

AGR Program Path Forward

July 2021

Paul A Demkowicz

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

AGR Program Path Forward

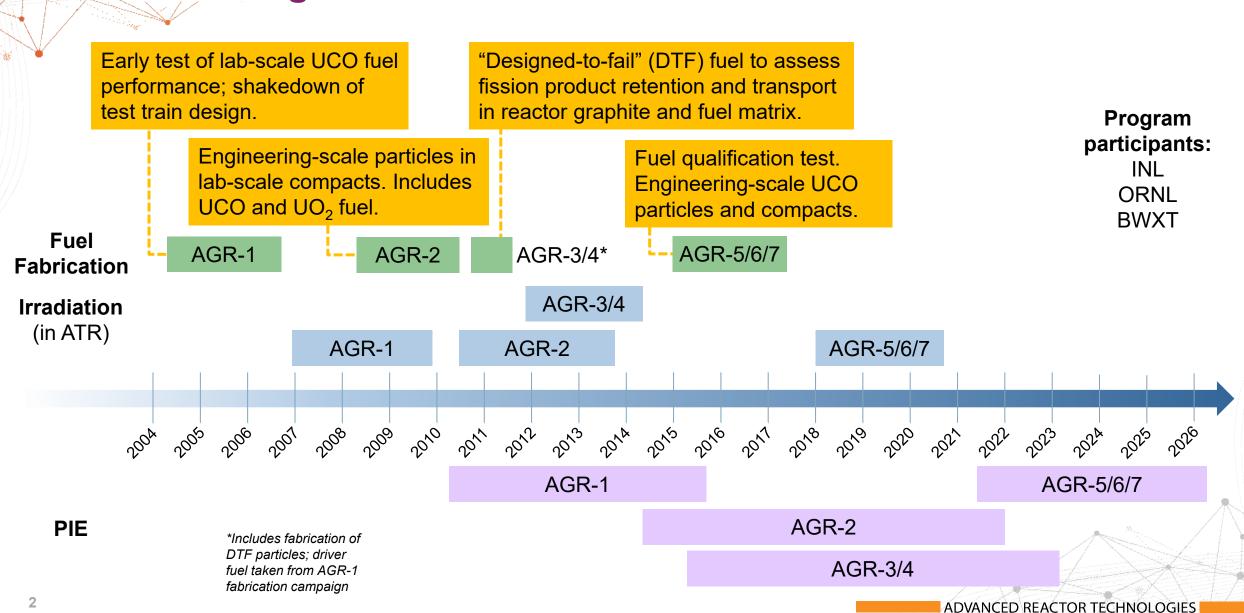
Paul A Demkowicz

July 2021

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 July 13, 2021


Paul Demkowicz, Ph.D.

AGR Program Technical Director

AGR Program Path Forward

AGR Program Timeline

Major Tasks to Completion

- AGR-3/4 PIE and data analysis
- AGR-5/6/7 PIE and data analysis
 - Priority is to understand Capsule 1 behavior
- Oxidation testing
- Reporting

A Decade of Changes in Coated Particle Fuel Development

~2010

- AGR fuel form:
 - 425 µm LEU UCO TRISO particle
 - Cylindrical compact
- Intended for prismatic mHTGR

Impact of modified fuel designs and different operating conditions will have to be evaluated as part of fuel qualification

2021

- Large variety of reactor designs
 - ~1 MWe to ~300 MWe
 - Prismatic, pebble bed
 - Coolant: Helium, Flibe
- Many fuel design variations
 - Kernel composition
 - Kernel size
 - Coating architecture
 - Matrix material
 - Fuel form (compact, pebble)

Coated-Particle-Fueled Reactor Concepts and Fuel Designs

Developer	Description	Fuel design
X-energy	Xe-100 (200 MWt PB HTGR)	UCO TRISO fuel pebbles
	Xe-Mobile (1 – 5 MWe microreactor)	UCO TRISO
Framatome	SC-HTGR (625 MWt)	UCO TRISO fuel compacts
UltraSafe Nuclear	MMR (15 MWt microreactor)	TRISO particles in SiC matrix ("FCM")
BWXT	Microreactor (50 MWth)	UCO TRISO compacts
	BANR ⁶	UN TRISO in SiC matrix
Kairos Power	KP-FHR (140 MWe salt-cooled SMR)	UCO TRISO fuel pebbles
	HERMES (50 MWt test reactor)	UCO TRISO fuel pebbles
Urenco	U-Battery 10 MWt microreactor	UO ₂ TRISO fuel compacts
Westinghouse	eVinci 7-12 MWt microreactor	TRISO or other
StarCore Power	20 MWe HTGR	TRISO
HolosGen	22 MWt scalable microreactor	TRISO in fuel compacts
Radiant Nuclear	>1 MWe microreactor	TRISO
ORNL	Transformational Challenge Reactor	UN TRISO in SiC matrix
NASA	NTP, NEP	Various

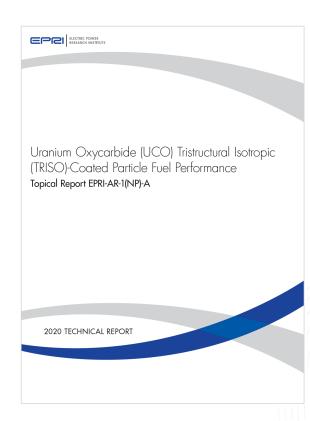
Useful references:

- Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition, IAEA (https://aris.iaea.org/Publications/SMR Book 2020.pdf)
- https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant
UCO UO ₂ UN	425 μm 500 μm 800 μm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	OFYC SIC Inc Buffer
UCO UO ₂ UN	425 µm 500 µm 800 µm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	AGR-5/6/7 reference fuel

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	
UCO UO ₂ UN	425 µm 500 µm 800 µm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	Figure source: X-energy


Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	Pebble Cross Section
UCO UO ₂ UN	425 µm 500 µm 800 µm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	Low Density Graphite Fuel Annulus Fuel-free Outer Matrix Shell Figure source: Kairos Power

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	
UCO UO ₂ UN	425 µm 500 µm 800 µm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	https://usnc.com/fcm-fuel/

Kernel	Kernel diameter	Coating architecture	Matrix material	Form	Coolant	
UCO UO ₂ UN	425 µm 500 µm 800 µm Other/ unknown	"Standard" TRISO "Modified" TRISO	Graphite and carbonized resin	Standard cylindrical compacts Standard 60 mm pebbles Modified compacts (different size and packing fraction) Modified pebbles (different diameter; variable density) Custom geometry via AMM	Helium Flibe	Z50 µm Terrani et al., J. Nucl. Mater. 547 (2021) 152781

Topical Reports

- "Uranium Oxycarbide (UCO) Tristructural Isotropic (TRISO)-Coated Particle Fuel Performance," Topical Report EPRI-AR-1(NP))-A, 3002019978 (NRC safety evaluation issued Aug 2020)
 - Topical report preparation process was enhanced by engagement with reactor developers and fuel fabricators
 - Prominent objective was to focus on particle performance to emphasize "technology neutral" aspects of current results
- Topical report candidates:
 - Fission product transport in fuel and core materials based primarily on AGR-3/4 data and analysis
 - Empirical evaluation of fission product release from all AGR experiments
 - AGR-5/6/7 fuel performance, including margin testing to ~1450° C time-average temperature

AGR Program Lessons Learned Evaluation

Topical areas:

- Fuel fabrication
- Irradiation
 - AGR-2 and AGR-5/6/7 suffered numerous issues
 - TCs
 - Capsule design
- PIE
- Fuel performance key findings: impacts on future fuel qualification efforts
- Fuel qualification and NRC interactions

Concluding Remarks

- The AGR program is considered a success story by DOE
 - Funding longevity with good results and a defined completion target date
- Core activities remaining are defined
 - AGR-3/4 and AGR-5/6/7 PIE and data analysis
 - Oxidation test program
 - Reporting
- Current DOE direction is that qualification of other TRISO fuel forms will be led by individual vendors

