

Advanced Electron Microscopy of TRISO coated Particles: FY2021 Overview

July 2021

Subhashish Meher, Isabella J Van Rooyen, Boopathy Kombaiah, Karen E Wright, Zhenyu Fu, Yong Yang

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Advanced Electron Microscopy of TRISO coated Particles: FY2021 Overview

Subhashish Meher, Isabella J Van Rooyen, Boopathy Kombaiah, Karen E Wright, Zhenyu Fu, Yong Yang

July 2021

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Subhashish Meher

Materials Scientist Irradiated Fuels and Materials Department, Idaho National Laboratory

Advanced Electron Microscopy of TRISO Coated Particles: FY2021 Overview

Subhashish Meher, Isabella van Rooyen, Karen Wright, Boopathy Kombaiah Idaho National Laboratory

> Yong Yang, Zhenyu Fu University of Florida

Goals and Objectives

Objectives

- Understanding Effects of Irradiation on TRISO layers
- Fission product chemistry and behavior in UCO kernel
- Identify and Understand Fission Product Transport Mechanisms in TRISO Coated Particles

Outcomes and Impact

- Improve Predictive Behavior Modeling
- Kernel Behavior: Release from kernel
- Kernel chemistry evolution with irradiation and kernel retention of fission product

Work Performed in FY21

- TRISO- Kernel Microscopy Report INL and UF
- TRISO- SiC Layer Microscopy INL
- Deliverables/Outcome

AGR-1 and AGR-2 Particle Irradiation History and Characterization

			D		SiC layer: FP Distribution and Microstructure				
Particle	Ag Retention	Type Burnup (% FIMA) Ke	Kernel	EPMA	FIB	STEM	PED	Radiation Damage	
AGR1-632-034	0.65	Baseline	11.4						
AGR-523-SP01	0.16	Variant 1	17.4						
AGR1-131-066	0.39		15.3						
AGR1-433-001	0.66	Variant 3	18.6 Safety tested*						
AGR1-433-004	0.66	ORNL Lab	18.6 Safety tested*						
AGR1-433-003 AGR1-433-007	0.66		18.6 Safety tested*						
AGR2-223-R06 (Mount D07)	0.08		10.8						
AGR2-223-R034 (Mount D06)	0.84		10.8						
AGR2-222-RS36 (Mount D25)	2-222-RS36 (Mount D25) Not detectable Eu = 0.8	BWXT	12.55 Safety tested*	FY2020					
AGR2-222-RS19 (Mount D26)	0.20 Eu = 0.54		12.55 Safety tested*	FY2020					
AGR2-222-RS27 (Mount D26)	0.11 Eu = 0.51		12.55 Safety tested*						
AGR2-633-RS28 (Mount D42)	<0.21	1	7.46	FY2020	FY2020	FY2020	FY2021**	FY2021**	FY2021**
AGR2-633-RS09 (Mount D43)	0.88		7.46		FY2020	FY2020	FY2021	FY2021	FY2021
AGR2-633-RS01 (Mount D43)	0.76	1	7.46	TBD	TBD	TBD	TBD	TBD	
Unirradiated Baseline As- Fabricated	N/A	AGR1	N/A						
Unirradiated Baseline As Fabricated and Compacted	N/A	AGR2	N/A	FY2021**		FY2020			

Completed previous years

Planned FY2021

** in progress

* 1600°C, 300h

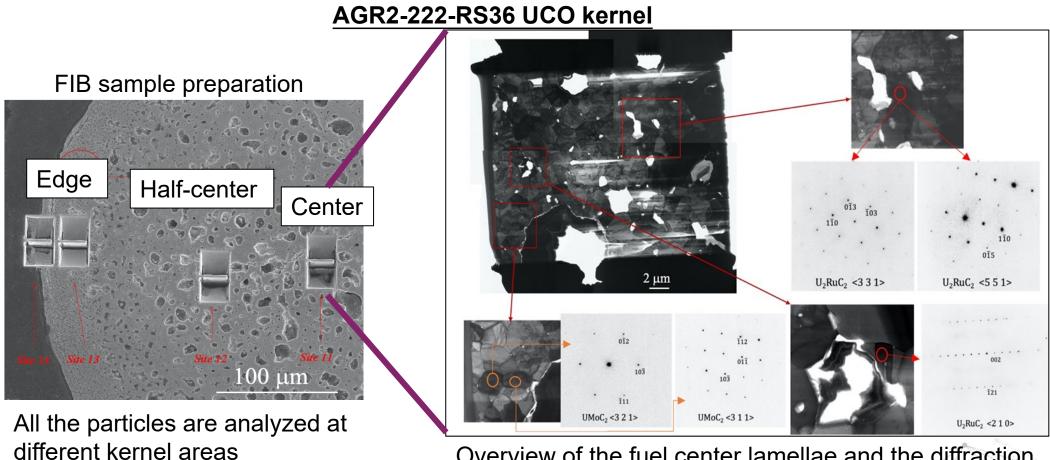
Report: Irradiated UCO Fuel Kernels of AGR-1 and AGR-2 Particles

Motivation:

- The knowledge of phases and elemental distributions of interested fission products can be used to determine
 the oxygen partial pressure inside the fuel particles while being in-pile. The work also provides
 thermodynamic validations for modeling the fission products behavior in UCO fuel kernels.
- The knowledge of irradiated microstructure can provide significant input for future fuel-performance modeling (e.g., BISON model).
- Knowing the spatial distribution and chemical state of Pd and Ag is particularly critical for ensuring the integrity of SiC coating layer and for controlling the release of Ag.

0,		5 ,			
UCO fuel ke	ernel	AGR-1	AGR-2		
Diameter (µ	m)	348.4 ± 8.3	426.7 ± 8.8		
Density (g/c	m ³)	10.7 ± 0.026	11.0 ± 0.030		
²³⁵ U enr (at.%)	ichment	19.74	14.03		
Chemistry	UO ₂	67.9	71.4		
(mole%)	UC _{1.86}	0.4	12.3		
	UC	31.7	16.4		

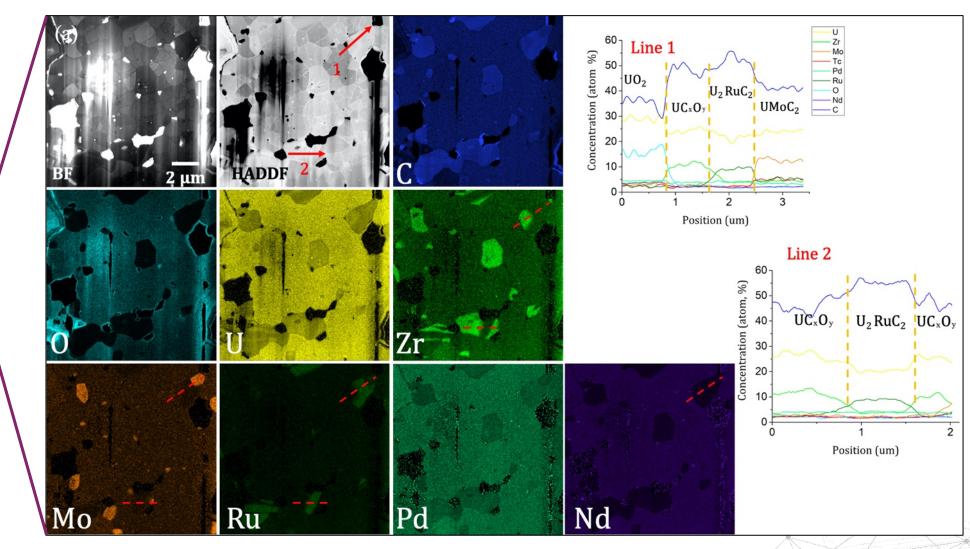
Compact	AGR1- 632-034	AGR1- 433-004	AGR2- 223-RS06	AGR2-222- RS36	AGR2-222- RS19	AGR2-633- RS09	AGR2- 633-RS28
Burnup (%FIMA)	11.40%	18.60%	10.80%	12.60%	12.55%	7.46%	7.46%
Ag retention (%)	65%	99%	8%	Not detectable	20%	80%	<21%
TAVAT*(°C)	1070	1094	1161	1287	1287	1060	1060
TAPT*(°C)	1144	1179	1335	1354	1354	1134	1134
Safety Test (1600°C,300hrs)	No	Yes	No	Yes	Yes	No	No


AGR-1 and AGR-2 fuel comparison

^{*} TAVA = time average volume average, *TAP = time average peak

Results (Fuel Kernel Center)

Sample preparation: Focused Ion Beam (FIB) -precise location


Imaging Tool: Transmission Electron Microscopy (TEM) – nanoscale structural and chemical analysis

Overview of the fuel center lamellae and the diffraction from the fuel center

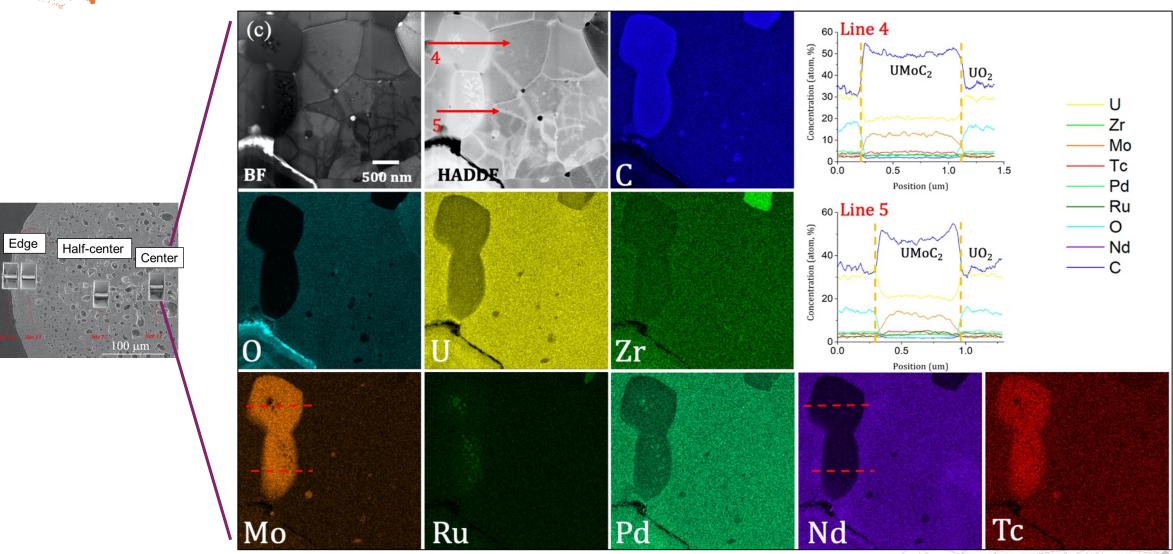
Fuel Kernel Center

EDS maps and line scans over selected phases

Edge

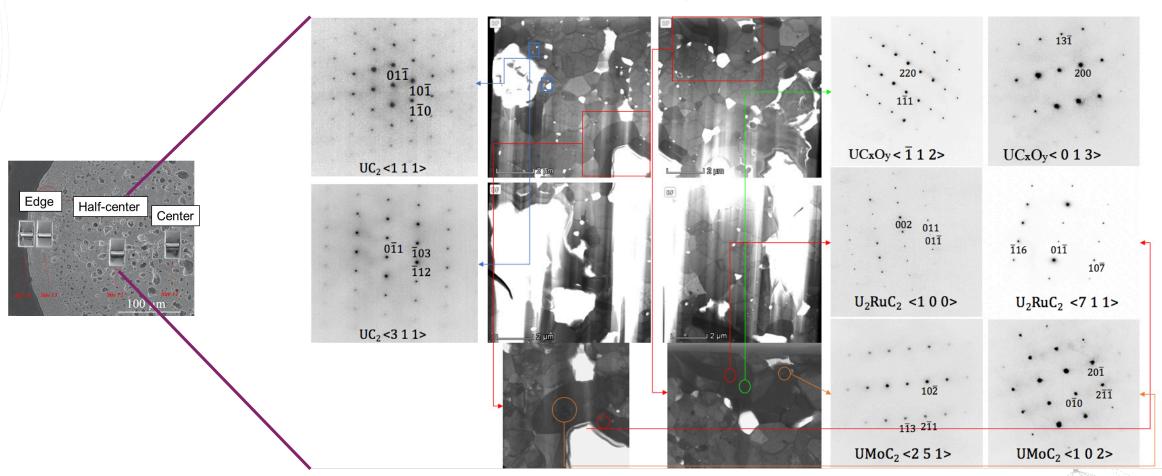
Half-center

AGR2-222-RS36 UCO

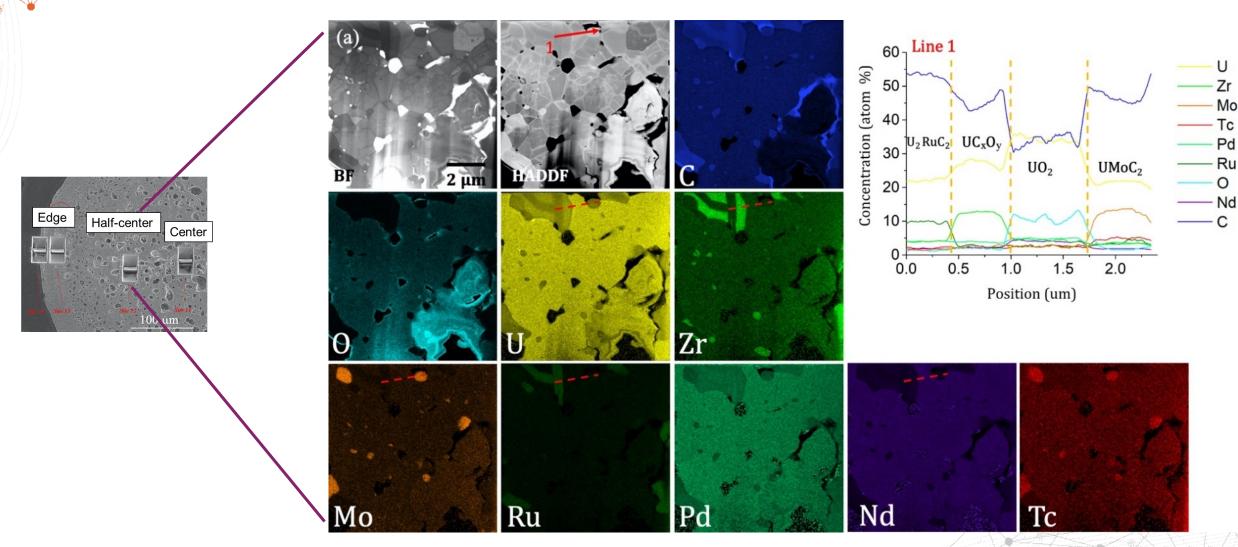

kernel

Center

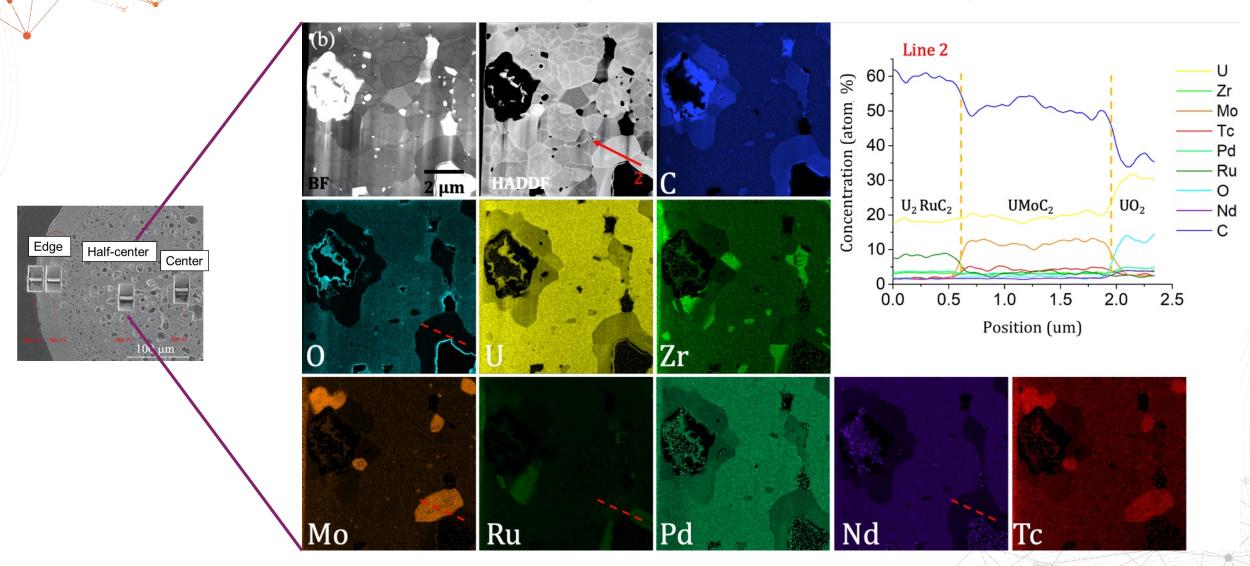
 $100 \, \mu m \, \langle$


Fuel Kernel Center

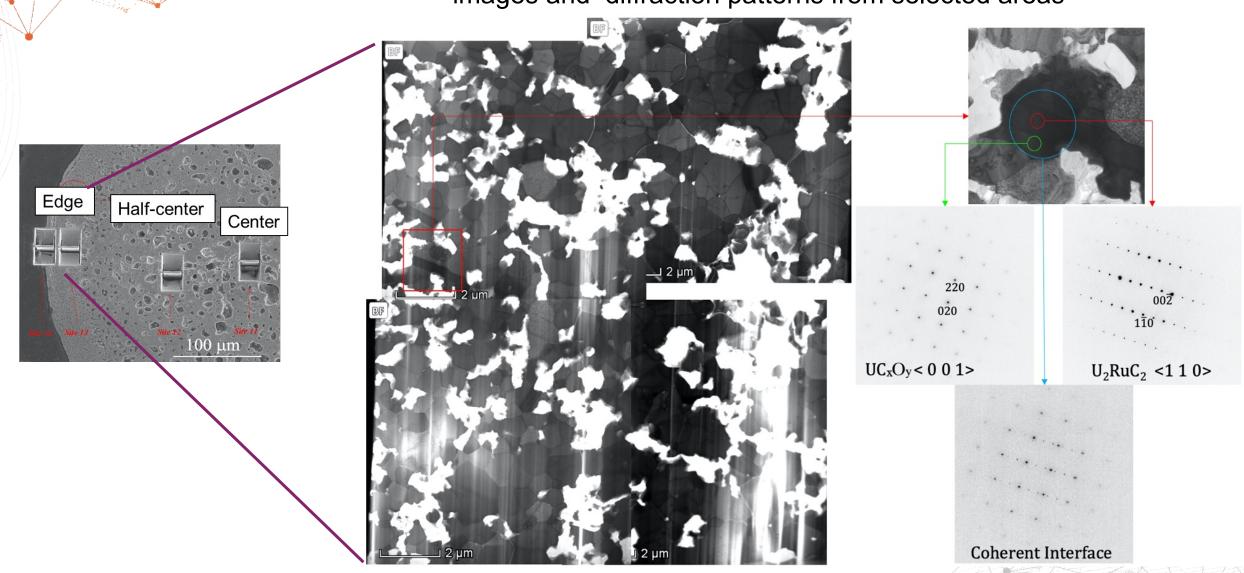
EDS maps and line scans over selected phases


Fuel Kernel Half Center

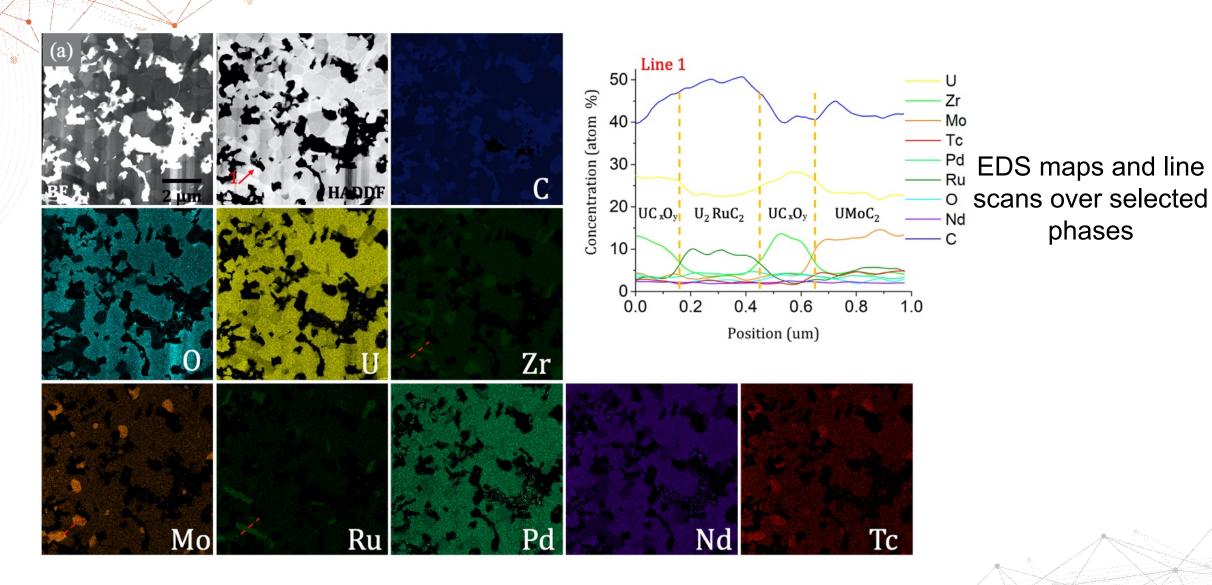
Overview TEM images of fuel half-center lamellae and diffraction patterns from selected areas


Fuel Kernel Half Center

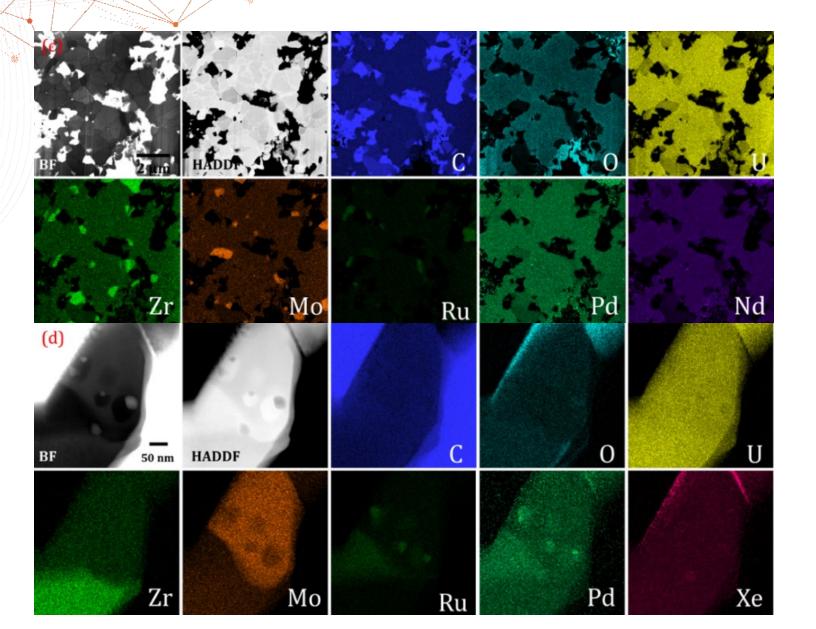
EDS maps and line scans over selected phases


Fuel Kernel Half Center

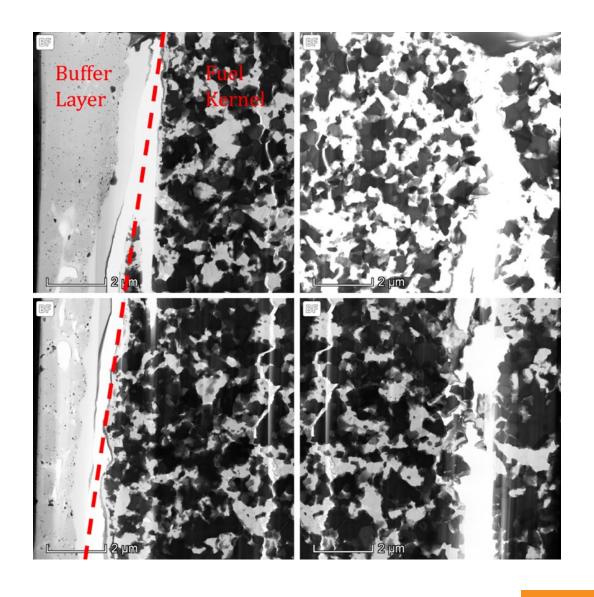
EDS maps and line scans over selected phases



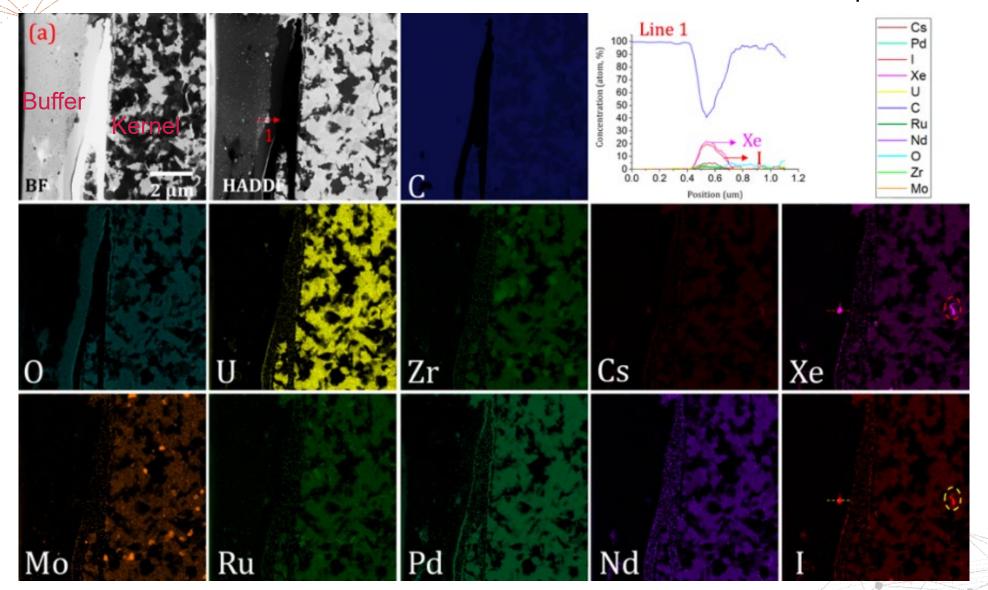
Fuel Kernel Edge


Overview of the fuel kernel edge zone lamellae: TEM images and diffraction patterns from selected areas

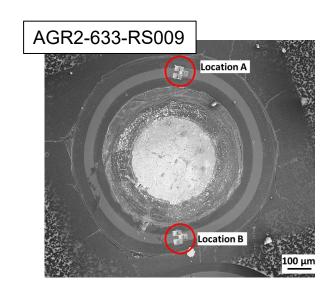
Fuel Kernel Edge

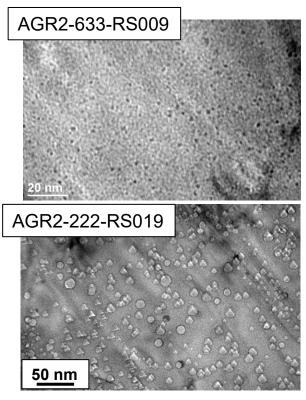


Fuel Kernel Edge


TEM images and EDS maps

Fuel Kernel-Buffer Interface

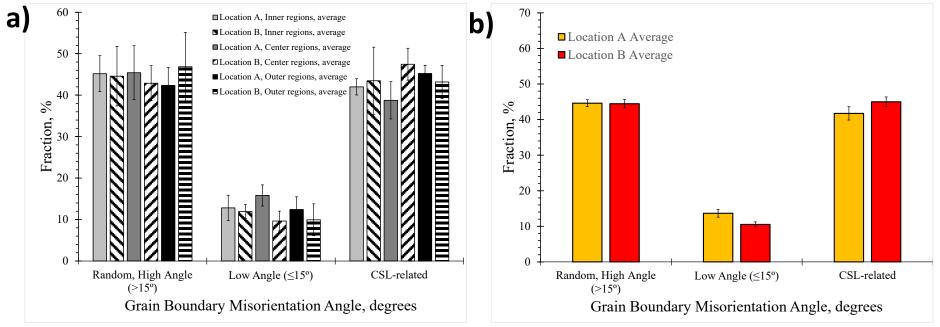



Fuel Kernel-Buffer Interface

EDS maps and line scans over selected phases

Silicon Carbide layer – FY21 AGR2-633-RS009

	Particle Ag	Irradiation Propertion	ties Averaged Over the Entire Compact. Actual s will vary.			
Particle	Retention (%)	Burnup (%FIMA)	Fast Neutron Fluence, × 10 ²⁵ n/m ²	TAVA Temp (°C)	Time-Ave Peak Temp (°C)	
AGR2-222-RS019 (Safety Tested)	20	12.55	3.39	1287	1354	
AGR2-633-RS009	88	7.46	2.14	970	1134	


Characteristics and average compact irradiation conditions for TRISO particles

	10			
	9			
	8		[7.7	
_	7			7.184
fillith age nion	6			
ט ל	5			222-RS019
5	4		AGK2~	633-RS009
•	3			
	2	1.6	√1.57	1.55
	1	<u> </u>		- 1.55
	0			
		Inner	Center	Outer

The irradiation damage size directly corresponds to the irradiation temperature

Effect of Neutron Irradiation Damage on Fission Product Transport in the SiC Layer of TRISO Fuel Particles (HTR2018) – described the relation of damage sizes and irradiation parameters

AGR2-633-RS009 – SiC Grain boundaries

Plots showing the distribution of low angle, high angle and CSL grain boundaries for (a) each lamella and (b) average of Location A and B of particle AGR2-633-RS009.

 Like previously analyzed particle, most of the grain boundaries are high angle and CSL (coincidence site lattice) grain boundaries where most of the fission transport occur.

Summary

Key points from UCO kernel study:

- Unirradiated as-compacted fuel kernels contain three phases with different area fractions: ~70% UO₂,
 20% UC₂, and 5% UC. Remainder is porosity.
- After irradiation, kernels are comprised of UO₂ and UC_xO_y.
- Safety testing causes enhanced migration of fission products to the kernel periphery (KP).
- Volatile elements such as Xe, Cs, and I are symmetrically distributed across the particle.
- Eu, Sr, Ba, and Te tend to behave similarly. At low burnup they are retained by the kernel and are symmetrically distributed across the kernel. At higher burnup they concentrate in the KP and do so asymmetrically.
- Pd concentrates in the U₂RuC₂ phase or precipitates together with Xe bubbles. Ag was mainly identified
 at the interface between the fuel kernel and buffer layer, and the Ag at the interface is often associated
 with Zr, U, and Pd.

Key point from recent SiC study:

Void sizes in SiC from irradiation damage increase with irradiation temperature.

Publications and Presentations: FY2021

Reports:

- Advanced Microscopy Report on UCO Fuel Kernels from Selected AGR-1 and AGR-2 Experiments, IJ Van Rooyen, Y Yang, Z Fu, B Kombaiah, KE Wright, Idaho National Lab.(INL) INL/EXT-21-62124
- Electron Microscopic Examination of an Irradiated TRISO Coated Particle of AGR-2 Experiment: AGR2-222-RS019, S Meher, IJ Van Rooyen Idaho National Lab.(INL) INL/EXT-20-60569

High Temperature Reactor Conference papers (not online yet):

- Microstructural and Micro-Chemical Evolutions in Irradiated UCO Fuel Kernels of AGR-1 and AGR-2 TRISO Fuel Particles, Zhenyu Fu, Yong Yang, Isabella J. van Rooyen, Subhashish Meher, Boopathy Kombaiah, Proceedings of HTR 2020, INL/CON-20-58859.
- Micro- and Nano-techniques for the Study of Fission Product Precipitation in SiC Layer, Isabella J. van Rooyen, S. Meher, Karen Wright, Thomas Lillo, Proceedings of HTR 2020, INL/CON-20-58872.

Conferences:

- Microstructure and chemical states of fission products in irradiated AGR-1 and AGR-2 TRISO particle UCO fuel kernels, TMS conference- 2021, VIRTUAL
- On the Role of Neutron Irradiation Damages on Fission Products Transport in the SiC Layer of TRISO Fuel Particles, TMS conference- 2021, VIRTUAL

Acknowledgements

- IMCL and EML: FIB, electron microscopes and logistics: Fei Teng, Daniel Murray, Jatu Burns, Lingfeng He, JoAnn Grimmett
- Transmission electron microscopy work was carried out at the Center for Advanced Energy Studies (CAES) Microscopy and Characterization Suite (MACS); IMCL(MFC) and University of Florida

This work was sponsored by the U.S. Department of Energy's Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517, as part of the Advanced Reactor Demonstration Program and the Nuclear Scientific Users Facility–Rapid Turnaround Experiments program.

