from any (i.e. the ideal gas law is no longer hard-wired into the source
code). The remainder of this section presents the mass, momentum, fluid energy, and solid energy equations for
backwards compatibility.

-
The legacy version of Pronghorn neglected the advection and time terms in the momentum equation and set b = g,
giving the following momentum equation [61]:

eVP—ep, g +WpsV =0 (2.221)

Eq. (2.221) is solved for momentum. Substituting pf‘_; in Eq. (2.221) into the continuity equation in Eq. (2.49)
gives a Poisson equation that can be solved for density or pressure:

saa%f 4V % (ep; g —€VP)| =0 (2.222)

The legacy fluid energy equation was Eq. (2.212)), written in conservative form according to Eq. (2.214), which is
only valid if the specific heat is constant. Because the legacy Pronghorn always assumed the ideal gas law, the specific
heat was always constant (this is an inherent assumption in this [EOS)), which is why the conservative form was valid.
However, the modern Pronghorn removes this restriction, and in general the conservative form is not valid. Eq. (Z.213)
was used for the solid energy.

2.8 A Unified Approach to Solving the Navier-Stokes Equations

The previous sections have described the derivation of the conservation of mass, momentum, and energy equations for
the fluid and solid phases for a general compressible fluid and a stationary solid. Because the coupling of the fluid and
solid energy equations only occurs through the convective heat transfer term, the solid energy equation is not tightly
coupled to the fluid equations, and is excluded from the discussion in this section.

The Navier-Stokes equations, on the other hand, must be solved in terms of the three components of velocity (or
momentum) and two thermodynamic state variables, such as P and T or pE and p. One choice of solution variables
will not necessarily be ideal for all flows. For example, flibe is a nearly incompressible fluid, since it’s variation with
pressure is very small. If the Navier-Stokes equations were solved for velocity, density, and temperature, determining
pressure from the [EOS] as a function of density and temperature would require a very large number of significant
digits (and would introduce stiffness and contamination of the solution), since density varies so little with pressure.
For molten salts, (dp/0P)r ~ 1.73 x 107, giving a compressibility o7 = 8.66 x 107!, a very small number [62]!
Numerical error in the density will result in very inaccurate pressure calculations, requiring an incompressible model
[15,/49]]. Solving the governing equations for some other variable besides density would be a wise choice. Gases
are often treated as compressible, in which case density varies strongly with both pressure and temperature, and the
best choice of solution variables are often the conserved quantities of mass, momentum, and energy [63|]. There is no
clean dividing line between compressible and incompressible flows, so some approach for unifying these flows under
a single set of solution variables would be desirable.

Section[2.5|showed the derivation of the fluid energy equation in terms of a conservative variable (pE) and a primi-
tive variable (7). Similar derivations could be performed to transform the mass, momentum, and energy equations for
the conserved variables to equations for any choice of solution variables. However, Hauke and Hughes have developed
a unified approach to solving the Navier-Stokes equations for any choice of solution variables that does not rely on
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direct manipulation of each equation. This unified approach is obtained by multiplying the conservative form of the
compressible Navier-Stokes equations by matrices representing the derivatives of the conserved quantities with respect
to a new set of variables. This permits the solution of both incompressible and compressible flows, for any solution
variables, with only minor modifications to the source code and no lengthy by-hand derivations that use thermody-
namic relationships to transform equations of one variable to equations of a different variable [64]]. See the derivation
of Eq. (2.212)) from Eq. (2.2T1)) in Section[2.5]for the alternative (but not conducive to easy implementation) approach
to what is described in this section.

The unified solution method is best described by writing the system of fluid equations to be solved in Pronghorn
in condensed form as:

1 S=0 (2.223)

- . - . . . . - . . . =g .
where U is the vector of unknowns, F is the inviscid flux vector, G is the diffusive flux vector, and S is the source
vector:

pr psVi 0 0 ?
psVi psVAVi+PY; 0 —epsg1 +WpVi =P
U= |pVa|, Fi=|p/VaVi+Pou|, Gi=| 0 |, S=| —eprga+Wpslr— PBBTSz (2.224)
psVs PsVaVi+ PSy; 0 —€pgs +WpsVs— Pas
prE HppyVi Kfae —epbiVi+a(Ty —Ty) — gy

where for simplicity € is kept within the time differentiation term, though it should be noted that it is assumed
time-independent in Pronghorn. €VP has been expanded as V(eP) — PVe such that eP could be moved inside the flux
term. This equation can be written in quasi-linear form using the chain rule:

A(el) o o0 0 W) - =
o +8Alax,+FlE)x,_axl<Kuaxj>+S 0

(2.225)
= R(U)
where A; are the inviscid flux Jacobian matrices:
oF;
A= B‘I_JYI (2.226)
and K;; are the diffusive flux Jacobian matrices:
o -
K= =G, (2.227)
an

_,and 75(17 ) is the strong residual vector. Fiis homogeneous of degree 1 in the conservative variables U if I?,-(aﬁ) =
oF;(U), which occurs if P(ap,e) = oP(p,e), where o is a positive constant. If this homogeneity property holds, then:

— —>

F.—AT (2.228)
While Eq. (2.228)) does not hold for a generic it holds for the ideal gas
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Eq. (2.228) for the ideal gas law can be shown for F 1 by simply performing the multiplication:

| pVi )
P
PV pVivi+(y—1) [PE—%P(V1V1+V2V2+V3V3)]
A] sz = le 1% (2.229)
% pViV3
PE VipE+Vi(y—1) [pE—%p(V1V1+V2V2+V3V3)}

Recognizing the ideal gas [EOS| for pressure from Eq. (7.I0)b and the definition of total energy from Eq.
(2.154) and total enthalpy from Eq. (2.160) the above becomes:

p pV1
% pVivi+P
A |pV2| = pViVa (2.230)
pV3 pViV3
pE Vih

which matches F | defined in Eq. (T5.26). A similar procedure can be performed for AU and A3U.

Eq. (2:223) is an equation for the set of variables in U given in Eq. (Z.224), and has the following weak form:

S AelU) oW —» oW . U — — O 17
/ w- (EU)—E—W~Fi+—W-K,-j—U+W-S dQ:/ —eW-Fi—i—W-K,-j—U nidl (2.231)
Q ot ox; ox; ox; 0 ox;

Instead, the governing equations can be solved for an arbitrary set of variables U by replacing U /9E; by M U /&,
where & is either the spatial or time derivatives. Then, in order to retain the same type of weak form structure, multiply
all terms in the weak form by M~! from the left, giving:

n:dT (2.232)

L oel) oW = oW . U - - o o AU
W - e Fidt— Ki—4+W- S dQ:/ —eW-F:+W-K;;—
/Q ot eaxi it ax; ox; + o) & it Y ox;

= = . . = . . . . . .
F;and S are then evaluated at the new solution variables U. M is a matrix representing the partial derivative of
the conservative set of variables to the new set of variables:

oU
M= — (2.233)
U
and K; ; 1s defined as:
K, =M 'K;M (2.234)
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In order to evaluate the strong residual in Eq. (2.223)), reverse-integrate Eq. (2.232) by parts:

Ael) U =0 9 W\ -
Ai—+Fi— —— | KiM=— | + 5§ =0 2.235
o oy Ty e (MM | T (2235)
where A; is defined as:
A =M'AM (2.236)

To solve the Navier-Stokes equations for any set of variables simply requires determining Eq. (2.233)) and forming
the above matrices. M will depend on the[EOS] Not only is this method clean and easy to implement, but by beginning
from the conservative Navier-Stokes equations, incompressbile flows can be simulated while retaining two important
features of compressible [Finite Element (FE)| formulations [63]:

1. A conservative method, which is important for obtaining correct shock structure;

2. Flexibility to use equal-order interpolation functions. [FE]simulations of incompressible flows are often subject
to strict requirements to use different interpolation orders for the solution variables that are not present for
compressible flows.

For incompressible fluids, density is constant, so oy = B = 0. If density is selected as a solution variable for a
nearly incompressible system, entries in the inviscid flux Jacobian matrices defined in Eq. for the new system
of variables will tend to infinity as a7 and B tend to zero. This condition would certainly be met for molten salts, with
air being on the order of 1071, In other words, the condition number of the A; gets increasingly large, and the system
stiffer and stiffer, as the system becomes less and less compressible [[63]]. Using the conserved variables p, pV, and
pE will also not behave well in the incompressible limit.

By using either entropy variables or P-V-T variables, both compressible and incompressible flows can be simu-
lated, with the incompressible limit well-behaved [51}/63]]. In addition, the use of entropy variables yields symmetric
A, K j» and M matrices, which generally improves the iterative solution [51]. The matrices involved may become
rank deficient as a7 and f3 tend to zero, so the inverses should always be computed analytically. A challenge with this
unified approach is defining a stabilization scheme that works well for both compressible and incompressible flows,
since the stabilization parameter is often defined separately for these regimes. A simple interpolation scheme has been
proposed [63]]:

ko
M
TSUPG,inc + (ﬁj) TSUPG,comp
TSUPG = (2.237)

ko
Ma
1+ ()

where Tsy PG inc and TsupG,comp are the[Streamline-Upwind Petrov-Galerkin (SUPG)|stabilization matrices derived
for incompressible and compressible flows, respectively; Ma is the Mach number; and M,, and k, are constants.

The following sections provide derivations of the M matrices for several choices of solution variables. Work is
currently ongoing to implement this change-of-variables approach to solve for incompressible flows. All choices of
variables give results of comparable accuracy as the mesh is refined, but differences are present for coarser meshes [63]].
In taking the derivatives of variables with respect to one another, derivatives of velocity with respect to thermodynamic
properties are zero because velocity is strictly a flow property that is only influenced through the governing equations,
rather than through thermodynamic relationships. In addition, when taking derivatives of a variable with respect to one
thermodynamic quantity (such as the derivative of density with respect to pressure), the other thermodynamic variable

in U must be held constant. Throughout the derivations that follow, the Gibbs identity in Eq. and the Maxwell
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identity in Eq. are used, along with definitions of specific heats in Eqs. (2.176) and (Z.177), the volumetric
thermal expansion coefficient in Eq. (2.183)), and the enthalpy and total enthalpy in Egs. (2.139) and (2.160). The

compressibility a7 will be used, and is defined as:

Density Primitive Variables - p, V,and T

For a transformation from the solution variables in Eq. (I5.25) to the following primitive variables,

172[0 Vi

M and its inverse become [63]]:

pCv

Pressure Primitive Variables - P, V,and T

For a transformation from the solution variables in Eq. (15.25) to the following primitive variables,

M and its inverse become [63|]:

por 0

parV, p

M= pOCTVQ 0
porVs 0

parH —BT pV,

ZooDo o
cocoo

S OvI=O
(=)

S o=
o=
= | oS O O

- T
U=|:P Vi Vo W T}

2 cooo
NS
Soooo

(2.238)

(2.239)

(2.240)

(2.241)

(2.242)

(2.243)



PC,—pBHAPBIVIZ BV BV, BV B
porCy orCy orCy orCy  orCy
{ -V 1 0 0 0
M'1== -V, 0 1 0 0 (2.244)
P —V3 0 0 1 0
par | VI3—(poarH—BT) v " ) 1
parCy Cy Cy Cy Cy

2.9 Boundary Conditions

This section specifies the[BCk for the governing equations derived in the previous sections from a theoretical perspec-
tive. Section [6] defines the that arise from the The will be presented here for the general governing
equations for a Newtonian fluid, and then simplifications will be made for the particular application range expected.
All[BCk are derived by considering a general interface between two regions. Statements can only be made about the
normal components of quantities of interest such as velocity and momentum. This is also reflected in the [BCp actually
implemented within the finite element framework.

If an interface S is defined as a function S(¥,¢) = 0, the material derivative of S must also equal zero:
oS  dx; oS
— g 2.245
ar T ar o ezl
A unit surface normal to the surface S is defined as:
Vs
n=— 2.246
"= 9] ( )
Inserting this definition into Eq. (2:243)) and dividing through by |VS|:
aS/ot  dx;
n=0 2.247
vs| o (2:247)
Only the normal component of velocity appears in Eq. (2.247), which demonstrates why only conclusive
statements can be made of the normal component of quantities of interest.

requires V.3 = =0, where ¥ is a unit tangential vector to the surface. These are to the discretion of the modeler,
and only the normal conditions are strictly required from conservation of mass, momentum, and energy. These required
are derived by selecting a control volume straddling an interface, where the interface moves with velocity V. The
control volume selected moves with the interface, with relative velocity V' defined by:

Itis commonplace to see@ applied to tangential components of velocné such as in the no-slip condition which

—

Vi=V-Vv.7 (2.248)

The [BCk are developed for a relative velocity, where the control volume moves with the interface. This is required
so that integrals over the control volume are finite, which in the limit of zero volume signifies that the integrals also
go to zero. All jump terms are evaluated on either side of the interface. Gradients are typically large directly at the
interface, but on either side are small, and this observation will justify neglecting some terms in the BC.

66



2.9.1 The Continuity Equation

Balancing mass as in Eq. over an interface moving, with the positive direction defined pointing from side “1”
to side “2”:

2

d -
/v Py = —pV'- 7| +mass flow || to interface (2.249)

ot

1

In the limit of the thickness of the control volume (perpendicular to the interface) going to zero, the term on the
[CHS]and the parallel flow term both go to zero. Then, the mass balance[BClis given in Eq. (2.250)a.

2

pV'-7| =0 (general interface) (2.250a)

1
2

V.7| =0 (material interface) (2.250b)

A material interface is defined as an interface between two materials that do not exchange mass, such as the case
for a fluid flowing along a solid boundary, assuming that none of the fluid converts to the solid and vice versa. To
reduce Eq. (2.250)a to a relation for a material interface, the speed of the material interface is defined to be:

vV=V.7 (2.251)

Inserting Eq. (Z251) into Eq. (Z250)a, for V = V; or V =V, gives Eq. (Z.250)b. For a material interface with no
exchange of material, the normal component of the velocity must be continuous. Hence, for a solid wall that has zero
velocity, fluid in contact with that wall must have a zero normal component of velocity. This is sometimes referred to
as the “kinematic,” or “no penetration” @

2.9.2 The Momentum Equation

Balancing momentum as in Eq. (2.58) over the same control volume:

2

ad o P
Al 3 (pV/)d¥ = —pV/Vi-H| +oinj| +fi, +/¥ pgid ¥ + momentum flow || to interface (2.252)
1 1

where f; represents the resultant surface tension force. Note that the positive sign on the net contact force term
o;;n; occurs due to the definition of ©;; representing the force acting on the volume by its surroundings. In the limit
of the thickness of the control volume going to zero, Eq. (2.253)a arises. Inserting Eq. (2.251)) into Eq. (2.253), Eq.
(2.253)a reduces to Eq. (2.253)b for a material interface.

2 2
pv,/V; M| =o;nj| +fsi