Permanent Closure of the CFA-688 Diesel Underground Storage Tank 98CFA00260 (DEQ Facility ID# 6-120608)

May 2018

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Permanent Closure of the CFA-688 Diesel Underground Storage Tank 98CFA00260 (DEQ Facility ID# 6-120608)

May 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

CONTENTS

1.	PURPOSE2
2.	INTRODUCTION2
3.	PERMANENT CLOSURE
4.	SITE ASSESSMENT AND CONCLUSION4
5.	APPENDIXES5
	Appendix A, CCN: 241059 - 30 Day Notification for Underground Storage Tank Systems for tank Closure at CF-688
	Appendix B, CCN: 242079 - Closure Notification of CF-688 UST (DEQ Facility ID# 6-120608)12
	Appendix C, CCN-242150 Conference call to Idaho Department of Environmental Quality – CF-688 UST Closure Information
	Appendix D, CCN: 242503 Preliminary Sampling Data Package Information for CF-688 Underground Storage Tank (DEQ Facility ID# 6-120608)
	Appendix E, Sample Analytical Report TOS-231
	Appendix F, Idaho Risk Evaluation Manual for Petroleum Releases - Table 2. Screening Level Concentrations for Soil, Groundwater, and Soil Vapor
	FIGURES
	Figure 1. CFA-688 Underground Storage Tank Removal
	Figures 2 and 3. CFA-688 Underground Storage Tank Soil Sampling5
	TABLES
1	Key personnel

1. PURPOSE

This closure package documents the site assessment and petitions for permanent closure of the Idaho National Laboratory (INL) Central Facilities Area (CFA) diesel underground storage tank 98CFA00260 (DEQ Facility ID# 6-120608), in accordance with the regulatory requirements established in 40 CFR 280.71, "Permanent Closure and Changes-In-Service".

2. INTRODUCTION

The CFA diesel underground storage tank 98CFA00260 is a 2,500-gallon; double-walled, fiberglass reinforced plastic tank with fiberglass reinforced flexible plastic piping, and is located at the Idaho National Laboratory's (INL) Central Facilities Area, CFA-688. This tank is identified under the Idaho Department of Environmental Quality (DEQ) Tank Management Plan facility identification number 6-120608 and tank number 98CFA00260.

An Idaho Department of Environmental Quality (DEQ) Underground Storage Tank (UST) inspection in September 2017 identified no violations to this tank.

The tank was installed August of 1994 to supply diesel fuel to an emergency diesel generator located inside building CF-688. The tank interstitial and sump sensors were monitored by a Gilbarco Veeder-Root TLS-350 Automatic Tank Gauge (ATG). The piping from the emergency diesel generator is fiberglass reinforced pipe.

Key personnel that were involved in this closure/decommissioning activity are listed in Table 1.

Table 1. Key personnel.

Organization/Title	Name	Responsibilities
BEA Project Manager	Jeremy Bishop	Project execution and completion
BEA Project Supervisor	Eric Walker	Project execution and completion
CFA Facility Manager	Bryan Crofts	Manage/approve facility activities
BEA Environmental Compliance	Bradley Griffith/ George Krauszer/Kerry Nisson	Coordinate UST closure activity

3. PERMANENT CLOSURE

In accordance with 40 CFR 280.71(a), a 30-day closure notification was mailed on August 30, 2017, (Appendix A, CCN 241059) notifying Idaho DEQ of INL's intent to permanently close the CFA-688 tank 98CFA00260 diesel underground storage tank (DEQ ID# 6-120608). Michael Summers (DEQ) was contacted regarding a sampling and analysis plan. Michael stated that a sampling and analysis plan would not be required.

On February 12, 2018, a conference call was placed to Michael Summers at the Idaho DEQ Idaho Falls Office, informing him of INL's intent to remove the UST tentatively on February 19, 2018 and to identify if DEQ wanted be present during any part of the removal process. Michael stated that DEQ wanted to inspect the fill port when the asphalt and concrete was removed from around the fill port. Michael also stated that he wanted to be present during the tank removal and sampling process. It was stated that the INL would contact him when an exact date was confirmed or to any delays. Michael also e-mailed two documents for use in sampling process: Waste Management and Remediation Division Statewide Generic Quality Assurance Project Plan and Fact Sheet: How DEQ Evaluates Sample Collection and Data Analysis for UST Closures and Release Investigations (Appendix B - CCN 242150).

In preparation for demolition and permanent tank closure, the remaining fuel was removed from the tank on March 19, 2018 by Clean Harbors to as low as reasonably achievable (less than 1 inch of fuel).

In preparation for permanent closure in accordance with 40 CFR 280.71, on March 22, 2018 the UST at CF-688 was removed with Michael Summers (DEQ) in attendance. INL's Environmental Monitoring personnel collected two soil samples from under the tank (one at fill port and one at opposite end of tank) and one sample under the fuel supply line in the area identified by Michael Summers. Soil samples were sent to GEL Laboratories LLC in Charleston, South Carolina for analysis. Laboratory analysis was requested for Chemicals of Interest for Various Petroleum Products (diesel) as identified in IDAPA 58.01.24.800.01 table 1, with laboratory detection limits for the Residential Use Screening Levels in table 2. The sampling collection and handling process adhered to the Waste Management and Remediation Division Statewide Generic Quality Assurance Project Plan.

On April 4, 2018, Jill Lundell from INL Environmental Monitoring e-mailed a preliminary sampling data package received from GEL Laboratories LLC. The preliminary sampling data showed that the screening levels for all of the Chemicals of Interest for Various Petroleum Products (diesel) as identified in IDAPA 58.01.24.800.01 table 1, were reported as non-detectable with laboratory detection limits below the Residential Use Screening Levels in table 2.

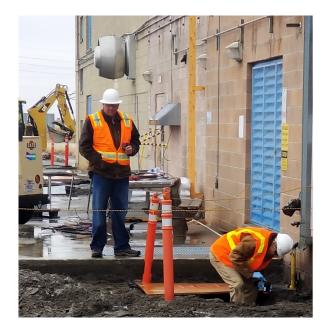
On April 10, 2018, preliminary sampling data results from the analysis received from GEL Laboratories LLC was e-mailed to Michael Summers. The e-mail also stated when the final analysis data package is received, a site assessment closure report for the underground storage tank removal would be submitted to the Department of Environmental Quality for final closure (Appendix C - CCN 242150).

On April 17, 2018, the INL received a final Report from GEL Laboratories LLC for the CF-688 diesel tank and piping sampling (Appendix E). The INL compared the analysis to the Idaho Risk Evaluation Manual for Petroleum Releases, Table 2 - Screening Level Concentrations for Soil and identified that the concentrations for the chemicals of interest were below the DEQ identified screening levels for these analytes.

4. SITE ASSESSMENT AND CONCLUSION

This site assessment was performed in accordance with IDAPA 58.01.24.200, "Risk Evaluation Process." A screening evaluation was performed according to the chemicals of interest for diesel fuel found in the Idaho Risk Evaluation Manual for Petroleum Releases, Table 2 - Screening Level Concentrations for Soil, Groundwater, and Soil Vapor.


Per 40 CFR 280.71 "Permanent Closure and Changes-In-Service" all liquids and accumulated sludge was removed from the UST.


Sample results were received on April 17, 2018, and were compared to the Idaho Risk Evaluation Manual for Petroleum Releases, Table 2 - Screening Level Concentrations for Soil, Groundwater, and Soil Vapor maximum media-specific (soil) petroleum contaminant concentrations. The concentrations for the chemicals of interest are below the DEQ identified screening levels for these analytes.

According to IDAPA 58.01.24.200.01.c., "if the maximum media-specific petroleum contaminant concentrations at the site do not exceed the screening levels, the owner and/or operator may petition for site closure, subject to other Department regulatory obligations". This site assessment meets the requirements of IDAPA 58.01.24.200. The INL is petitioning the DEQ for site closure of the CFA-688 diesel tank 98CFA00260 (DEQ ID# 6-120608).

Figure 1. CFA-688 Underground Storage Tank Removal

Figures 2 and 3. CFA-688 Underground Storage Tank Soil Sampling

5. APPENDIXES

Appendix A, CCN: 241059 - 30 Day Notification for Underground Storage Tank Systems for tank Closure at CF-688

Appendix B, CCN: 242079 - Closure Notification of CF-688 UST (DEQ Facility ID# 6-120608)

Appendix C, CCN-242150 Conference call to Idaho Department of Environmental Quality - CF-688 UST Closure Information

Appendix D, CCN: 242503 Preliminary Sampling Data Package Information for CF-688 underground storage tank (DEQ ID# 6-120608)

Appendix E, Sample Analytical Report TOS-231

Appendix F, Idaho Risk Evaluation Manual for Petroleum Releases - Table 2. Screening Level Concentrations for Soil, Groundwater, and Soil Vapor

Appendix A, Notification of Closure (CCN 241059)

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN: 241059 - 30 Day Notification for Underground Storage Tank Systems for tank closure at CF-688

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> To: Michael.Summers@deq.idaho.gov

Wed, Aug 30, 2017 at 10:29 AM

Cc: Timothy A Miller <Timothy.Miller@inl.gov>, Kent Miller <kent.miller@inl.gov>, James F Graham <James.Graham@inl.gov>, Bradley K Griffith <bradley.griffith@inl.gov>, ENVIRONMENTAL CORRESPONDENCE ServiceID <envaff@inl.gov>, BEA CORRESPONDENCE CONTROL ServiceID <bre>beacc@inl.gov>, Jason Sturm

<STURMJR@id.doe.gov>, Jeremy K Bishop <jeremy.bishop@inl.gov>

Michael

I previously sent you 30 Day Notification for Underground Storage Tank Systems for four tank closures that the Idaho National Laboratory (INL) has intended to remove this fiscal year. The tanks are:

- DEQ Facility Identification Number 6-120612 Tank ID# 98CFA00057 15,000 diesel located at Central Facilities building CF-608,
- DEQ Facility Identification Number 6-120613 Tank ID# 98CFA00061 12,000 diesel located at Central Facilities building CF-609,
- · DEQ Facility Identification Number 6-120615 Tank ID# 99ANL00011 2,500 unleaded located at the Materials and Fuels Complex MFC-783, and
- · DEQ Facility Identification Number 6-120615 Tank ID# 99ANL00012 2,500 diesel located at the Materials and Fuels Complex MFC-783.

Due to funding issues, these four tanks will not be removed this fiscal year. The INL has plans to remove these tanks next fiscal year, if funding is available.

The INL is performing a decommissioning and demolition (D&D) of building CF-688 at the Central Facilities Area. This building has 2,500 gallon underground storage tank (UST) that supplied an emergency diesel generator. As part of the facility D&D, the UST will be removed. This is tentatively scheduled for October, Attached is the 30 Day Notification for Underground Storage Tank Systems for tank closure, DEQ Facility Identification Number 6-120608 - Tank ID# 98CFA00260.

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721

email: kerry.nisson@inl.gov Materials and Fuels Complex - Mail Stop 6134

CFA-688 UST-notification-form closure.pdf 533K

DEO Versies of EDA 7520 4 (Positored 2/2017)		
DEQ Version of EPA 7530-1 (Revised 3/2017)		
NOTIFICATION FOR UNDERGROUND STORAGE TANK	SYSTEMS	Facility ID
Idaho Department of Environmental Quality, 1410 N Hilton, Bo	oise ID 83706	<u>6-120608</u>
TYPE OF NOTIFICATION Notice (install or closure) New F	Facility (site diagram & install of Owner Change	docs required) Closure ge of Use (substance stored)
INSTRUCTIONS — See additional instructions on page 6 Please type or use ink. This form must be completed for each lo	ecation containing undergroup	nd storage tanks. If more than
five (5) tanks are owned at this location, photocopy the following she & 5)	ets, and attach continuation	sheets to the form (pages 3, 4,
	的表示的。 这种各种	产生产的社
Notification is required by law for all underground storage tanks (USTs) storing regulated substances that are brought into use after May 8, 1986, or USTs in the ground as of May 8, 1986, that have stored regulated substances at any time since January 1, 1974. The information requested is required by Section 9002 of the Resource Conservation and Recovery Act (RCRA), as	gas production and gathering op 10. Tanks on or above the floor of basements or tunnels 11. Wastewater treatment tanks	of underground areas, such as
amended. The primary purpose of this notification form is to provide information about the installation, existence, changes to, and closure of USTs that store or have stored petroleum or hazardous substances. The information you provide will be based on reasonably available records, or in the absence of such records, your knowledge or recollection.	under the Atomic Energy Act of 1 13. UST systems that are part of	f an emergency generator system at es regulated by the Nuclear
Who must notify? Unless exempted, owners of USTs that store or will store regulated substances must notify DEQ. 1. Owner means -	fuel, crude oil, or any fraction ther	taining petroleum or certain m includes gasoline, used oil, diesel ereof which is liquid at standard
a) in the case of an UST in use on November 8, 1984, or brought into use after that date, any person who owns an underground storage tank used for the storage, use, or dispensing of regulated substances b) in the case of an UST in use before November 8, 1984, but no longer in use on that date, any person who owned such tank immediately before the discontinuation of its use c) in the case of a new installation on or after April 2, 2008, any person who	14.7 pounds per square inch absorbhose found in section 101 (14) of Response, Compensation and Lia	essure (60 degrees Fahrenheit and solute). Hazardous substances are if the Comprehensive Environmental lability Act of 1980, with the exception is hazardous waste under Subtitle C dd Recovery Act.
will install an underground storage tank system d) in the case of a new installation on or after April 2, 2008, any person who will an underground storage tank closure, any person who will	Where to notify? Send co	ompleted forms to:
remove or close in place such tank e) in the case of changes or updates, any person who will make a change to an UST system	UST Coordinator Idaho Department 1410 N. Hilton	it of Environmental Quality
What tanks are included? Underground storage tank is defined as any one or combination of tanks that is used to contain an accumulation of "regulated substances," and whose volume (including connected underground piping) is 10% or more beneath the ground.	When to notify? Owners	Telephone: (208) 373-0502 of underground storage tank
What tanks are excluded? 1.Tanks with a capacity of 110 gallons or less	systems that are still in the ground who bring USTs into use after May of bringing the tanks into use. Own	d must notify immediately. Owners by 8, 1986, must notify within 30 days ners who will install an UST system
Farm or residential tanks of 1,100 gallons or less capacity used for storing motor fuel for noncommercial purposes	50% of piping connected to a sing notify 24 hours prior to the replace	
Tanks used for storing heating oil for consumptive use on the premises where stored	UST must notify 30 days prior to the closed an UST must notify and income the closed and use the closed and	the closure. Owners who have dicate the date of closure. New
Septic tanks Certain pipeline facilities regulated under chapters 601 and 603 of Title 49 Surface impoundments, pits, ponds, or lagoons Stormwater or wastewater collection systems	owners must notify within 30 days Penalties: Any owner who kn false information shall be subje-	nowingly fails to notify or submits
8. Flow-through process tanks	10.00	of the desired particular
	Contract Contract	
Name <u>U.S. Department of Energy, Idaho Operations</u>	(If same as Section	I, mark box here 🔲)
Office (DOE-ID)	Name <u>U.S. Departmen</u>	nt of Energy, Idaho
Mailing Address 1955 Fremont Avenue	Operations Office (DOI	E-ID)
City Idaho Falls	Street Address (no PO	Box) Central Facilities
State Idaho	Area	
ZIP Code <u>83401</u>	City Scoville	
County Bonneville	State Idaho	*
Phone Number (With Area Code) (208) 526-2493	ZIP Code 83415	
Email sturmjr@id.doe.gov	County Butte	

☐ Commercial ☐ P	Private State Government
Federal Government	Local Government
A training the property of the second	
Select the Appropriate Facility	
Gas Station	rnment Utilities Ion-Military Farm filitary Residential
	THE REPORT OF THE PARTY OF THE
Name <u>Bryan Crofts</u> Title <u>Manager, Facility Support Services</u> Address <u>PO Box 1625</u>	City <u>Idaho Falls</u> State <u>Idaho</u> Zip Code <u>83415</u> Phone (208) 526-7995 Email Bryan.Crofts@inl.gov
	all required
I certify under penalty of law that I have personally exa and all attached documents, and that based on my inquobtaining the information, I believe that the submitted in the su	Signature
	"我们是我们的人,我们就是我们还是我们的人,我们
I have met the financial responsibility requirements in a Check All That Apply	
State Insurance Fund (PSTF)	Surety Bond
Commercial Insurance	Letter of Credit
☐Risk Retention Group ☐Guarantee	_ Self Insurance □Trust Fund
☐Guarantee ☑Other Method Allowed, Spe	
⊠other Method Allowed, Spe	City <u>rederal Government</u>

IDENTIFICATION NUMBER	Tank No. 98CFA00260	Tank No.	Tank No.	Tank No.	Tank No.
A. 30-day Tank and Piping Installation/24-	hr Piping Replace	ment Notification	s (see page 7)		
When will tank be installed or replaced?					
When will piping be installed or replaced?					
B. 30-day Notice of Closures (see page 7)					
When will tank be closed?	~Oct. 2, 2017		ľ		
Date tank was last used?	~Aug 1, 2017				
Closure to be performed by:		L	<u> </u>	L	<u> </u>
Company Site Supervisor:					
Phone:					
			100 CO.		
IDENTIFICATION NUMBER	Tank No. 98CFA00260	Tank No.	Tank No.	Tank No.	Tank No.
A. Type of Tank (check all that apply)	COO! MODEOU				
☐Compartment	⊠Emera#	ency Generator		☐Airport Fuel I	Hydrant
Manifold	_	Constructed		Airport i dei i	Tydrant
		onstructeu			
B. Status of Tank					
Currently In Use	No	Select	Select	Select	Select
Temporarily Out of Use (Complete Section X, estimated date last used)					
Permanently Out of Use	Select	Select	Select	Select	Select
(Complete Section X, removal or closed in place)	8/94				
Date of Installation	2500		ļ		
Total Capacity (gallons)	Diesel	Select	Select	Select	Select
Substance Currently or Last Stored	Diesei	Select	Select	Select	Select
CERCLA Name or CAS # (if hazardous)			<u> </u>		<u> </u>
C. Tank Construction (Mark all that apply)	- N				
Fiberglass Reinforced Plastic	<u>⊠</u>				
Cathodically Protected Steel (STIP-3)					
Cathodically Protected Steel (Impressed Current)					
Composite (Steel with Fiberglass)					
Asphalt Coated or Bare Steel					
Concrete			. 🗆		
Double-Walled	\boxtimes				
Lined Interior					
Polyethylene Tank Jacket					
Unknown					
Other, Please Specify					
	No	Select	Select	Select	Select
Has tank been repaired? (circle one)		*			
D. Spill and Overfill Protection				1	
Overfill Device Installed? (Alarm, Flapper)	Alarm	Select	Select	Select	Select

Page 3

Spill Bucket Installed? (Single Wall or Double Wall)										
E. Piping Construction (Mark all that apply)					*					
Plastic/Flexible										
Fiberglass Reinforced Plastic		\boxtimes	[]		
Bare Steel]		
Catholically Protected Steel (Impressed Current)]		. [
Cathodically Protected Steel (Galvanic)			[[. [
Corrosion Protection (Soil Isolation)			[[
Double-Walled					[
Unknown			[]	[
Other, Please Specify					[Į.	
F. Piping Type (Mark all that Apply)										
Pressure]	
Safe Suction (check valve at dispenser)										
U.S. Suction (check valve at tank)										
Gravity Feed								_		
Has piping been repaired or replaced?	r	No .	Sel	ect	Se	lect	Sel	ect	Se	lect
Date of the repair or replacement										
G. Release Detection (Mark all that Apply)	Tank	Piping	Tank	Pipin g	Tank	Piping	Tank	Pipin g	Tank	Piping
Automatic Tank Gauging	×									
Continuous Interstitial Double-Wall Monitoring (sensors)	\boxtimes									
Manual Interstitial Double-Wall Monitoring (record log)										
Statistical Inventory Reconciliation (SIR)										
Manual Tank Gauging (1,000 gallons or less)										
Vapor Monitoring										
Mechanical Line Leak Detector										
Electronic Line Leak Detector										
Annual Line Tightness Test										
3-Year Line Tightness Test (US Suction Only)										
Not Required (safe suction piping, empty tank)										
G. Under-Dispenser Spill Containment (req Is there under-dispenser spill containment for each new dispenser island?	uired for n		itions, pip	ing repla	cement a	nd dispens	ser replac	ement*)		

TANK IDENTIFICATION NUMBER	Tank No.	Tank No.	Tank No.	Tank No.	Tank No.
Closing of Tank			/		
Tank Was Removed From Ground					
Tank Was Closed in Ground		20 D			
Estimated Date Last Used					
Date Tank Closed	,			-	-
Tank Filled With Inert Material (indicate material – sand, concrete)] =	-	
Change in Service (No longer holds a regulated substance)					
Site Assessment Completed (samples taken)	Select	Select	Select	Select	Select
Evidence of a Release Detected?	Select	Select	Select	Select	Select
Release Reported to DEQ?	Select	Select	Select	Select	Select
Date Release Reported to DEQ					
		Silvabara di Saltrabaya ya wakea ilikuwa a			Association of the Association association
	- · · · · · · ·	Touls No.	Tank No.	Tank No.	Table Ma
TANK IDENTIFICATION NUMBER	Tank No.	Tank No.	Talik No.	Talik No.	Tank No.
TANK IDENTIFICATION NUMBER A. Installation (Mark all that apply)	Iank No.	Tank No.	TAIIN NO.	Talik No.	iank No.
	Тапк №.	Tank No.			lank No.
A. Installation (Mark all that apply) Installer certified by tank and piping					
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers					
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered					
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer					
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer Installation inspected by DEQ Manufacturer's installation checklists have been completed Note: The installer must complete this section onloath: I certify the information concerning	U jif work on your US	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dace since Decemb	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer Installation inspected by DEQ Manufacturer's installation checklists have been completed Note: The installer must complete this section onloath: I certify the information concerning Installation Company	U jif work on your US	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dace since Decemb	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer Installation inspected by DEQ Manufacturer's installation checklists have been completed Note: The installer must complete this section onloath: I certify the information concerning Installation Company Address:	U jif work on your US	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dace since Decemb	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer Installation inspected by DEQ Manufacturer's installation checklists have been completed Note: The installer must complete this section onloath: I certify the information concerning Installation Company	U jif work on your US	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dace since Decemb	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
A. Installation (Mark all that apply) Installer certified by tank and piping manufacturers Installer certified or licensed by a State Installation is inspected by a registered engineer Installation inspected by DEQ Manufacturer's installation checklists have been completed Note: The installer must complete this section onl OATH: I certify the information concerning installation Company Address: Installer Name	U jif work on your US	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dace since Decemb	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	

*When a dispenser is replaced and any equipment necessary to connect the dispenser to the underground storage tank system under the dispenser is installed; under dispenser containment is required.

Appendix B CCN-242150 Conference call to Idaho Department of Environmental Quality –

CF-688 UST Closure Information

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN: 242079 - Closure Notification of CF-688 UST (DEQ Facility ID# 6-120608)

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> To: Michael Summers@deq.idaho.gov

Thu. Feb 1, 2018 at 1:59 PM

Cc: Bradley K Griffith <bradley.griffith@inl.gov>, "Krauszer II, George J" <george.krauszerii@inl.gov>, James F Graham <James.Graham@inl.gov>, Kent Miller <kent.miller@inl.gov>, Timothy A Miller <Timothy.Miller@inl.gov>, Jason Sturm <STURMJR@id.doe.gov>

Michael

In an email dated August 30, 2018 (ref. CCN: 241059 - 30 Day Notification for Underground Storage Tank Systems for tank closure at CF-688), I sent you the DEQ form Notification for Underground Storage Tank Systems for the closure of the UST at CF-688 (DEQ Facility ID# 6-120608). The project projected that the tank would be removed in October 2017. Due to various factors, that did not happen.

The project has now resumed and will have the remaining fuel in the tank removed on February 13, 2018. The project anticipates removal of the tank during the week of February 19-26, 2018.

I know that the DEQ wants to be there when the tank is removed and for the sampling requirements once the tank is removed.

Is there any additional time that you want to be present while the tank and piping are being uncovered?

I have attached the Notification for Underground Storage Tank Systems that was previously submitted in August, 2017.

I will keep you informed as the project progresses and provide you the required 48 hour notice before the UST is removed.

Kerry L. Nisson Nuclear Operations Environmental Support - UST TPOC Office (208) 533-7102 Cell (208) 569-4721 em ail: kerry.nisson@inl.gov

Materials and Fuels Complex - Mail Stop 6134

CFA-688 UST-notification-form closure.pdf

Appendix C

CCN-242150 Conference call to Idaho Department of Environmental Quality -

CF-688 UST Closure Information

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN-242150 Conference call to Idaho Department of Environmental Quality - CF-688 UST Closure Information

1 message

Nisson, Kerry L <kerry.nisson@inl.gov> To: Kent Miller <kent.miller@inl.gov> Mon. Feb 12, 2018 at 11:31 AM

Cc: Bradley K Griffith <a href="mailto:specific-square: blue-specific-square: square: square:

On February 12, 2018 at ~07:58, a conference call was place to Michael Summers at the Idaho Department of Environmental Quality (IDEQ). The call was placed at the request from Michael Summers [ref. attached email, RE: 242079 - Closure Notification of CF-688 UST (DEQ Facility ID# 6-120608)] to ensure that the INL was meeting the DEQ's Waste Management and Remediation Division Statewide Generic Quality Assurance Project Plan - for the underground storage tank closure for the removal of the 2,500 gallon emergency diesel generator underground storage tank at CF-688. The conference call included Michael Summers (DEQ), Jason Sturm (DOE-ID), Bradley Griffith (BEA - UST TPOC Backup), George Krauszer II (BEA), and Kerry Nisson (BEA - UST TPOC).

Michael emailed two links to Kerry Nisson - *DEQ's Waste Management and Remediation Division Statewide Generic Quality Assurance Project Plan - Third-Party Petroleum Storage Tank Release Investigation and UST Closure and *Change-in-Service and Idaho Department of Environmental Quality Fact Sheet: How DEQ Evaluates Sample Collection and Data Analysis for UST Closures and Release Investigations. The information in these links needs to be followed for the sampling and analysis during the removal of the underground storage tank at CF-688 to ensure proper sample collection/handling and the sample analysis samples are being conducted according to the DEQ's standards. The email and links were distributed by email to those listed on the conference call.

Michael requested to be contacted when the asphalt and concrete was removed from around the fill port so that he could inspect this area for potential fuel leakage. Michael also requested to be present once the tank was ready to be removed and for sampling under the tank and line.

Michael was informed that the UST removal project was tentatively scheduled for the week of February 19th

As a side note, Michael requested that we send him an Automatic Tank Gauge (Veeder-Root monitor) tape printout showing the corrected time and date for the monitor at IF-603. The time and date on the monitor tape was found to be incorrect at the time of the three year inspection. The monitor had been repaired when an unexpected power outage damaged the circuit board. The circuit board was replaced and the monitor had to be reprogrammed. The Service Provider did not enter the current date and time when reprogramming the monitor software. The date and time reverted to the software's last update time and date. It was stated that we would send him a new tape from the monitor showing that the time and date is now current.

The conference call concluded at ~ 08:11.

Appendix D CCN: 242503 Preliminary Sampling Data Package Information for CF-688 Underground Storage Tank (DEQ ID# 6-120608)

Nisson, Kerry L <kerry.nisson@inl.gov>

CCN: 242503 Preliminary Sampling Data Package Information for CF-688 underground storage tank (DEQ ID# 6-120608)

1 message

Nisson, Kerry L <kerry.nisson@inl.gov > To: michael.summers@deq.idaho.gov

Tue, Apr 10, 2018 at 11:02 AM

Cc: BEA CORRESPONDENCE CONTROL ServiceID beacc@inl.gov>, ENVIRONMENTAL CORRESPONDENCE
ServiceID <envaff@inl.gov>, Kent Miller <kent.miller@inl.gov>, James F Graham <James.Graham@inl.gov>, Bradley K
Griffith <bradley.griffith@inl.gov>, Jason Sturm <STURMJR@id.doe.gov>, "Krauszer II, George J"
<george.krauszerii@inl.gov>, Bryan P Crofts

Spryan P Crofts

Spryan P Croft

Michael

A preliminary sampling data package for samples taken under the CF-688 underground storage tank (DEQ ID# 6-120608) and associated piping, show that the screening levels for all of the Chemicals of Interest for Various Petroleum Products (diesel) as identified in IDAPA 58.01.24.800.01 table 1, were reported as non-detectable and laboratory detection limits are below the Residential Use Screening Levels in table 2.

When the final analysis date package is received, a full closure report for the underground storage tank removal will be submitted to the Department of Environmental Quality for final closure.

I also want to restate that the tanks at CF-608 (DEQ ID#6-120612) and CF-609 (DEQ ID#6-120613) are in temporary closure status. I am attaching a copy of the Notification for Underground Storage Tank System form for both of these two underground storage tanks that you should already have.

Kerry L. Nisson
Nuclear Operations Environmental Support - UST TPOC
Office (208) 533-7102
Cell (208) 569-4721
em ail: kerry.nisson@inl.gov
Materials and Fuels Complex - Mail Stop 6134

2 attachments

Appendix E **Sample Analytical Report TOS-231 Data Package 1**

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

ael.com

March 30, 2018

Ms. Jill Lundell North Wind - Portage 1075 South Utah Ave. Suite 200 Idaho Falls, Idaho 83402

Re: Analytical for TOS-231 Work Order: 446517

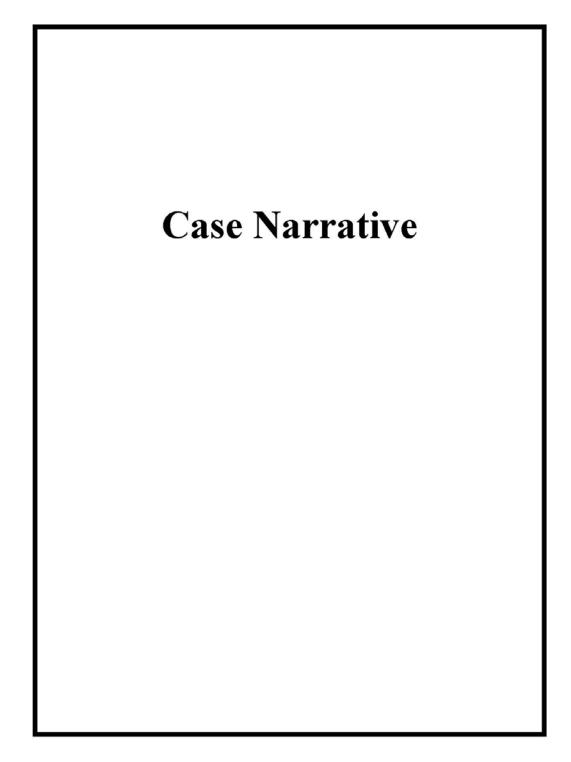
Dear Ms. Lundell:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on March 23, 2018. This original report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4453.

Sincerely,

Kamprostone Kaitlyn Stone for Edith Kent Project Manager


Purchase Order: 23270002P01 Chain of Custody: 116

Enclosures

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Data Review Qualifier Definitions	7
Laboratory Certifications	10
Volatile Analysis	12
Case Narrative	13
Sample Data Summary	16
Quality Control Summary	21
Standards	29
Quality Control Data	43
Miscellaneous	47
Semi-Volatile Analysis	51
Case Narrative	52
Sample Data Summary	56
Quality Control Summary	61
Standards	72
Quality Control Data	85
Miscellaneous	90

Case Narrative for North Wind - Portage (8-00000013) SDG: 446517

March 30, 2018

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

TOS

Analytical for

Project Title

Tank Removal at CFA

Summary:

Sample Receipt The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on March 23, 2018 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. Shipping container temperatures were checked, documented, and within specifications. There are no additional comments concerning sample receipt.

Items of Note There are no additional items of note concerning this SDG.

Sample Identification The laboratory received the following sample(s):

Laboratory ID	Client ID	<u>Matrix</u>	<u>LIC</u>
446517001	CFA18001 - Soil Location #1	Soil	SVO-A-007
446517001	CFA18001 - Soil Location #1	Soil	VOA-A-013
446517002	CFA18002 - Soil Location #2	Soil	SVO-A-007
446517002	CFA18002 - Soil Location #2	Soil	VOA-A-013
446517003	CFA18003 - Soil Location #3	Soil	SVO-A-007
446517003	CFA18003 - Soil Location #3	Soil	VOA-A-013
446517004	CFA18003 - DUP - Soil Location #3	Soil	SVO-A-007
446517004	CFA18003 - DUP - Soil Location #3	Soil	VOA-A-013

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

GEL Laboratories LLC

PO Box 30712 Charleston, SC 29417

2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

www.gel.com

Page 2 of 94

Prep Methods and Prep Dates

MethodRun Date IDSW846 354129-MAR-2018SW846 503522-MAR-2018

Analysis Methods and Analysis Dates

MethodRun Date IDSW846 3541/8270D SIM PAH29-MAR-2018SW846 3541/8270D SIM PAH30-MAR-2018SW846 8260B29-MAR-2018

Certification Statement

I certify that this data package is in compliance with the terms and conditions of SOW-0062 and any applicable TOSs for this project, both technically and for completeness, for other than the conditions detailed in this case narrative. Release of the data contained in this data package and also in any associated computer-readable data submitted has been authorized by the laboratory manager or manager's designee.

Kaitlyn Stone for Edith Kent Project Manager

GEL Laboratories LLC

PO Box 30712 Charleston, SC 29417

2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

www.gel.com

Page 3 of 94

Chain of Custody and Supporting Documentation

1 of 2

Report - Generated 3/22/2018

Chain of Custody Record 4465/7 ** PORTAGE

				5	<	うくうし
Client			Contact			Chain of Custody ID#
Portage Inc.			Name: Jill Lundell	-nndell		116
1075 S. Utah Ave. Ste 200			Tel: 2083605471	35471		Date
Idaho Falls, ID 83402						3/22/2018
Project Title						
TOS-231 Tank Removal at CFA						
Location						
CFA						
Sample / Description	Date/Time Cont	Container(s) Matrix		Containers	Preservatives	Analysis
CFA18001 - Soil Location #1	3/22/2018 / 1110	2 Soil	(1) - 2 Soil V	(1) - 250 mL Amber Glass, (1) - Soil VOA Kit (4 Vials)	(1) - 4C, (1) - De-I water, Methanol, 4C	(1) - SVOA (SVO-A-011), (1) - VOA (VOA-A-013)
CFA18002 - Soil Location #2	3/22/2018 / 1130	2 Soil	(1) - 2 Soil V	(1) - 250 mL Amber Glass, (1) - Soil VOA Kit (4 Vials)	(1) - 4C, (1) - De-I water, Methanol, 4C	(1) - SVOA (SVO-A-011), (1) - VOA (VOA-A-013)
CFA18003 - Soil Location #3	3/22/2018 / 1155	2 Soil	(1) - 2 Soil V	(1) - 250 mL Amber Glass, (1) - Soil VOA Kit (4 Vials)	(1) - 4C, (1) - De-I water, Methanol, 4C	(1) - SVOA (SVO-A-011), (1) - VOA (VOA-A-013)
CFA18003 - DUP - Soil Location #3	3/22/2018 / 1155	2 Soil	(1) - 2 Soil V		(1) - 4C, (1) - De-I water, Methanol, 4C	(1) - SVOA (SVO-A-011), (1) - VOA (VOA-A-013)
Cooler		Po	ssible Haza	Possible Hazard Identification		Sample Disposal
✓ Yes ☐ No Cooler Temp:	o: Non-Hazard		Flammable	Skin Irritant	B Unknown	Disposal by Lab
	Turn Around Time				QC Requirements	nts
	7-Day					
Signatures						
1. Refinquished By (sign/print)				1. Received By (sign/print)		Date Time
With the holy	When lougher	13	1430	STACY BOONE	126	3/23/18 0855
Z. Kellingulshed by (sign/print)		Date	Time	2. Received By (sign/print)	•	Date Time
					10%	

Page 5 of 94

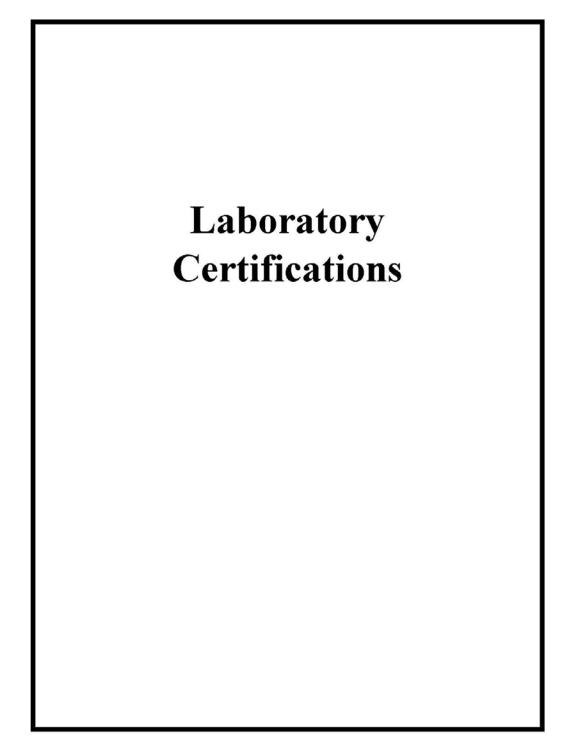
GEL	Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Client: POEN				G/AR/COC/Work Order:		
Received By: STACY BOONE				te Received: 3/23/18		
STATE DOONE				Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other		
Carrier and Tracking Number						
Suspected Hazard Information	Yes		*If	7718 OSIU 5130 Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further stigation.		
Shipped as a DOT Hazardous?	×	2				
COC/Samples marked or classified as radioactive?		/	Ma: Cla	ximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr sslfied as: Rad 1		
is package, COC, and/or Samples marked HAZ?		_	If yo	es, select Hazards below, and contact the GEL Safety Group. I's Flammable Foreign Soil RCRA Asbestos Beryllium Other:		
Sample Receipt Criteria	Yes	NA	S.	Comments/Qualifiers (Required for Non-Conforming Items)		
Shipping containers received intact and sealed?				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)		
2 Chain of custody documents included with shipment?						
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	1			Preservation Method: Wet Ice Ice Packs Dry Ice None Other: *all temperatures are recorded in Celsius TEMP: 1 C		
Daily check performed and passed on IR temperature gun?				Temperature Device Serial #: 1R 3 - 17 Secondary Temperature Device Serial # (17 Applicable):		
5 Sample containers intact and sealed?				Circle Applicable: Seals broken Damaged container Leaking container Other (describe)		
Samples requiring chemical preservation at proper pH?				Sample ID's and Containers Affected:		
7 Do any samples require Volatile Analysis?				If Preservation added, Lot#: If Yes, Are Encores or Soil Kits present? Yes No_ (If yes, take to VOA Freezer) Do VOA vials contain acid preservation? Yes No_ N/A_ (If unknown, select No) VOA vials free of headspace? Yes No_ N/A_ Sample ID's and containers affected:		
8 Samples received within holding time?				ID's and tests affected:		
Sample ID's on COC match ID's on bottles?	1			Sample ID's and containers affected:		
Date & time on COC match date & time on bottles?	1			Sample ID's affected:		
Number of containers received match number indicated on COC?				Sample ID's affected:		
Are sample containers identifiable as GEL provided?			1			
COC form is properly signed in relinquished/received sections?	1					
continuation Form it needed);						
· ·						
. PM (or PMA) review	: Initia	ils	,	MR Date 3/23/18 Page / of /		

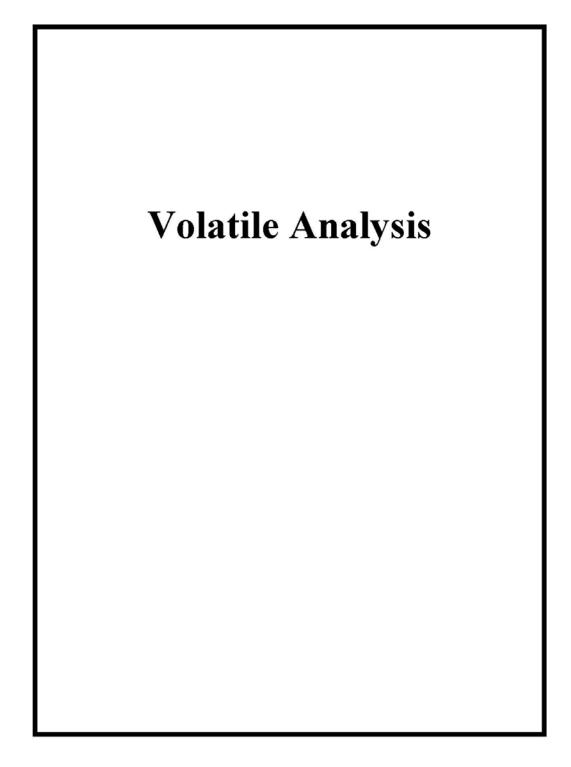
GL-CHL-SR-001 Rev 5

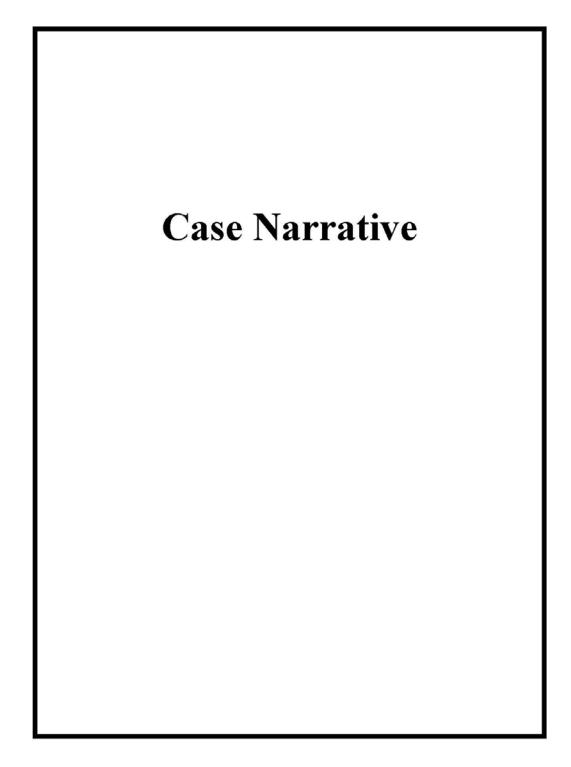
Data Review Qualifier Definitions


Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL</p>
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- B Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- 2 Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.


- P Organics-The concentrations between the primary and confirmation columns/detectors is >40% difference.


 For HPLC, the difference is >70%.
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

List of current GEL Certifications as of 30 March 2018

State	Certification
Alaska	17-018
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC00012
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho Chemistry	SC00012
Idaho Radiochemistry	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA180011
Maryland	270
Massachusetts	M-SC012
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122018-1
New Hampshire NELAP	205415
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	9904
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-18-13
Utah NELAP	SC000122018-26
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
West Virginia	997404

GC/MS Volatile Technical Case Narrative North Wind - Portage (POEN) SDG #: 446517

Product: Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method: SW846 8260B

Analytical Procedure: GL-OA-E-038 REV# 26

Analytical Batch: 1751482

Preparation Method: SW846 5035

Preparation Procedure: GL-OA-E-039 REV# 12

Preparation Batch: 1751481

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
446517001	CFA18001 - Soil Location #1
446517002	CFA18002 - Soil Location #2
446517003	CFA18003 - Soil Location #3
446517004	CFA18003 - DUP - Soil Location #3
1203999288	Method Blank (MB)
1203999289	Laboratory Control Sample (LCS)
1203999290	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

GEL LABORATORIES LLC

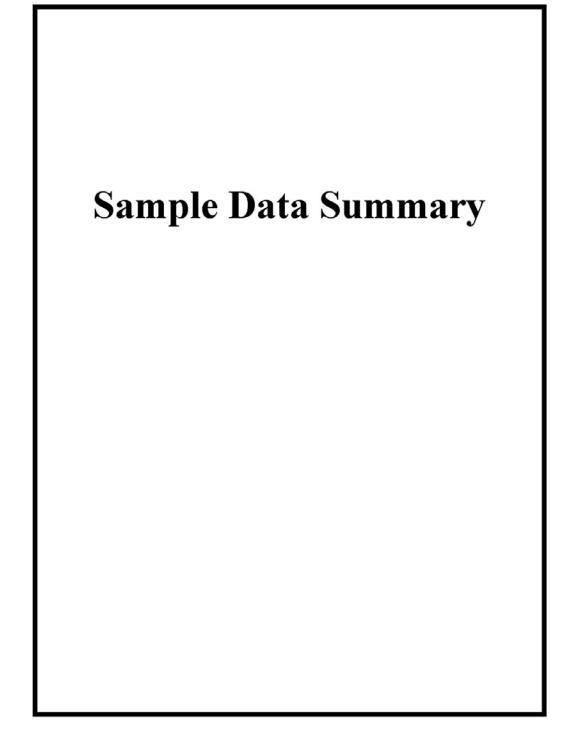
2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

POEN004 North Wind - Portage (8-00000013) Client SDG: 446517 GEL Work Order: 446517

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- DL Indicates that sample is dibuted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.


Review/Validation

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Euro Howberts Name: Erin Haubert

Date: 04 APR 2018 Title: Data Validator

GEL Laboratories LLC Report Date: March 30, 2018

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517 Lab Sample ID: 446517001 Date Collected: 03/22/2018 11:10 Date Received: Client:

03/23/2018 08:55 POEN004

Matrix: SOIL

%Moisture: 16.3 Project: POEN004 SOP Ref: GL-OA-E-038

Page 1

of 1

Client ID: CFA18001 - Soil Location #1 1751482 Batch ID: Run Date: 03/29/2018 18:29 Prep Date: 03/22/2018 11:10 032918V1\1B419.D Data File:

Method: SW846 8260B VOA1.I Inst: Analyst: PXY1 Aliquot: 6.67 g

Dilution: 1 Purge Vol: 5 mL Final Volume: 5 mL

Column: DB-624

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U	0.895	ug/kg	0.298	0.895
100-41-4	Ethylbenzene	U	0.895	ug/kg	0.298	0.895
108-88-3	Toluene	U	0.895	ug/kg	0.298	0.895
1330-20-7	Xylenes (total)	U	2.69	ug/kg	0.895	2.69

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517 Lab Sample ID: 446517002 Date Collected: 03/22/2018 11:30 Date Received: Client:

03/23/2018 08:55 POEN004

Matrix: %Moisture: Project:

SOP Ref:

SOIL 21.8 POEN004 GL-OA-E-038

Page 1

of 1

Client ID: CFA18002 - Soil Location #2 1751482 Batch ID: Run Date:

Prep Date:

Data File:

03/29/2018 18:58 03/22/2018 11:30 032918V1\1B420.D Method: Inst: Analyst: Aliquot:

Column:

SW846 8260B VOA1.I PXY1 6.42 g DB-624

Dilution: 1 Purge Vol: 5 mL

Final Volume: 5 mL

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U	0.996	ug/kg	0.332	0.996
100-41-4	Ethylbenzene	U	0.996	ug/kg	0.332	0.996
108-88-3	Toluene	U	0.996	ug/kg	0.332	0.996
1330-20-7	Xylenes (total)	U	2.99	ug/kg	0.996	2.99

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517 Lab Sample ID: 446517003

Date Collected: 03/22/2018 11:55 Date Received:

03/23/2018 08:55 POEN004 SW846 8260B

Matrix: %Moisture: Project: SOP Ref:

6.8 POEN004 GL-OA-E-038

SOIL

Page 1

of 1

Client ID: CFA18003 - Soil Location #3 Batch ID: Run Date: Prep Date:

Data File:

1751482 03/29/2018 19:27 03/22/2018 11:55

032918V1\1B421.D

Client: Method: Inst: Analyst: Aliquot: Column:

VOA1.I PXY1 6.23 g DB-624

Dilution: 1 Purge Vol: 5 mL

Final Volume: 5 mL

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U	0.861	ug/kg	0.287	0.861
100-41-4	Ethylbenzene	U	0.861	ug/kg	0.287	0.861
108-88-3	Toluene	U	0.861	ug/kg	0.287	0.861
1330-20-7	Xylenes (total)	U	2.58	ug/kg	0.861	2.58

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517 Lab Sample ID: 446517004 Date Collected: 03/22/2018 11:55 03/23/2018 08:55 Date Received:

Matrix: %Moisture: Project:

SOIL 7.7 POEN004

Page 1

of 1

Client ID: Batch ID:

Run Date:

Prep Date:

CFA18003 - DUP - Soil Location #3 1751482 03/29/2018 19:55 03/22/2018 11:55

Client: POEN004 Method: SW846 8260B VOA1.I Inst: Analyst: PXY1 Aliquot: 6.19 g DB-624

SOP Ref: GL-OA-E-038 Dilution: 1 Purge Vol: 5 mL

Final Volume: 5 mL

032918V1\1B422.D Data File: Column:

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U	0.875	ug/kg	0.291	0.875
100-41-4	Ethylbenzene	U	0.875	ug/kg	0.291	0.875
108-88-3	Toluene	U	0.875	ug/kg	0.291	0.875
1330-20-7	Xylenes (total)	U	2.62	ug/kg	0.875	2.62

GEL Laboratories LLC Report Date: March 30 2018

Volatile

Page 1 of 1

Surrogate Recovery Report

SDG Number: 446517 Matrix Type: SOLID

Sample ID	Client ID	DCED4 %REC	TOL %REC	BFB %REC
	LCS for batch 1751481		000000000000000000000000000000000000000	
1203999289 1203999290	LCS for batch 1751481 LCSD for batch 1751481	94 93	93 94	100 101
1203999290	MB for batch 1751481	93	93	101
446517001	CFA18001 - Soil Location #1	89	94	103
446517002	CFA18002 - Soil Location #2	91	93	101
446517003	CFA18003 - Soil Location #3	94	93	103
446517004	CFA18003 - DUP - Soil Location #3	92	94	107

Surrogate Acceptance Limits

 DCED4
 = 1,2-Dichloroethane-d4
 (81%-124%)

 TOL
 = Toluene-d8
 (81%-120%)

 BFB
 = Bromofluorobenzene
 (70%-130%)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

Volatile

Page 1

of 2

Quality Control Summary Spike Recovery Report

SDG Number: 446517 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 1751481 Matrix: SOIL

Lab Sample ID 1203999289

Instrument: VOA1.I Analysis Date: 03/29/2018 11:13 Dilution: 1

 Analyst:
 PXY1
 Prep Batch ID:1751481

 Purge Vol:
 5 mL
 Batch ID:
 1751482

CAS No	Parmname	Amount Added ug/kg	Sample Conc. ug/kg	Spike Conc. ug/kg	Recovery %	Acceptance Limits
20-7 LCS	Xylenes (total)	150	0.0	153	102	72-123
2 LCS	Benzene	50.0	0.0	51.0	102	71-123
-3 LCS	Toluene	50.0	0.0	49.7	99	70-121
1 LCS	Ethylbenzene	50.0	0.0	50.9	102	72-123

Volatile

Page 2 of 2

Quality Control Summary Spike Recovery Report

SDG Number: 446517 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 1751481 Matrix: SOIL

Lab Sample ID 1203999290

Instrument: VOA1.I Analysis Date: 03/29/2018 11:42 Dilution: 1

 Analyst:
 PXY1
 Prep Batch ID: 1751481

 Purge Vol:
 5 mL
 Batch ID: 1751482

		Amount	Sample	Spike	1	Acceptanc	e A	Acceptance
CAS	S No Parmname	Added ug/kg	Conc. ug/kg	Conc. ug/kg	Recovery %	Limits	RPD %	Limits
1330-20-7	LCSD Xylenes (total)	150	0.0	151	101	72-123	1	0-20
71-43-2	LCSD Benzene	50.0	0.0	49.7	99	71-123	3	0-20
108-88-3	LCSD Toluene	50.0	0.0	49.1	98	70-121	1	0-20
100-41-4	LCSD Ethylbenzene	50.0	0.0	50.2	100	72-123	1	0-20

GEL Laboratories LLC Report Date: March 30, 2018

Method Blank Summary

Page 1 of 1

SDG Number: 446517

Client ID: MB for batch 1751481

Lab Sample ID: 1203999288 Client: Instrument ID: Prep Date:

POEN004 VOA1.I

03/29/2018 09:00

Matrix:

Data File: 032918V1\1B409P.D

Analyzed: 03/29/18 13:38

DB-624 Column:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed
01 LCS for batch 1751481	1203999289	032918V1\1B404P.D	03/29/18	1113
02 LCSD for batch 1751481	1203999290	032918V1\1B405P.D	03/29/18	1142
03 CFA18001 - Soil Location #1	446517001	032918V1\1B419.D	03/29/18	1829
04 CFA18002 - Soil Location #2	446517002	032918V1\1B420.D	03/29/18	1858
05 CFA18003 - Soil Location #3	446517003	032918V1\1B421.D	03/29/18	1927
06 CFA18003 - DUP - Soil Location #3	446517004	032918V1\1B422.D	03/29/18	1955

Page 1 of 1

Instrument Performance Check BROMOFLUOROBENZENE

Lab Name GEL Laboratories LLC Client SDG: 446517

Instrument ID: VOA1.I Injection Date/Time: 26-MAR-18 13:47

Column Description: DB-624 Lab File ID 032618V1\1B101.D

m/e	Ion Abundance Criteria	% Relative Abundance
50	15.0 - 40.0% of mass 95	22.2
75	30.0 - 60.0% of mass 95	50.5
95	Base Peak, 100% Relative Abundance	100
96	5.0 - 9.0% of mass 95	5.9
173	Less than 2.0% of mass 174	0
174	50.0 - 100.0% of mass 95	67.5
175	5.0 -9.0% of mass 174	9
176	95.0 - 101.0% of mass 174	98.7
177	5.0 - 9.0% of mass 176	5.9

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, LCS, LCSD, BLANKS AND STANDARDS

Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
ICALMIX[A]	W1VM180326-01	032618V1\1B102.D	26-MAR-18 14:10
ICALMIX[A]	W1VM180326-02	032618V1\1B103.D	26-MAR-18 14:39
ICALMIX[A]	W1VM180326-03	032618V1\1B104.D	26-MAR-18 15:08
ICALMIX[A]	W1VM180326-04	032618V1\1B105.D	26-MAR-18 15:37
ICALMIX[A]	W1VM180326-06	032618V1\1B107.D	26-MAR-18 16:35
ICALMIX[A]	W1VM180326-07	032618V1\1B108.D	26-MAR-18 17:04
ICALMIX[A]	W1VM180326-08	032618V1\1B109.D	26-MAR-18 17:32
ICALMIX[A]	W1VM180326-09	032618V1\1B110.D	26-MAR-18 18:01
ICALMIX[A]	W1VM180326-05	032618V1\1B112.D	26-MAR-18 18:58
ICVMIX[A]01	W1VM180326-10	032618V1\1B121.D	26-MAR-18 23:15

Report Date: 30-MAR-18

Page 1 of 1

Instrument Performance Check BROMOFLUOROBENZENE

Lab Name GEL Laboratories LLC Client SDG: 446517

Instrument ID: VOA1.I Injection Date/Time: 29-MAR-18 09:53

 Column Description:
 DB-624
 Lab File ID
 032918V1\1B401.D

m/e	Ion Abundance Criteria	% Relative Abundance
50	15.0 - 40.0% of mass 95	20.2
75	30.0 - 60.0% of mass 95	50.1
95	Base Peak, 100% Relative Abundance	100
96	5.0 - 9.0% of mass 95	7.7
173	Less than 2.0% of mass 174	0
174	50.0 - 100.0% of mass 95	69.9
175	5.0 -9.0% of mass 174	8.4
176	95.0 - 101.0% of mass 174	98.3
177	5.0 - 9.0% of mass 176	7.2

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, LCS, LCSD, BLANKS AND STANDARDS

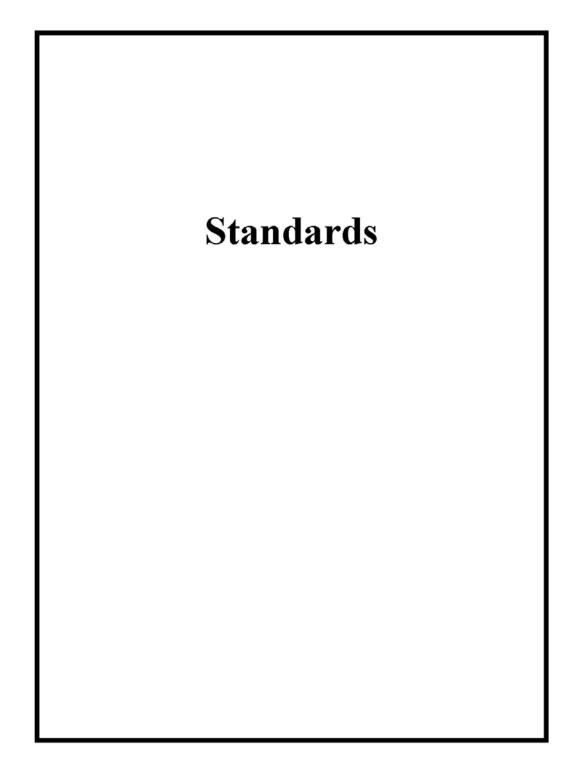
Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
CCVMIX[A]01	W1VM180329-01	032918V1\1B402.D	29-MAR-18 10:16
BLK01LCS	1203999289	032918V1\1B404P.D	29-MAR-18 11:13
BLK01LCSD	1203999290	032918V1\1B405P.D	29-MAR-18 11:42
BLK01	1203999288	032918V1\1B409P.D	29-MAR-18 13:38
CFA18001 - Soil Location #1	446517001	032918V1\1B419.D	29-MAR-18 18:29
CFA18002 - Soil Location #2	446517002	032918V1\1B420.D	29-MAR-18 18:58
CFA18003 - Soil Location #3	446517003	032918V1\1B421.D	29-MAR-18 19:27
CFA18003 - DUP - Soil Location	446517004	032918V1\1B422.D	29-MAR-18 19:55

Report Date: 30-MAR-18
Page 1 of 1

Internal Standard Area and RT Summary

Lab Name : GEL Laboratories LLC Client SDG: 446517

Instrument: VOA1.I STD Analysis Time: 29-MAR-1810:16


GC Column: DB-624 Data File: 032918V1\1B402.D

	Fluorobenzene		Chlorobenzene-d5				1,4-Dichlorobenzene-d4					
	Area	#	RT	#	Area	#	RT	#	Area	#	RT	#
12 Hour STD	1104889		12.2		887601		15.8		526186		18.4	_
Upper Limit	2209778		12.7		1775202		16.3		1052372		18.9	
Lower Limit	552445		11.7		443801		15.3		263093		17.9	
Sample ID												
BLK01LC8	1061199		12.2		878240		15.8		531372		18.4	_
BLK01LCSD	1085710		12.2		882426		15.8	П	533105		18.4	_
BLK01	1052138		12.2	7	851262		15.8	П	518690		18.4	_
CFA18001 - Soil Location #1	1027603		12.2	T	830757		15.8		487841		184	_
CFA18002 - Soil Location #2	1028306		12.2		819767		15.8	Т	491849		18.4	_
CFA18003 - Soil Location #3	1045559		12.2		846137		15.8	ī	494383		18.4	_
CFA 18003 - DUP - Soil Location	1051321		12.2		842565		15.8		464807		18.4	_

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

^{*} Value outside of QC Limits

Calibration Standard Concentral	Level 1	Level 1a	Level 2	Level 3	Level 4	Level 5	Level 6 #	Level 7 !	Level 7a
luorobenzene (IS)	20	20/50 20/50	20/50 20/50	20/50 20/50	20/50 20/50	20/50 20/50	20/50 20/50	20/50 20/50	20/50 20/50
,2-Dichloroethane-d4(surr) ichlorodifluoromethane hloromethane		0.5 0.5	1	2 2	5	10	20/50	50	100
/inyl chloride		0.5	1	2	5	10	20	50 50	100
Bromomethane Chloroethane Frichlorofluoromethane		0.5	1 1	2	5	10	20	50 50	100
1,1-Dichloroethene	1.	0.5	1 5	2	5 25	10	20	50 250	100
odomethane Carbon disulfide	1	2.5	5	10	25 25	50 50	100	250 250	500 500
Methylene chloride rans-1,2-Dichloroethene	_	0.5	1	2	5	10 10	20	50 50	100
1,1-Dichloroethane		0.5	1	2	5	10	20	50	100
/inyl acetate	1	2.5	5	10	25	50	100	250 50	500
1,2-Dichloroethene (total) Cyclohexene		0.5	2	4 2	10	20	40	100	200
2-Chloroethylvinyl ether 2,2-Dichloropropane		0.5	5	10	25	50	100	250 50	500
2-Butanone Bromochloromethane	1	2.5 0.5	5	10	25 5	50 10	100 20	250 50	500 100
Chloroform 1.1.1-Trichloroethane		0.5	1	2	5	10	20 20	50 50	100
1,1 Dichloropropene Carbon tetrachloride		0.5	1	2	5	10	20 20	50 50	100
Benzene 1,2 Dichloroethane		0.5	1	2	5	10 10	20 20	50 50	100
Trichloroethene 1,2-Dichloropropane		0.5	1	2	5	10 10	20 20	50 50	100
Dibromomethane Bromodichloromethane		0.5	1	2	5	10 10	20 20	50 50	100
is-1,3-Dichloropropene ert-Butylmethylether		0.5	1	2	5	10 10	20 20	50 50	100
Ethyl Ether Acetonitrile			1 25	2 50	5 125	10 250	20 500	50 1250	100 2500
Methyl acetate Cyclohexane			5	10	25 5	50 10	100 20	250 50	500 100
Methylcyclohexane n-Butyl alcohol		50	100	200	500	10 1000	20 2000	50 5000	100 10000
2-Nitropropane Ethyl acetate			5	10 10	25 25	50 50	100 100	250 250	500 500
Acrolein Trichlorotrifluoroethane		2	5	10	25 25	50 50	100	250 250	500 500
Allyl chloride Acrylonitrile			5	10 10	25 25	50 50	100 100	250 250	500 500
I,4-Dioxane sobutyl alcohol			50 50	100 100	250 250	500 500	1000	2500 2500	5000 5000
Methacrylonitrile Propionitrile			5	10	25 25	50 50	100	250 250	500
Methyl methacrylate Ehlorotrifluoroethylene			5	10 10	25 25	50 50	100 100	250 150	500 200
2 - Chloro - 1,1,1 - trifluoroetha Tetrahydrofuran	ene		5	10	25 25	50 50	100 100	150 250	200 500
ert-Butyl alcohol sopropyl ether			50	100	250 5	500 10	1000 20	2500 50	5000 100
Ethyl tert-butyl ether Isopropyl alcohol			1 50	100	5 250	10 500	20 1000	50 2500	100 5000
Methyl tert-amyl ether L-Chlorohexane			1	2	5	10 10	20 20	50 50	100
2 Chloro 1,3 butadiene(chlo Chlorobenzene-d5 (IS)	oroprene) 20	20	20/50	20/50	20/50	20/50	20/50	20/50	20/50
foluene-d8 (surr) I-Methyl-2-pentanone	1	2.5	20/50	20/50	20/50	20/50 50	20/50 100	20/50 250	20/50 500
foluene rans - 1,3 - Dichloropropene		0.5	1	2	5	10	20 20	50 50	100
1,1,2-Trichloroethane Tetrachloroethene		0.5	1	2	5	10 10	20 20	50 50	100
1,3-Dichloropropane 2-Hexanone	1	0.5 2.5	5	10	25	10 50	20 20	50 250	100 500
Dibromochloromethane 1,2-Dibromoethane		0.5	1	2	5	10	20 20	50 50	100
Chlorobenzene 1,1,1,2-Tetrachloroethane		0.5	1	2	5	10	20 20	50 50	100
thylbenzene n.p-Xylene		0.5	2	4	10	20	20 20	100	200
o-Xylene (ylenes (total)		1.5	3	6	15	30	20 60	50 150	300
Stryene Sthyl methacrylate	20	0.5	1 5 20/50	10	25 20/50	10 50 20/50	100	250	100 500 20/50
I,4-Dichlorobenzene-d4 (IS) Bromofluorobenzene (surr)	20	20	20/50	20/50	20/50	20/50	20/50 20/50 20	20/50 20/50 50	20/50 20/50 100
sopropylbenzene		0.5	1	2	5	10	20	50	100
I,1,2,2-Tetrachloroethane Bromobenzene I,2,3-Trichloropropane		0.5 0.5	1	2 2 2	5 5	10 10	20 20 20	50 50 50	100 100
n-Propylbenzene 2-Chlorotoluene		0.5	1	2 2	5	10	20	50	100
1,3,5-Trimethylbenzene		0.5	1	2 2	5	10	20 20 20	50 50	100
-Chlorotoluene		0.5	1	2 2	5	10	20	50 50	100
1,2,4-Trimethylbenzene		O.E.					20	50	100
4-Chlorotoluene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene		0.5 0.5	1	2	5	10		50	100
1,2,4-Trimethylbenzene ec-Butylbenzene 1,3-Dichlorobenzene ert-Butylbenzene sopropyltoluene		0.5 0.5 0.5		2	5	10 10	20 20	50 50	100
1,2,4-Trimethylbenzene iec-Butylbenzene 1,3-Dichlorobenzene ert-Butylbenzene sopropyltoluene 1,4-Dichlorobenzene 1-Butylbenzene		0.5 0.5 0.5 0.5 0.5	1 1 1 1	2 2 2	5 5 5	10 10 10	20 20 20 20	50 50 50	100 100 100
1,2,4 Trimethylbenzene tec-Burylbenzene 1,3 - Dichlorobenzene ert - Butylbenzene sopropyltoluene 1,4 - Dichlorobenzene 1-Butylbenzene 1,2 - Dichlorobenzene 1,2 - Dichlorobenzene 1,2 - Dibromo-3 - chloropropa		0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1	2 2 2 2 2 2	5 5 5 5 5	10 10 10 10 10	20 20 20 20 20 20 20	50 50 50 50 50	100 100 100 100 100
1,2,4-Trimethylbenzene ecc. Butylbenzene ecc. Butylbenzene err. Butylbenzene sopromyltoluene 1,4-Dichlorobenzene - Butylbenzene 1,4-Dichlorobenzene 1,2-Dibromo-3-chloropropa 1,2-Dibromo-3-chloropropa 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-1-chloropropa 1,2-Dibromo-1-chloropropa 1,2-Dibromo-1-chlorobenzene 1exachlorobutadiene		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	5 5 5 5 5 5	10 10 10 10 10 10 10	20 20 20 20 20 20 20 20 20 20	50 50 50 50 50 50 50	100 100 100 100 100 100
1,2,4 - Trimethylbenzene ec. Burylbenzene et. Burylbenzene et. Burylbenzene sopromyltoluene ,4-Dichlorobenzene -Burylbenzene ,4-Dichlorobenzene ,2-Dibhrome-3-chloropropa ,2-Dirbhrome-3-chloropropa ,2-Tirkhorobenzene lexachlorobutadiene taphthalene ,2,3-Tirkhorobenzene		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10	20 20 20 20 20 20 20 20 20 20 20 20 20 2	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100 100
1,2.4 - Trimethylbenzene ce. Burybenzene 1,3 - Dicklorobenzene art Burybenzene 1,4 - Dicklorobenzene art Burybenzene 1,5 - Dicklorobenzene 1,2 - Dicklorobenzene 1,2 - Dicklorobenzene 1,2 - Dicklorobenzene 1,2 - Tricklorobenzene 1,2,4 - Tricklorobenzene 1,2,4 - Tricklorobenzene 1,3,4 - Tricklorobenzene 1:5 - 1,4 - Dickloro - 2- butene	e	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 1 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 50	20 20 20 20 20 20 20 20 20 20 20 20 100	50 50 50 50 50 50 50 50 50 50 50 250 250	100 100 100 100 100 100 100 100 100 500
2,4 - Trimethylbenzene cs. Burlybenzene 3,3-Dichlorobenzene art Burlubenzene en Burlubenzene en Burlubenzene - Burlubenzene - Burlubenzene - Burlubenzene - Burlubenzene - Burlubenzene - Dichlorobenzene - Dichlo	e	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10 10 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 50 50	20 20 20 20 20 20 20 20 20 20 20 20 20 100 10	50 50 50 50 50 50 50 50 50 50 250 250 25	100 100 100 100 100 100 100 100 500 500
1,2,4 - Trimethylbenzene cse-Burylbenzene 1,3 - Dichlorobenzene eri Burylbenzene soprogrykoluene 1,4 - Dichlorobenzene - Burylbenzene 1,2 - Dichlorobenzene 1,2 - Dichlorobenzene 1,2 - Dichlorobenzene 1,2,4 - Trichlorobenzene 1ewachlorobutadiene tewachlorobutadiene 1,2,3 - Trichlorobenzene 1,3 - Dichloro - 2 - buren 1,3 - Dichloro - 2 - buren 1,3 - Dichloro - 2 - buren 1,4 -		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 10 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 50 50	20 20 20 20 20 20 20 20 20 20 20 20 100 10	50 50 50 50 50 50 50 50 50 50 50 250 250	100 100 100 100 100 100 100 100 500 500
1,24. Trimethylbenzene ce. Burylbenzene 1,3-Dichlorobenzene ent-Burylbenzene sopropritoluere 1,4-DichlorobenzeneBurylbenzeneBurylbenzeneBurylbenzeneBurylbenzene 1,2-DichlorobenzeneBurylbenzene 1,2-DichlorobenzeneBurylbenzene 1,2-DichlorobenzeneBurylbenzen	PQL	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 10 10 10 10 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 50 50 50	20 20 20 20 20 20 20 20 20 20 20 100 100	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
1,24Trimethylbenzene ce. Burylbenzene (3,3-Dichlorobenzene en Burylbenzene soprogytobuene - Burylbenzene - Burylbenzene - Burylbenzene - Burylbenzene - Burylbenzene (2,2-Dichlorobenzene - Burylbenzene (3,2-Dichlorobenzene - Burylbenzene (3,2-Dichlorobenzene - Burylbenzene (3,2-Dichlorobenzene - Burylbenzene - Burylben	PQL Level 1 &1a Level 1a	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 25 5 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 0 10 10 10 10 10 10 10 10 10 10 10 10 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50	20 20 20 20 20 20 20 20 20 20 100 100 10	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
2,4. Trimethylbenzene cs. Burlybenzene 3,3-Dichlorobenzene tri Burlybenzene tri Burlybenzene sopropylobuene -Burlybenzene -Burly	PQL Level 1 &1a Level 1a Level 2 cation conce	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 25 5 5 25 5 5 25 5 25 5 25 1 > 7a a = > 7a a = > 7a a = > 7a a = > 7a c = > 7a a = > 7a	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50 250 50	20 20 20 20 20 20 20 20 20 20 20 100 100	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
1,24Trimethylbenzene ce. Burylbenzene 1,3-Dichlorobenzene en Burylbenzene sopropylobuene - Burylbenzene - Bur	PQL Level 1 &1a Level 1a Level 2 cation conce	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 25 5 5 25 5 5 25 5 25 5 25 1 > 7a a = > 7a a = > 7a a = > 7a a = > 7a c = > 7a a = > 7a	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50 250 50	20 20 20 20 20 20 20 20 20 20 100 100 10	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
1,2,4-Trimethylbenzene tec-Burylbenzene 1,3-Dichlorobenzene err-Burylbenzene sopropyltoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	PQL Level 1 &1a Level 1a Level 2 cation conce	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 25 5 5 25 5 5 25 5 25 5 25 1 > 7a a = > 7a a = > 7a a = > 7a a = > 7a c = > 7a a = > 7a	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50 250 50	20 20 20 20 20 20 20 20 20 20 100 100 10	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
1,24. Trimethylbenzene ce. Burylbenzene 1,3-Dichlorobenzene en Burylbenzene sopropritoluere 1,4-Dichlorobenzene en Burylbenzene 1-Burylbenzene 1-Burylbenzene 1-Burylbenzene 1-Burylbenzene 1,2-Dichlorobenzene 1-Burylbenzene 1,2-Dichlorobenzene 1-Burylbenzene 1,2-Dichlorobenzene 1-Burylbenzene 1,2-Dichlorobenzene 1-Burylbenzene 1-Burylb	PQL Level 1 &1a Level 1a Level 2 cation conce	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 25 5 5 25 5 5 25 5 25 5 25 1 > 7a a = > 7a a = > 7a a = > 7a a = > 7a c = > 7a a = > 7a	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50 250 50	20 20 20 20 20 20 20 20 20 20 100 100 10	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500
2.4. Trinethylbenzene 3Olchlorobenzene 3Olchlorobenzene 3Olchlorobenzene 4Olchlorobenzene Butylbenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 2Olbrome-3Chloropenzene 3I-Olchloro-3Dutene 3I-Ol	PQL Level 1 &1a Level 1a Level 2 cation conce	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 25 5 5 25 5 5 25 5 25 5 25 1 > 7a a = > 7a a = > 7a a = > 7a a = > 7a c = > 7a a = > 7a	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 50 50 50 50 250 50	20 20 20 20 20 20 20 20 20 20 100 100 10	50 50 50 50 50 50 50 50 50 250 250 250 2	100 100 100 100 100 100 100 100 500 500

Calibration History Report VOAL GEL Laboratories, LLC Method File: C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M Last Update: Mon Mar 26 23:38:56 2018 Integrator: (RTE Integrator) Response v

03/27/2018

Response via : Initial Calibration

Integrator : (RTE	Int	egrator) Re	esponse via : Initial Calibrat	ion
Cal Lvl:8 Amt:0.00	Last	Updated with: C:\msdchem\1\DA		ell 3/ 2 9/2018
Injection Date	Mix	Calibration File		
26 Mar 2018 14:10	A	C:\msdchem\1\DATA\032618V1\1E	3102.D	†
	+			+
Cal Lvl:1 Amt:1.00	Last	Updated with: C:\msdchem\1\DA	ATA\032618V1\1B114.D	+
Injection Date	Mix	Calibration File		_ [
26 Mar 2018 14:39 26 Mar 2018 19:55	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		
Cal Lvl:2 Amt:2.00	Last	Updated with: C:\msdchem\1\DA	ATA\032618V1\1B115.D	
Injection Date	Mix	Calibration File		T
26 Mar 2018 15:08 26 Mar 2018 20:24	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		
Cal Lvl:3 Amt:5.00	Last	Updated with: C:\msdchem\1\DA	ATA\032618V1\1B116.D	
Injection Date	Mix	Calibration File		Ī
26 Mar 2018 15:37 26 Mar 2018 20:52	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		
Cal Lvl:4 Amt:10.00	Las	Updated with: C:\msdchem\1\I	DATA\032618V1\1B117.D	+
Injection Date	Mix	Calibration File		
26 Mar 2018 18:58 26 Mar 2018 21:21	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		
Cal Lvl:5 Amt:20.00	Las	Updated with: C:\msdchem\1\I	DATA\032618V1\1B118.D	
Injection Date	Mix	Calibration File		į
26 Mar 2018 16:35 26 Mar 2018 21:49	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		Ī
Cal Lvl:6 Amt:50.00	Las	Updated with: C:\msdchem\1\I	DATA\032618V1\1B119.D	+
Injection Date	Mix	Calibration File		i
26 Mar 2018 17:04 26 Mar 2018 22:18	A B	C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E		
Cal Lvl:7 Amt:100.00	La	st Updated with: C:\msdchem\1\	\DATA\032618V1\1B120.D	+
Injection Date	Mix	Calibration File		
		C:\msdchem\1\DATA\032618V1\1E C:\msdchem\1\DATA\032618V1\1E	3110.D 3120.D	+
Cal Lvl:9 Amt:80.00	Las	Updated with: C:\msdchem\1\I	DATA\032618V1\1B109.D	
Injection Date	Mix	Calibration File		1
OA1-8260-032618.M Tu	e Ma	27 01:19:04 2018		Page: 1

Page 31 of 94

Calibration History Report VOA1 GEL Laboratories, LLC Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M Last Update : Mon Mar 26 23:38:56 2018 Integrator : (RTE Integrator) Response V

Response via : Initial Calibration

		-+	
26 Mar 2018 17:32	A	C:\msdchem\1\DATA\032618V1\1B109.D	
+	-+		

VOA1-8260-032618.M Tue Mar 27 01:19:36 2018

VOA1-8260-032618.M Tue Mar 27 01:19:04 2018

Page: 2

Page 32 of 94

Response Factor Report VOA1 GEL Laboratories, LLC Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M Last Update : Mon Mar 26 23:38:56 2018 Integrator : (RTE Integrator) Response vi- or Linear Calibration

Response via : Initial Calibration

For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

O3/27/2018

Compound b m1 m2	8 6	1 7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
2) MA Dichlorodifluoromethane	0.2325581	0.2088924		0.2603698	0.2346314	0.2505387	0.2349	AVRG		7.4532
3)MPA Chloromethane	0.2156781	0.2341336		0.2354239	0.2436657	0.2275842	0.2260	AVRG		5.4850
4) MCA Vinyl chloride	0.2274747	0.2259133 0.2078446		0.2349843	0.2263741	0.2281090	0.2252	AVRG		4.2742
5) MA Bromomethane			0.1241219	0.1669055	0.1955067	0.1790461	0.1653			13.2940
6) MA Chloroethane		0.1954015	0.1980714	0.1977998	0.1946664	0.1928280				
7) MA Trichlorofluoromethane			0.4830355	0.4725668	0.4614184	0.4526316	0.1919			3.7547
8)MA Ethyl ether	0.4523642	9900		24327	52050	104561	0.4557	1/x		6.0900
0.0027 0.2469 0.00	263449			0.1724045	0.1713927	0.1496458		LINR		0.9980
10) MCA 1,1-Dichloroethylene	0.1542705	0.1485234	0.1438894	0.4167753			0.1650	AVRG		11.7355
	0.4143312	0.3970129	0.4044306				0.4123	AVRG		2.2912
11) MA Iodomethane	0.4952894	0.4440563	0.4625985	0.5400810			0.5121	AVRG		7.8029
12)MA Acetonitrile	0.0343681	0.0355543		0.0352623	0.0346553	0.0340871	0.0343	AVRG		4.3639
13) MA Methyl acetate	0.0508425	0.0446024 0.0499693		0.0503412	0.0516941	0.0515496	0.0496	AVRG		4.6350
14)MA Carbon disulfide	0.7985348	0.9492614 0.6814759		0.9212366	0.9017682	0.8653331	0.8474	AVRG		12.2362
15)MA Methylene chloride 0.0056 0.3229 0.00	340898	11875 664835	18805 530308	39688	75341	143203		1/x LINR	#	0.9995
16)MA tert-Butyl methyl ether -0.0079 0.6591 0.00	647265	9248 1415395	19310 1070734		119802	235839		1/x LINR	#	0.9972

VOA1-8260-032618.M Tue Mar 27 01:20:22 2018

Page: 1

Response Factor Report VOA1
GEL Laboratories, LLC
Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update : Mon Mar 26 23:38:56 2018
Integrator : (RTE Integrator)
Response vi- or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

b	Compound m1 m2	8 6	1 7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
17) MA	trans-1,2-Dichloroethyle		0.3898358 0.3788480		0.4182697	0.4239597	0.4147848	0.4049	AVRG		4.5834
18) MA	Hexane	0.3262771	0.3249190	0.3358023	0.3180659	0.3535451	0.3569891	0.3359	AVRG		4.7765
19) MA	Vinyl acetate	0.5059411	0.3608133 0.4309509		0.4718830	0.4850428	0.4912750	0.4503	AVRG		10.8195
20) MPA	1,1-Dichloroethane			0.5086306	0.5111773	0.5201709	0.5245081	0.5082	AVRG		2.4325
21) MA	2-Butanone			0.1957543	0.1983272	0.2031121	0.1825786	0.1833			9.5571
22) MA	cis-1,2-Dichloroethylene		0.3028457	0.3263865	0.3288100	0.3389735	0.3332449				
23) MA	2,2-Dichloropropane			0.2620593	0.2710456	0.2938065	0.3055425	0.3221			4.2245
24) MA	Bromochloromethane	0.3320564	0.3319159 0.1773652		 0.1754715	0.1797257	0.1795078	0.2972	AVRG		11.3079
25) MCA	Chloroform	0.1781791	0.1729483		0.5948547	0.6162850	0 5869909	0.1775	AVRG		2.5160
	1,1,1-Trichloroethane	0.5786182	0.5514265	0.5578685	0.4044782			0.5880	AVRG		4.2906
		0.4545101	0.4451876	0.4446420				0.4260	AVRG		6.1771
27) MA 	Cyclohexane	0.4352720	0.3683663 0.4017086		0.4285646	0.4390510	0.4432647	0.4168	AVRG		6.0004
28) MA	1,1-Dichloropropene	0.3724604	0.3368874 0.3479717		0.3626150	0.3766119	0.3743477	0.3601	AVRG		3.9042
29) MA	Carbon tetrachloride	0.4387564	0.4071468 0.4137434		0.4249995	0.4340238	0.4414642	0.4247	AVRG		2.9191
30) SA	1,2-Dichloroethane-d4	0.1650263	0.1657030 0.1650191		0.1605205	0.1631044	0.1619280	0.1636	AVRG		1.2311
31) MA	1,2-Dichloroethane	0.4554705		0.4827446	0.4686598	0.4764902	0.4652375	0.4594	AVRG		4.7258

Response Factor Report VOA1
GEL Laboratories, LLC
Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update : Mon Mar 26 23:38:56 2018
Integrator : (RTE Integrator)
Response vi- or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b m1 m2	8 6	1 7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
32)MA Benzene	1.0886789	1.1482798		1.1579361	1.1604116	1.1270888	1.1070	AVRG		6.2775
33)MA Cyclohexene	0.4803221	0.4103866 0.4462752		0.4560989	0.4879435	0.4787984	0.4572	AVRG		5.5892
34)MA n-Butyl alcohol -0.0055 0.0084 0.00	5910 892002	11283 1723839	27734 1357268	74080	166764	353927		1/x LINR	# #	0.9984
35)MA Trichloroethylene	0.2992549	0.2864051		0.3079176	0.3123318	0.3034334	0.2988	AVRG		3.9781
36)MA 2-Pentanone	0.2221755	0.1945759		0.2057837	0.2209924	0.2204915	0.2077	AVRG		6.4331
37)MCA 1,2-Dichloropropane	0.3034973	0.2970915 0.2782884		0.3028971	0.3150810	0.3112623	0.2988	AVRG		4.3985
38)MA Methylcyclohexane	0.4696647	0.4329683 0.4287871		0.4819630	0.4905907	0.4832619	0.4621	AVRG		5.3904
39)MA Dibromomethane	0.2186936	0.2172094 0.2113588		0.2187509	0.2217841	0.2187688	0.2176	AVRG		2.0667
40) MA Bromodichloromethane	0.4739910	0.4270206 0.4551744		0.4455599	0.4833777	0.4662799	0.4564	AVRG		3.9628
41)MA 2-Chloroethylvinyl ether 0.0039 0.1682 0.00	932301	14580 1619380	32369 1353645	93911	200448	400193		1/x LINR	#	0.9909
42)MA cis-1,3-Dichloropropylen -0.0052 0.5000 0.00	521523	6298 1019621	14429 810458	40404	97152	202193		1/x LINR	#	0.9993
44)MA 4-Methyl-2-pentanone	0.3410195	0.2951503 0.2910938		0.3805116	0.3883504	0.3718260	0.3395	AVRG		11.5647
45)SA Toluene-d8	1.2459444	1.2619693 1.2329948		1.2365487	1.2494165	1.2354089	1.2449	AVRG		0.8181
46)MCA Toluene	1.3837170	1.4561231 1.2435658		1.4928237	1.5114965	1.4710616	1.4209	AVRG		7.5155
47)MA trans-1,3-Dichloropropyl -0.0074 0.5814 0.00	487522	5462 951025	11932 757154		85687	183986		1/x LINR	#	0.9990

Response Factor Report VOA1

GEL Laboratories, LLC

Method File: C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M

Last Update: Mon Mar 26 23:38:56 2018

Integrator: (RTE Integrator)

Response via --
or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b m1 m2	8 6	7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
48) MA 1,1,2-Trichloroethane	0.3160217	0.3191595 0.2980786	0.3291482	0.3164336	0.3172934	0.3183083	0.3139	AVRG		3.5039
49) MA 2-Hexanone	0.3144514	0.3204271	0.3619644	0.3869478	0.4019146	0.3498717	0.3435	AVRG		13.3602
50)MA 1,3-Dichloropropane	0.5815879	0.5521146 0.5233528	0.5958101 0.5318734	0.5833698	0.6049761	0.6021777	0.5719	AVRG		5.5915
51) MA Tetrachloroethylene	0.2911156	0.2921476 0.2719161	0.3031483	0.2979091	0.2961915	0.2968246	0.2907	AVRG		3.7621
52)MA Dibromochloromethane	0.4872295	0.3937347	0.4263629	0.4352102	0.4755547	0.4725781	0.4548	AVRG		7.1682
53)MA 1,2-Dibromoethane	0.3932172	0.3298043	0.3562277 0.3785158	0.3693205	0.3798708	0.3859035	0.3716	AVRG		5.4258
54) MPA Chlorobenzene	1.0373318	1.1397324	1.1402680	1.1035490	1.1160162	1.0933229	1.0673	AVRG		7.2205
55)MA 1,1,1,2-Tetrachloroethan		0.3580469	0.3822894 0.4040116	0.3935022	0.4198595	0.4254237	0.4001	AVRG		5.7222
56) MCA Ethylbenzene	1.6149805	1.5531570 1.4018590	1.7074565	1.7425911	1.7598521	1.7434554	1.6215	AVRG		8.6837
57)MA m,p-Xylenes	0.6279568	0.6042003	0.6566310	0.6835910	0.6886433	0.6770918	0.6309	AVRG		8.8423
58) MA o-Xylene	0.6646380	0.5258410 0.5824471	0.6246785 0.6107119	0.6633841	0.7112564	0.7063249	0.6362	AVRG		9.9328
59) MA Styrene	1.1057995	0.8874567 0.9366081	1.0725693	1.1488929	1.2161062	1.1946899	1.0693	AVRG		11.2663
61) MPA Bromoform	0.5559974	0.4256759	0.4246603	0.4634273	0.4996311	0.5224546	0.4981	AVRG		10.8611
62)MA Isopropylbenzene			2.4079251	2.6640927	2.8976395	2.8572279	2.5687			10.9545
63) SA Bromofluorobenzene			0.9490863	0.9597598	0.9618963	0.9466911				

Response Factor Report VOA1
GEL Laboratories, LLC
Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update : Mon Mar 26 23:38:56 2018
Integrator : (RTE Integrator)
Response vi- or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b m1 m2	8 6	7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
64) MPA 1,1,2,2-Tetrachloroethan	0.8784830	0.8570408 0.8368506		0.8664137	0.8895408	0.8912432	0.8657	AVRG		2.5970
65) MA 1,2,3-Trichloropropane	0.2361496	0.2138859		0.2329221	0.2314735	0.2313724	0.2278	AVRG		3.1688
66)MA Bromobenzene	0.8364175	0.7782932 0.7942752		0.8099807	0.8582907	0.8466472	0.8135	AVRG		3.7087
67) MA n-Propylbenzene	3.3059018	3.0686591 2.8470881		3.5573534	3.6398225	3.5689263	3.2853	AVRG		9.1496
68) MA 1,3,5-Trimethylbenzene	2.4391922	2.0906525 2.1457031		2.5560805	2.6737756	2.5807291	2.3891	AVRG		8.9444
69) MA 2-Chlorotoluene	0.7550611	0.6272856 0.7031823		0.7498822	0.7898752	0.7777139	0.7250	AVRG		7.3960
70)MA 4-Chlorotoluene	2.2554417	2.0964413 2.0345326		2.3567927	2.4602481	2.3642754	2.2470	AVRG		6.9229
71) MA tert-Butylbenzene	0.4799509	0.3149902 0.4531909		0.4335593	0.4688922	0.4743104	0.4309	AVRG		14.2451
72) MA 1,2,4-Trimethylbenzene	2.5487023	2.0976390 2.2711639		2.6423614	2.8103758	2.7298260	2.4933	AVRG		9.6431
73)MA sec-Butylbenzene	3.0330065	2.4629318 2.6534113		3.0808954	3.3210051	3.2354251	2.9172	AVRG		10.2067
74)MA 4-Isopropyltoluene	2.7032056	2.0433441 2.3988263		2.7034871	2.9751984	2.8799888	2.5790	AVRG		11.5872
75)MA 1,3-Dichlorobenzene	1.5828907	1.6296450 1.4527441		1.6613094	1.7008209	1.6640376	1.6086	AVRG		5.8039
76)MA 1,4-Dichlorobenzene	1.5742424	1.6964157 1.4416282		1.6737158	1.7217345	1.6289854	1.6182	AVRG		6.7309
77)MA n-Butylbenzene	2.6329742	2.0757813 2.2581949		2.7271519	2.9443192	2.8518680	2.5415	AVRG		11.7918
78)MA 1,2-Dichlorobenzene	1.5673318	1.4917120 1.4392768		1.5786739	1.6605176		1.5478	AVRG		4.8092

Response Factor Report VOA1
GEL Laboratories, LLC
Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update : Mon Mar 26 23:38:56 2018
Integrator : (RTE Integrator)
Response vi- or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b m1 m2	8 6	1 7	2 9	3	4	5	Avg	Curve	Exp	RSD/r2
79)MA 1,2-Dibromo-3-chloroprop -0.0025 0.1759 0.00	84567	1046 180322	2336 139517	6249	14472	29862		1/x LINR	#	0.9967
80) MA 1,2,4-Trichlorobenzene	1.1644162	0.9327941		1.0412916	1.2085487	1.1452914	1.0808	AVRG		8.9526
81) MA Hexachlorobutadiene	0 6993255	0.6485444		0.6620304	0.7429349	0.6958988	0.6810	AVRG		4.6118
		13396	31378	93416	236876	459984		1/x LINR		
83) MA 1,2,3-Trichlorobenzene	1171488	0.8652249	0.9502794	0.9033509	1.0611909	1.0012692				0.9986
85)B Acrolein	0.9974045	0.9508840 2963	7103	20728	44824	87195	0.9611	AVRG 1/x		6.3044
-0.0020 0.0464 0.00	232141		0.1000057	0.1066670	0.0988205	0.1024477		LINR	#	0.9996
		0.0929762					0.1020			5.1829
87)B	834124	11504 1682244	22264	58751	130673	297212		1/x LINR	#	0.9961
88)B Allyl chloride	0.1405864	0.1100411 0.1272786	0.1229206	0.1331931	0.1293906	0.1417796	0.1293	AVRG		8.4358
89)B tert-Butyl Alcohol	0.0190558		0.0133320	0.0139910	0.0151711	0.0168904	0.0153	AVRG		14.7883
90)B Acrylonitrile	0.1062916	0.0876873	0.0965140	0.0998718	0.1014475	0.1056930	0.0996	AVRG		6.3113
91)B Isopropyl ether	0 9063240	0.6172967	0.6582282	0.7210710	0.7561732	0.8519489	0.7646	AURC		13.9764
92)B 2-Chloro-1,3-butadiene		0.3081053	0.2962253	0.3249391	0.3204414	0.3557869				
93)B Ethyl tert-butyl ether	0.3668768	0.3401195 8894	18347	49269	105770	244734	0.3304	AVRG 1/x		7.6812
-0.0091 0.6811 0.00	698562		0 2253938	0 2379592	0.2435703	0 2546387		LINR		0.9960
34/D Benyl acecace	0.2512262	0.2172888		0.23/9392	0.2435/03	0.2340307	0.2345	AVRG		7.1485

Response Factor Report VOA1
GEL Laboratories, LLC
Method File : C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update : Mon Mar 26 23:38:56 2018
Integrator : (RTE Integrator)
Response vi- or Linear Calibration For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

b	Compound m1 m2	8 6	7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
95)B	Propionitrile	0.0424080	0.0366310 0.0390556	0.0371281	0.0403405	0.0408970	0.0418666	0.0398	AVRG		5.6511
96)B	Methacrylonitrile	0.1549908	0.1251181	0.1414016	0.1519758	0.1548330	0.1593788	0.1465	AVRG		8.3232
97)B	Tetrahydrofuran	0.0830650	0.0811905 0.0763305	0.0798986	0.0821157	0.0814788	0.0830828	0.0810	AVRG		2.9000
98)B	Isobutyl alcohol	0.0104949	0.0098390	0.0102006	0.0105823	0.0109717	0.0107074	0.0103	AVRG	\$	5.7694
99)B	Methyl tert-amyl ether 0065 0.5087 0.00	515322	6940 1040511	14107	37975	79697	180758		1/x LINR	#	0.9959
100)B	Methyl methacrylate			0.1651882	0.1827359	0.1912556	0.2009976	0.1781	AUDC		11.3219
101)B	1,4-Dioxane		0.0021821	0.0024677	0.0024497	0.0026365	0.0027536				
102)B	2-Nitropropane		0.0025829 3384	7721	25243	63644	154606	0.0025	1/x	#	7.9266
-0. 104)B	0089 0.0867 0.00 Ethyl methacrylate	452790		0.4185258	0.4702953	0.4901750	0.5023455		LINR		0.9944
106)B	1-Chlorohexane	0.4612967	0.3745463	0.4115871	0.4589233	0.4776681	0.5153146	0.4382	AVRG		13.3510
	cis-1.4-Dichloro-2-buten	0.5262915	0.4682047	0.2160687				0.4596	AVRG		12.6698
107)B		0.2582613	0.2176661					0.2370	AVRG		12.1362
108)B	Cyclohexanone	0.0218646	0.0215455	0.0157901				0.0193	AVRG		12.7801
109)B	trans-1,4-Dichloro-2-but	0.2392125	0.2063915	0.2282491	0.2473969	0.2529514	0.2519142	0.2323	AVRG		9.3339
110)B	Pentachloroethane	0.4453783	0.3652509 0.3751834	0.4053070	0.4207437	0.4323936	0.4651170	0.4156	AVRG		8.7424
111)B -0.	Benzyl chloride 0732 1.1790 0.00	2777401	28820	68408	223009	514537	1136181		1/x LINR	#	0.9984

Response Factor Report VOA1
GEL Laboratories, LLC
Method File: C:\msdchem\1\DATA\032618V1\VOA1-8260-032618.M
Last Update: Mon Mar 26 23:38:56 2018
Integrator: (RTE Integrator)
Response via Response via : Initial Calibration

For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b m1 m2	8 6	1 7	2 9	3	4	5	Avg	Curve	Exp	%RSD/r2
112)B bis(2-Chloroisopropyl)et -0.0189 0.2810 0.00	717726	7165 1293820	15711	48344	115319	265092		1/x LINR	#	0.9964

(#) = Out of Range (\$) = Individual RF Out of Range AVRG = Average, LINR = Linear Regression, 1/x = the inverse of concentration, $1/x^2$ = the inverse square of concentration

VOA1-8260-032618.M Tue Mar 27 01:20:22 2018

Page: 8

Page 1 of 1

Continuing Calibration Summary

Client SDG: 446517

Instrument ID: VOA1.I Injection Date: 26-MAR-18 23:15

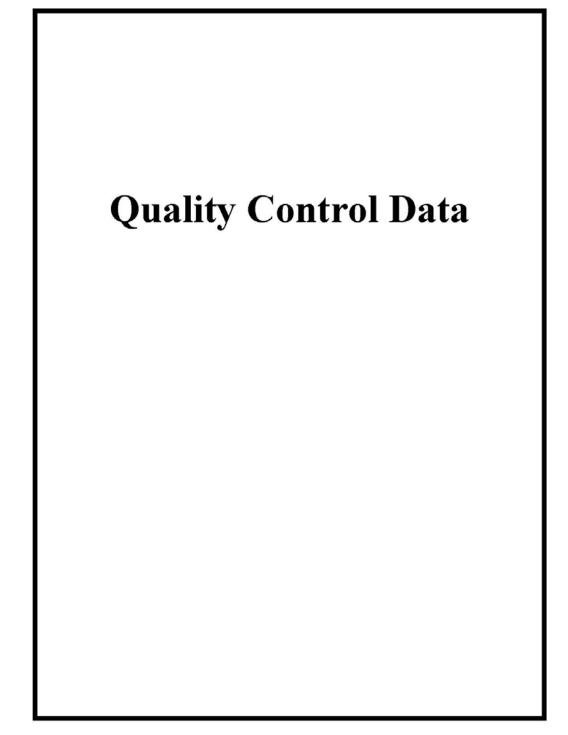
Lab Sample ID W1VM180326-10 Method: 032618V1\VOA1-8260-032618.M

Quant Type ISTD Method Update: 26-MAR-18 23:38

Compound	AVERF / Amount	RF CCV	Nominal CCV	Min RF	RF Q	%D / %Drift	Max	Drift Q	Curve Type
1,2-Dichloroethane-d4	0.1636	0.1612		.01		-1.46699	60		Averaged
Toluene-d8	1.2449	1.2386	(.01		-0.50606	60		Averaged
Bromofluorobenzene	0.9602	0.97631		.01		1.67778	60		Averaged
Chloromethane	0.226	0.21849		.1		-3.32301	60		Averaged SP
Vinyl chloride	0.2252	0.22194	,	.01		-1.4476	20		Averaged CC
1,1-Dichloroethylene	0.4123	0.43896		.01		6.46617	20		Averaged CC
1,1-Dichloroethane	0.5082	0.53799		.1		5.86187	60		Averaged SP
Chloroform	0.588	0.57971		.01		-1.40986	20		Averaged CC
Benzene	1.107	1.11371		.01		0.60614	60		Averaged
1,2-Dichloropropane	0.2988	0.29932		.01		0.17403	20		Averaged CC
Toluene	1.4209	1.45611		.01		2.47801	20		Averaged CC
Chlorobenzene	1.0673	1.07511		.3		0.73175	60		Averaged SP
Ethylbenzene	1.6215	1.67893		.01		3.54178	20		Averaged CC
m,p-Xylenes	0.6309	0.65582		.01		3.94991	60		Averaged
o-Xylene	0.6362	0.68121		.01		7.07482	60		Averaged
Bromoform	0.4981	0.52299		.1		4.99699	60		Averaged SPC
1,1,2,2-Tetrachloroethane	0.8657	0.8293		.3		-4.20469	60		Averaged SPC

Page 1 of 1

Continuing Calibration Summary


Client SDG: 446517

Instrument ID: VOA1.I Injection Date: 29-MAR-18 10:16

Lab Sample ID W1VM180329-01 Method: 032618V1\VOA1-8260-032618.M

Quant Type ISTD Method Update: 26-MAR-18 23:38

Compound	AVERF / Amount	RF CCV	Nominal CCV	Min RF	RF Q	%D / %Drift	Max	Drift Q	Curve Type
1,2-Dichloroethane-d4	0.1636	0.15646		.01		-4.3643	60		Averaged
Toluene-d8	1.2449	1.22346		.01		-1.72223	60		Averaged
Bromofluorobenzene	0.9602	1.00742		.01		4.91773	60		Averaged
Chloromethane	0.226	0.21436		.1		-5.15044	60		Averaged SP
Vinyl chloride	0.2252	0.23758		.01		5.49734	20		Averaged Co
1,1-Dichloroethylene	0.4123	0.34715		.01		-15.8016	20		Averaged Co
1,1-Dichloroethane	0.5082	0.44711		.1		-12.02086	60		Averaged SP
Chloroform	0.588	0.5173		.01		-12.02381	20		Averaged Co
Benzene	1.107	0.95406		.01		-13.81572	60		Averaged
1,2-Dichloropropane	0.2988	0.26441		.01		-11.50937	20		Averaged Co
Toluene	1.4209	1.25791		.01		-11.4709	20		Averaged Co
Chlorobenzene	1.0673	0.93118		.3		-12.75368	60		Averaged SP
Ethylbenzene	1.6215	1.48234		.01		-8.58218	20		Averaged Co
m,p-Xylenes	0.6309	0.57559		.01		-8.76684	60		Averaged
o-Xylene	0.6362	0.59971		.01		-5.73562	60		Averaged
Bromoform	0.4981	0.5175		.1		3.8948	60		Averaged SP
1,1,2,2-Tetrachloroethane	0.8657	0.83671		.3		-3.34874	60		Averaged SP

GEL Laboratories LLC Report Date: March 30, 2018

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517

Lab Sample ID: 1203999288 Client Sample: QC for batch 1751481

Client ID: MB for batch 1751481 1751482 Batch ID: Run Date: 03/29/2018 13:38

Prep Date: 03/29/2018 09:00 Data File: 032918V1\1B409P.D Client: Method: Inst: Analyst:

Aliquot:

Column:

POEN004 SW846 8260B VOA1.I

PXY1 5g

DB-624

Project: SOP Ref: Dilution:

Matrix:

QC GL-OA-E-038

SOIL

Page 1

of 1

Purge Vol: 5 mL Final Volume: 5 mL

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene	U	1.00	ug/kg	0.333	1.00
100-41-4	Ethylbenzene	U	1.00	ug/kg	0.333	1.00
108-88-3	Toluene	U	1.00	ug/kg	0.333	1.00
1330-20-7	Xylenes (total)	U	3.00	ug/kg	1.00	3.00

GEL Laboratories LLC Report Date: March 30, 2018

Client:

Inst:

Method:

Analyst:

Aliquot:

Column:

Volatile Certificate of Analysis Sample Summary

POEN004

VOA1.I

DB-624

PXY1

5g

SW846 8260B

SDG Number: 446517

Lab Sample ID: 1203999289 Client Sample: QC for batch 1751481

Client ID: LCS for batch 1751481 1751482 Batch ID: Run Date: 03/29/2018 11:13

Prep Date: 03/29/2018 09:01 032918V1\1B404P.D Data File:

Matrix:

SOIL

Project: QC SOP Ref: GL-OA-E-038

Page 1

of 1

Dilution: Purge Vol: 5 mL Final Volume: 5 mL

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene		51.0	ug/kg	0.333	1.00
100-41-4	Ethylbenzene		50.9	ug/kg	0.333	1.00
108-88-3	Toluene		49.7	ug/kg	0.333	1.00
1330-20-7	Xylenes (total)		153	ug/kg	1.00	3.00

Client:

Inst:

Method:

Analyst:

Aliquot:

Volatile Certificate of Analysis Sample Summary

SDG Number: 446517 Lab Sample ID: 1203999290

Client Sample: QC for batch 1751481 Client ID: LCSD for batch 1751481

1751482 Batch ID: Run Date: 03/29/2018 11:42 Prep Date: 03/29/2018 09:02 Data File:

032918V1\1B405P.D

SOIL Matrix:

> POEN004 Project: QC SW846 8260B SOP Ref: GL-OA-E-038

VOA1.I Dilution: PXY1 Purge Vol: 5 mL Final Volume: 5 mL

Page 1

of 1

Column: DB-624

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
71-43-2	Benzene		49.7	ug/kg	0.333	1.00
100-41-4	Ethylbenzene		50.2	ug/kg	0.333	1.00
108-88-3	Toluene		49.1	ug/kg	0.333	1.00
1330-20-7	Xylenes (total)		151	ug/kg	1.00	3.00

5g

Prep Logbook

Closed-System Purge-and-Trap Collection and Extraction: Volatile Organics in Soil and Waste Samples

Batch ID: 1751481 Type Sample Id Description Serial Number Spike Amount Spike Units

Application Serial Number Spike Amount Spike Units

 Batch ID:
 1751481

 Analyst:
 Patrick Yib

 Method:
 SW846 5035

 Lab SOP:
 GL-OA-E-039 REV#12

 Instrument:
 OH AUS Balance

Sample ID	Prep Date	Matrix	Tare Wt (g)	Final Wt (g)	Sample Wt (g)	Preservative	Final Volume (mL)	Prep Factor (mL/g)
16517001	22-MAR-201811:10:00	Soil	31.04	37.71	6.67	DI WATER	5	0.74963
46517002	22-MAR-2018 11:30:00	Soil	30.97	37.39	6.42	DI WATER	5	0.77882
46517003	22-MAR-2018 11:55:00	Soil	30.58	36.81	6.23	DI WATER	5	0.80257
46517004	22-MAR-2018 11:55:00	Soil	30.61	36.8	6.19	DI WATER	5	0.80775
203999288 MB	29-MAR-2018 09:00:00	Soil			5	DI WATER	5	1
203999289 LCS	29-MAR-2018 09:01:00	Soil			5	DI WATER	5	1
203999290 LCSD	29-MAR-2018 09:02:00	Soil			5	DI WATER	5	1

Reagent/Solvent Lot ID Description Amount Comments:

Analytical Logbook version 1 11-04-2002

GEL Laboratories LLC

Page 48 of 94

Page 49 of 94

GEL Laboratories, LLC Revision:11/22/04

ORGANIC RUN LOG - INSTRUMENT ID#VOA1

03/27/2018

Date:	3/26/2018	Method_8260E/624	Operator:	PXY1

HARDWARE CONFIGURATION & METHOD CONDITIONS SUMMARY No# 1 Daily Instrument Readings:

Multiplier Voltage: 1988

CALIBRATION & CC INFORMATION:

Volume Added for Purge (ul)
Bilis/ MS/
Smpl CCV LCS BFI
0705-01 1 1 1 1
0302-92 1 1 1 Initial Calibration Date: 3/26/2018 Daily Standard Solution ID# ICV[A] W1VM180326-10 IS UVM170705-01
SS UVM170302-02
ICV[B] W1VM180326-18
BFB IVM180306-02 CI test lot # 6021

 5ML
 Water Purge Vol.

 N/A
 Soil Purge Wt.

 N/A
 Mid level ext. MeOH Vol:

 N/A
 ul

 N/A
 Methanol Lot #

 X
 Heated Purge

Purge Amount

Sequence Number: 032618V1

Analysis					Wt.(g) or	DII.		AS	Matrix	Analyst	Citest	Acceptable(
Date Time	Data File	Lab Sample ID	Client	Batch #	Vol(mVut)	Factor	pH	Slot #	wors		(Y/N)	O/X)	Comments
3/26/2018 13:47	1B101.D	IVM180306-02	GEL	BFB	1UL	1	N/A	1	W	PXY1	N/A	0	
3/26/2018 14:10	1B102.D	W1VM180326-01	VSTD0005	ICAL	5UL	1	N/A	2	W	PXY1	N/A	0	MIX[A] UVM180306-01/UVM180320-01A/UVM171214-01H
3/26/2018 14:39	1B103.D	W1VM180326-02	VSTD001	ICAL	5UL	1	N/A	3	W	PXY1	N/A	0	MIX[A] UVM180306-02/UVM180320-02A/UVM171214-02H
3/26/2018 15:08	1B104.D	W1VM180326-03	VSTD002	ICAL	5UL	-1	N/A	4	W	PXY1	N/A		MIX[A] UVM180306-03/UVM180320-03A/UVM171214-03H
3/26/2018 15:37	1B105.D	W1VM180326-04	VSTD005	ICAL	5UL	- 1	N/A	5	W	PXY1	N/A	0	MIX[A] UVM180306-04/UVM180320-04A/UVM171214-04H
3/26/2018 16:06	1B106.D	W1VM180326-05	VSTD010	ICAL	5UL	1	N/A	6	W	PXY1	N/A	Х	Unacceptable recoveries. See 1B112
3/26/2018 16:35	1B107.D	W1VM180326-06	VSTD020	ICAL	5UL	1	N/A	7	W	PXY1	N/A	0	MIX[A] UVM180306-06/UVM180320-06A/UVM171214-06H
3/26/2018 17:04	1B108.D	W1VM180326-07	VSTD050	ICAL	5UL	1	N/A	- 8	W	PXY1	N/A	0	MIX[A] UVM180306-07/UVM180320-07A/UVM171214-07H
3/26/2018 17:32	1B109.D	W1VM180326-08	VSTD080	ICAL	4UL	1	N/A	9	W	PXY1	N/A	0	MIX[A] UVM180306-08/UVM180320-08A/UVM171214-08H
3/26/2018 18:01	1B110.D	W1VM180326-09	VSTD100	ICAL	6UL	- 11	N/A	10	W	PXY1	N/A	0	MIX[A] UVM180306-08/UVM180320-08A/UVM171214-08H
3/26/2018 18:29	1B111.D	120375	BLANK	BLANK	5ML	1	N/A	11	W	PXY1	N/A	Х	RINSE
3/26/2018 18:58	1B112.D	W1VM180326-05	VSTD010	ICAL	5UL	-1	N/A	12	W	PXY1	N/A	0	MIX[A] UVM180306-05/UVM180320-05A/UVM171214-05H
3/26/2018 19:27	1B113.D	W1VM180326-10	ICV	ICV	5UL	- 1	N/A	13	W	PXY1	N/A	Х	Unacceptable recoveries. See 1B121
3/26/2018 19:55	1B114.D	W1VM180326-11	VSTD005S	ICAL	5UL	- 1	N/A	14	W	PXY1	N/A	0	MIX[B] UVM180202-01B/UVM180213-01A
3/26/2018 20:24	1B115.D	W1VM180326-12	VSTD010S	ICAL	5UL	1	N/A	15	W	PXY1	N/A	0	MIX[B] UVM180202-02B/UVM180213-02A
3/26/2018 20:52	1B116.D	W1VM180326-13	VSTD025S	ICAL	5UL	1	N/A	16	W	PXY1	N/A	0	MIX[B] UVM180202-03B/UVM180213-03A
3/26/2018 21:21	1B117.D	W1VM180326-14	VSTD050S	ICAL	5UL	1	N/A	17	W	PXY1	N/A	0	MIX[B] UVM180202-04B/UVM180213-04A
3/26/2018 21:49	1B118.D	W1VM180326-15	VSTD100S	ICAL	5UL	1	N/A	18	W	PXY1	N/A	0	MIX[B] UVM180202-05B/UVM180213-05A
3/26/2018 22:18	1B119.D	W1VM180326-16	VSTD250S	ICAL	5UL	- 1	N/A	19	W	PXY1	N/A	0	MIX[B] UVM180202-06B/UVM180213-06A
3/26/2018 22:46	1B120.D	W1VM180326-17	VSTD500S	ICAL	5UL	-1	N/A	20	W	PXY1	N/A	0	MIX[B] UVM180202-07B/UVM180213-07A
3/26/2018 23:15	1B121.D	W1VM180326-10	ICV	ICV	5UL	-1	N/A	21	W	PXY1	N/A	0	MIX[A] UVM171214-01A/UVM170901-10E/UVM180219-01E/UVM180319-01
3/26/2018 23:43	1B122.D	120375	BLANK	BLANK	5ML	1	N/A	22	W	PXY1	N/A	Х	RINSE
3/27/2018 0:11	1B123.D	W1VM180326-18	ICV	ICV	5UL	1	N/A	23	W	PXY1	N/A	0	MIX[B] UVM180202-08C/UVM180213-08B

GL-OA-E-038, GL-OA-E-026, GL-OA-E-039

GEL Laboratories, LLC Revision: 11/22/04

ORGANIC RUN LOG - INSTRUMENT ID#VOA1

03/30/2018

Date:	3/29/2018	Method 8260E/624	Operator:	PXY1

HARDWARE CONFIGURATION & METHOD CONDITIONS SUMMARY No# 1 Daily Instrument Readings:

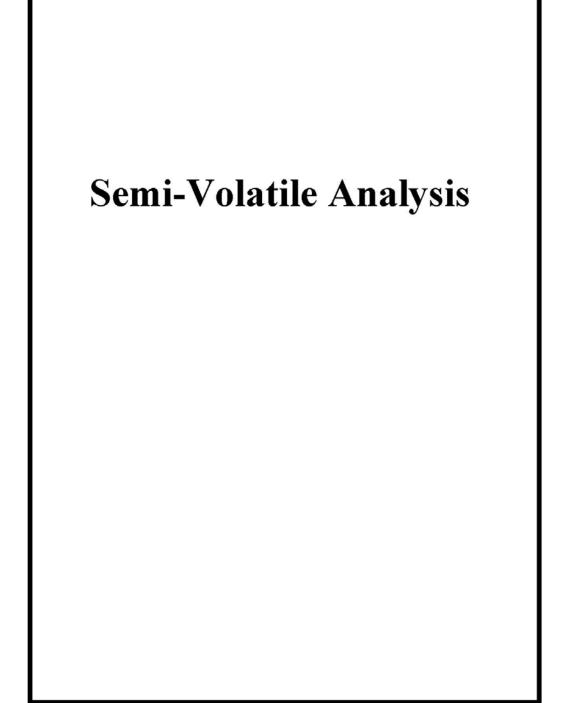
Multiplier Voltage: 2000

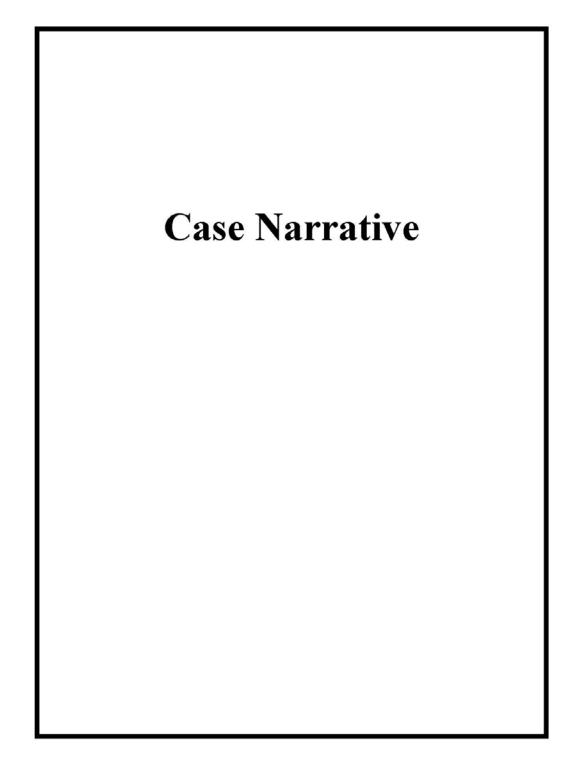
CALIBRATION & CC INFORMATION:

| Volume Added for Purge (ul)
| Blk/ M5/
| Smpl CCV LCS BF Initial Calibration Date: 3/26/2018 Daily Standard Purge Amount
 5ML
 Water Purge Vol.

 5G
 Soil Purge Wt.

 N/A
 Mid level ext. MeOH Vol:


 N/A
 Inv.


 N/A
 Methanol Lot #

 X
 Heated Purge

An	alysis					Wt.(g) or	DII.		AS	Matrix	Analyst	Citest	Acceptable(
Date	Time	Data File	Lab Sample ID	Client	Batch #	Vol(ml/ut)	Factor	pH	Slot #	wors		(Y/N)	O/X)	Comments
3/29/2	018 9:53	1B401.D	IVM180306-02	GEL	BFB	1UL	1	N/A	1	W	PXY1	N/A	0	
3/29/20	018 10:16	1B402.D	W1VM180329-01	GEL	ccv	5UL	- 1	N/A	2	W	PXY1	N/A	0	MIX[A] UVM170509-07H/UVM180203-07F/UVM171214-01A
3/29/20	018 10:44	1B403.D	W1VM180329-02	GEL	LCS	5UL	1	N/A	3	W	PXY1	N/A	0	MIX[A] UVM171214-01A/IVM180327-01/UVM180121-10B/UVM180328-10A
3/29/20	018 11:13	1B4 04.D	W1VM180329-03	GEL	LCS	5G	- 1	N/A	4	S	PXY1	N/A	0	MIX[A] UVM171214-01A/IVM180327-01/UVM180121-10E/UVM180328-10A
3/29/20	018 11:42	1B4 05.D	W1VM180329-04	GEL	LCSD	5G	1	N/A	5	S	PXY1	N/A	0	MIX[A] UVM171214-01A/IVM180327-01/UVM180121-10B/UVM180328-10A
	018 12:11	1B406.D	W1VM180329-05	GEL	CCV	5UL	1	N/A	6	W	PXY1	N/A		MIX[B] UVM180202-06H/UVM180213-06F
3/29/20	018 12:40	1B407.D	W1VM180329-06	GEL	LCS	5G	1	N/A	7	S	PXY1	N/A	0	MIX[B] UVM180202-08C/UVM180213-08B
	018 13:09	1B4 08.D	120399	GEL	BLANK	5ML	1	N/A	8	W	PXY1	N/A	0	
	018 13:38	1B409.D	120399	GEL	BLANK	5G	1	N/A	9	S	PXY1	N/A		SOIL
3/29/20	018 14:07	1B4 10.D	446008001	GATE	1751240	5.1G/2.5UL	2000	N/A	10	S	PXY1	N/A	Х	Tetrachloroethylene over ranged hit. See 1B412
3/29/20	018 14:36	1B411.D	446783001	WSRB	1751477	5ML	1	PH7	11	W	PXY1	N	Х	Tetrachloroethylene carryovers. See 1B416
3/29/20	018 15:06	1B4 12.D	446008001	GATE	1751240	5.1G	10000	N/A	12	S	PXY1	N/A		SOIL; 5UL from 10x
3/29/20	018 15:35	1B4 13.D	446783002	WSRB	1751477	5ML	- 1	PH7	13	W	PXY1	N		Incorrect sample. See 1B417
3/29/20	018 16:04	1B414.D	446783003	WSRB	1751477	5ML	1	PH7	14	W	PXY1	N	Х	Incorrect sample. See 1B418
3/29/20	018 16:33	1B4 15.D	120399	BLANK	BLANK	5ML	1	N/A	15	W	PXY1	N/A	Х	RINSE
3/29/20	018 17:02	1B4 16.D	446783001	WSRB	1751477	5ML	1	PH7	16	W	PXY1	N	0	
3/29/20	018 17:31	1B4 17.D	446783002	WSRB	1751477	5ML	1	PH7	17	W	PXY1	N	0	
	018 18:00	1B4 18.D	446783003	WSRB	1751477	5ML	1	PH7	18	W	PXY1	N	0	
	018 18:29	1B4 19.D	446517001	POEN	1751482	6.7G	1	N/A	19	S	PXY1	N/A		SOIL
3/29/20	018 18:58	1B4 20.D	446517002	POEN	1751482	6.4 G	-1	N/A	20	S	PXY1	N/A		SOIL
3/29/20	018 19:27	1B421.D	446517003	POEN	1751482	6.2G	1	N/A	21	S	PXY1	N/A		SOIL
	018 19:55	1B422.D	446517004	POEN	1751482	6.2G	1	N/A	22	S	PXY1	N/A		SOIL
3/29/20	018 20:24	1B423.D	1203999280	WSRB	1751477	5ML	1	PH7	23	W	PXY1	N	0	MIX[A] 446783001PS
3/29/20	018 20:53	1B424.D	1203999281	WSRB	1751477	5ML	1	PH7	24	W	PXY1	N	0	MIX[A] 446783001PSD

GL-OA-E-038, GL-OA-E-026, GL-OA-E-039

GC/MS Semivolatile Technical Case Narrative North Wind - Portage (POEN) SDG #: 446517

Product: Analysis of Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry

Analytical Method: SW846 3541/8270D SIM PAH Analytical Procedure: GL-OA-E-009 REV# 40

Analytical Batch: 1750981

Preparation Method: SW846 3541

Preparation Procedure: GL-OA-E-066 REV# 8

Preparation Batch: 1750980

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
446517001	CFA18001 - Soil Location #1
446517002	CFA18002 - Soil Location #2
446517003	CFA18003 - Soil Location #3
446517004	CFA18003 - DUP - Soil Location #3
1203998143	Method Blank (MB)
1203998144	Laboratory Control Sample (LCS)
1203998145	446517001(CFA18001 - Soil Location #1) Matrix Spike (MS)
1203998146	446517001(CFA18001 - Soil Location #1) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on a "dry weight" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

MS/MSD Relative Percent Difference (RPD) Statement

The relative percent difference (RPD) between the MS and MSD (See Below) did not meet acceptance limits. As the individual MS and MSD recoveries were within the acceptance limits, the failures had no adverse impact on the reported sample data.

Sample	Analyte	Value
1203998145MS and 1203998146MSD (CFA18001 - Soil Location #1)	Pyrene	RPD 38* (0%-30%)

Technical Information

Sample Re-extraction/Re-analysis

Sample 446517002 (CFA18002 - Soil Location #2) was re-analyzed for ISTD failure.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

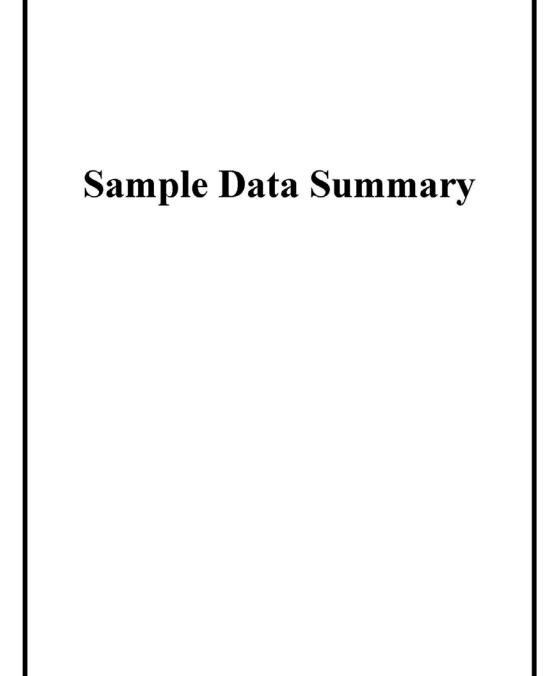
GEL LABORATORIES LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Qualifier Definition Report for

POEN004 North Wind - Portage (8-00000013) Client SDG: 446517 GEL Work Order: 446517

The Qualifiers in this report are defined as follows:


- * A quality control analyte recovery is outside of specified acceptance criteria ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

GEL requires all analytical data to be verified by a qualified data reviewer. In addition, all CLP-like deliverables receive a third level review of the fractional data package.

The following data validator verified the information presented in this data report:

Signature: Ballow Bauley Name: Barbara Bailey

Date: 04 APR 2018 Title: Data Validator

SDG Number: 446517 Lab Sample ID: 446517001

Date Received: Client:

Date Collected: 03/22/2018 11:10 03/23/2018 08:55 POEN004

Matrix: %Moisture: Project:

SOIL 16.3 POEN004 GL-OA-E-009

Report Date: April 4, 2018

Page 1

of 1

Client ID: CFA18001 - Soil Location #1 1750981 Batch ID: Run Date: 03/29/2018 18:34 Prep Date: 03/29/2018 06:18

Method: Inst: Analyst: Aliquot:

MSD4.I JMB3 30.079 g

SW846 3541/8270D SIM P. SOP Ref: Dilution: Inj. Vol:

1 uL Final Volume: 1 mL

1

s032918.B\s4c2915.D Column: DB-5ms Data File:

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene	U	3.97	ug/kg	1.31	3.97
120-12-7	Anthracene	U	3.97	ug/kg	1.31	3.97
56-55-3	Benzo(a)anthracene	U	3.97	ug/kg	1.31	3.97
50-32-8	Benzo(a)pyrene	U	3.97	ug/kg	1.31	3.97
205-99-2	Benzo(b)fluoranthene	U	3.97	ug/kg	1.31	3.97
207-08-9	Benzo(k)fluoranthene	U	3.97	ug/kg	1.31	3.97
218-01-9	Chrysene	U	3.97	ug/kg	1.31	3.97
206-44-0	Fluoranthene	U	3.97	ug/kg	1.31	3.97
86-73-7	Fluorene	U	3.97	ug/kg	1.31	3.97
91-20-3	Naphthalene	U	3.97	ug/kg	1.31	3.97
129-00-0	Pyrene	U	3.97	ug/kg	1.31	3.97

SDG Number: 446517 Lab Sample ID: 446517002 Date Collected: 03/22/2018 11:30 Date Received: Client:

03/23/2018 08:55 POEN004

Matrix: %Moisture: Project:

SOIL 21.8 POEN004

GL-OA-E-009

Page 1

of 1

Client ID: Batch ID: Run Date:

Prep Date:

CFA18002 - Soil Location #2 1750981 03/30/2018 11:20 03/29/2018 06:18

Method: Inst: Analyst: Aliquot:

MSD4.I JMB3 30.435 g

SW846 3541/8270D SIM P. SOP Ref: Dilution: Inj. Vol:

1 1 uL Final Volume: 1 mL

s033018.B\s4c3007.D Column: DB-5ms Data File:

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene	U	4.20	ug/kg	1.39	4.20
120-12-7	Anthracene	U	4.20	ug/kg	1.39	4.20
6-55-3	Benzo(a)anthracene	U	4.20	ug/kg	1.39	4.20
50-32-8	Benzo(a)pyrene	U	4.20	ug/kg	1.39	4.20
205-99-2	Benzo(b)fluoranthene	U	4.20	ug/kg	1.39	4.20
07-08-9	Benzo(k)fluoranthene	U	4.20	ug/kg	1.39	4.20
8-01-9	Chrysene	U	4.20	ug/kg	1.39	4.20
6-44-0	Fluoranthene	U	4.20	ug/kg	1.39	4.20
6-73-7	Fluorene	U	4.20	ug/kg	1.39	4.20
1-20-3	Naphthalene	U	4.20	ug/kg	1.39	4.20
29-00-0	Pyrene	U	4.20	ug/kg	1.39	4.20

SDG Number: 446517

Lab Sample ID: 446517003

Semi-Volatile Certificate of Analysis Sample Summary

Date Collected: 03/22/2018 11:55 Matrix: SOIL 03/23/2018 08:55 Date Received:

%Moisture:

Final Volume: 1 mL

Report Date: April 4, 2018

6.8

Page 1

of 1

POEN004 Client: POEN004 Project: Client ID: CFA18003 - Soil Location #3 Method: SW846 3541/8270D SIM P. SOP Ref: GL-OA-E-009 1750981 MSD4.I Dilution: Batch ID: Inst: 1 Run Date: 03/29/2018 19:31 Analyst: JMB3 Inj. Vol: 1 uL

Prep Date: 03/29/2018 06:18 Aliquot: 30.124 g s032918.B\s4c2917.D Column: DB-5ms Data File:

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene	U	3.56	ug/kg	1.18	3.56
120-12-7	Anthracene	U	3.56	ug/kg	1.18	3.56
56-55-3	Benzo(a)anthracene	U	3.56	ug/kg	1.18	3.56
50-32-8	Benzo(a)pyrene	U	3.56	ug/kg	1.18	3.56
205-99-2	Benzo(b)fluoranthene	U	3.56	ug/kg	1.18	3.56
207-08-9	Benzo(k)fluoranthene	U	3.56	ug/kg	1.18	3.56
218-01-9	Chrysene	U	3.56	ug/kg	1.18	3.56
206-44-0	Fluoranthene	U	3.56	ug/kg	1.18	3.56
86-73-7	Fluorene	U	3.56	ug/kg	1.18	3.56
91-20-3	Naphthalene	U	3.56	ug/kg	1.18	3.56
129-00-0	Pyrene	U	3.56	ug/kg	1.18	3.56

Page 1

SOIL

7.7 POEN004 of 1

 SDG Number:
 446517
 Date Collected:
 03/22/2018 11:55
 Matrix:

 Lab Sample ID:
 446517004
 Date Received:
 03/23/2018 08:55
 %Moisture:

 Client:
 POEN004
 Project:

Client ID: CFA18003 - DUP - Soil Location #3 Method: SW846 3541/8270D SIM P. SOP Ref: GL-OA-E-009 1750981 MSD4.I Dilution: Batch ID: Inst: 1 Run Date: 03/29/2018 19:59 Analyst: JMB3 Inj. Vol: 1 uL

Prep Date: 03/29/2018 06:18 Allquot: 30.027 g Final Volume: 1 mL

Data File: s032918.B\s4c2918.D Column: DB-5ms

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene	U	3.61	ug/kg	1.19	3.61
120-12-7	Anthracene	U	3.61	ug/kg	1.19	3.61
56-55-3	Benzo(a)anthracene	U	3.61	ug/kg	1.19	3.61
50-32-8	Benzo(a)pyrene	U	3.61	ug/kg	1.19	3.61
205-99-2	Benzo(b)fluoranthene	U	3.61	ug/kg	1.19	3.61
207-08-9	Benzo(k)fluoranthene	U	3.61	ug/kg	1.19	3.61
18-01-9	Chrysene	U	3.61	ug/kg	1.19	3.61
06-44-0	Fluoranthene	U	3.61	ug/kg	1.19	3.61
6-73-7	Fluorene	U	3.61	ug/kg	1.19	3.61
1-20-3	Naphthalene	U	3.61	ug/kg	1.19	3.61
29-00-0	Pyrene	U	3.61	ug/kg	1.19	3.61

GEL Laboratories LLC Report Date: April 4 2018

Semi-Volatile

Page 1 of 1

Surrogate Recovery Report

SDG Number: 446517 Matrix Type: SOLID

Sample ID	Client ID	5-alpha %REC
1203998144	LCS for batch 1750980	80
1203998145	CFA18001 - Soil Location #1MS	73
1203998146	CFA18001 - Soil Location #1(446517001MSD	59
1203998143	MB for batch 1750980	85
446517001	CFA18001 - Soil Location #1	68
446517003	CFA18003 - Soil Location #3	75
446517004	CFA18003 - DUP - Soil Location #3	68
446517002	CFA18002 - Soil Location #2	64

Surrogate

Acceptance Limits (30%-118%)

⁵⁻alpha-=5-alpha-Androstane

^{*} Recovery outside Acceptance Limits # Column to be used to flag recovery values

D Sample Diluted

Semi-Volatile

Page 1

of 1

Quality Control Summary Spike Recovery Report

SDG Number: 446517 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 1750980 Matrix: SOIL

Lab Sample ID 1203998144

Instrument: MSD4.I Analysis Date: 03/29/2018 15:43 Dilution: 1

 Analyst:
 JMB3
 Prep Batch ID: 1750980

 Inj. Vol:
 1 uL
 Batch ID: 1750981

CAS	S No	Parmname	Amount Added ug/kg	Sample Conc. ug/kg	Spike Conc. ug/kg	Recovery %	Acceptance Limits
91-20-3	LCS	Naphthalene	333	0.0	272	81	57-98
83-32-9	LCS	Acenaphthene	333	0.0	269	81	55-99
86-73-7	LCS	Fluorene	333	0.0	288	86	47-106
120-12-7	LCS	Anthracene	333	0.0	282	85	52-102
206-44-0	LCS	Fluoranthene	333	0.0	304	91	39-108
129-00-0	LCS	Pyrene	333	0.0	270	81	41-114
56-55-3	LCS	Benzo(a)anthracene	333	0.0	324	97	51-108
218-01-9	LCS	Chrysene	333	0.0	293	88	54-103
205-99-2	LCS	Benzo(b)fluoranthene	333	0.0	278	83	36-120
207-08-9	LCS	Benzo(k)fluoranthene	333	0.0	269	81	26-121
50-32-8	LCS	Benzo(a)pyrene	333	0.0	316	95	35-121

Page 1

Semi-Volatile Quality Control Summary Spike Recovery Report

SDG Number: 446517 Sample Type: Matrix Spike

Client ID: CFA18001 - Soil Location #1MS Matrix: SOIL
Lab Sample ID 1203998145 %Moisture: 16.3

Instrument: MSD4.I Analysis Date: 03/29/2018 16:11 Dilution: 1

 Analyst:
 JMB3
 Prep Batch ID: 1750980

 Inj. Vol:
 1 uL
 Batch ID: 1750981

CAS	S No	Parmname	Amount Added ug/kg	Samp Conc ug/kg		Spike Conc. ug/kg	Recovery	Acceptance Limits
1-20-3	MS	Naphthalene	397	0.00	U	274	69	33-117
3-32-9	MS	Acenaphthene	397	0.00	U	288	73	38-117
6-73-7	MS	Fluorene	397	0.00	U	315	79	33-123
20-12-7	MS	Anthracene	397	0.00	U	311	78	36-120
06-44-0	MS	Fluoranthene	397	0.00	U	344	87	28-116
29-00-0	MS	Pyrene	397	0.00	U	330	83	30-131
5-55-3	MS	Benzo(a)anthracene	397	0.00	U	389	98	41-118
18-01-9	MS	Chrysene	397	0.00	U	348	88	42-113
05-99-2	MS	Benzo(b)fluoranthene	397	0.00	U	332	84	28-126
07-08-9	MS	Benzo(k)fluoranthene	397	0.00	U	317	80	24-122
)-32-8	MS	Benzo(a)pyrene	397	0.00	U	375	94	27-126

Report Date:

Page 2

Dilution: 1

April 4, 2018 2 of 2

Semi-Volatile Quality Control Summary Spike Recovery Report

Matrix:

%Moisture:

SOIL

16.3

SDG Number: 446517 Sample Type: Matrix Spike Duplicate

Client ID: CFA18001 - Soil Location Lab Sample ID #1(446517001MSD

1203998146

Instrument: MSD4.I

SD4.I Analysis Date: 03/29/2018 16:40

Analyst: JMB3 Prep Batch ID:1750980 Inj. Vol: 1 uL Batch ID: 1750981

rij. voi.		I UL		Dattii	ш.	2,007	-			
CA	AS No	Parmname	Amount Added ug/kg	Samp Condug/kg	:.	Spike Conc. ug/kg	Recovery	Acceptanc Limits	e RPD %	Acceptance Limits
91-20-3	MSD	Naphthalene	396	0.00	U	220	55	33-117	22	0-30
83-32-9	MSD	Acenaphthene	396	0.00	U	237	60	38-117	20	0-30
86-73-7	MSD	Fluorene	396	0.00	U	266	67	33-123	17	0-30
120-12-7	MSD	Anthracene	396	0.00	U	260	66	36-120	18	0-30
206-44-0	MSD	Fluoranthene	396	0.00	U	327	82	28-116	5	0-30
129-00-0	MSD	Pyrene	396	0.00	U	225	57	30-131	38 *	0-30
56-55-3	MSD	Benzo(a)anthracene	396	0.00	U	332	84	41-118	16	0-30
218-01-9	MSD	Chrysene	396	0.00	U	299	75	42-113	15	0-30
205-99-2	MSD	Benzo(b)fluoranthene	396	0.00	U	305	77	28-126	8	0-30
207-08-9	MSD	Benzo(k)fluoranthene	396	0.00	U	289	73	24-122	9	0-30
50-32-8	MSD	Benzo(a)pyrene	396	0.00	U	326	82	27-126	14	0-30

Method Blank Summary

Page 1 of 1

Client: POEN004 Matrix: SOIL

 Client ID:
 MB for batch 1750980
 Instrument ID:
 MSD4.I
 Data File:
 s032918.B\s4c2913.D

 Lab Sample ID:
 1203998143
 Prep Date:
 03/29/2018 06:18
 Analyzed:
 03/29/18 17:37

Column: DB-5ms

446517

SDG Number:

This method blank applies to the following samples and quality control samples:

Cl 01	ient Sample ID LCS for batch 1750980	Lab Sample ID 1203998144	File ID s032918.B\s4c2909.D	Date Analyzed 03/29/18	Time Analyzed 1543
02	CFA18001 - Soil Location #1MS	1203998145	s032918.B\s4c2910.D	03/29/18	1611
03	CFA18001 - Soil Location #1(446517001MSD	1203998146	s032918.B\s4c2911.D	03/29/18	1640
04	CFA18001 - Soil Location #1	446517001	s032918.B\s4c2915.D	03/29/18	1834
05	CFA18003 - Soil Location #3	446517003	s032918.B\s4c2917.D	03/29/18	1931
06	CFA18003 - DUP - Soil Location #3	446517004	s032918.B\s4c2918.D	03/29/18	1959
07	CFA18002 - Soil Location #2	446517002	s033018.B\s4c3007.D	03/30/18	1120

Report Date: 04-APR-18

Page 1 of 1

Instrument Performance Check DFTPP

Lab Name GEL Laboratories LLC Client SDG: 446517

Instrument ID: MSD4.I Injection Date/Time: 01-MAR-18 09:09

Column Description: DB-5ms Lab File ID s030118.B\s4c0101.D

m/e	Ion Abundance Criteria	% Relative Abundance
51	10 - 80% of mass 198	44.5
68	Less than 2% of mass 69	1.4
69	Mass 69 Relative Abundance	43.9
70	Less than 2% of mass 69	0.5
127	10 - 80% of mass 198	53.2
197	Less than 2% of mass 198	0
198	Base Peak, 100% Relative Abundance	100
199	5 - 9% of mass 198	6.8
275	10 - 60% of mass 198	24.6
365	Greater than 1% of mass 198	3.4
441	Less than 24% of mass 442	15.7
442	Greater than 50% of mass 198	85.3
443	15 - 24% of mass 442	19.5

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, LCS, LCSD, BLANKS AND STANDARDS

Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
ICALMIX[A,B]	WBN180209-88	s030118.B\s4c0102.D	01-MAR-18 09:25
ICALMIX[A,B]	WBN180209-86	s030118.B\s4c0103.D	01-MAR-18 09:53
ICALMIX[A,B]	WBN180209-85	s030118.B\s4c0104.D	01-MAR-18 10:21
ICALMIX[A,B]	WBN180209-83	s030118.B\s4c0105.D	01-MAR-18 10:49
ICALMIX[A,B]	WBN180209-82	s030118.B\s4c0106.D	01-MAR-18 11:17
ICALMIX[A,B]	WBN180209-81	s030118.B\s4c0107.D	01-MAR-18 11:46
ICVMSDS417D_S01	WBN180301-89	s030118.B\s4c0108.D	01-MAR-18 12:16

Instrument Performance Check

DFTPP

Lab Name GEL Laboratories LLC Client SDG: 446517

Instrument ID: MSD4.I Injection Date/Time: 29-MAR-18 14:56

Column Description: DB-5ms Lab File ID s032918.B\s4c2907.D

m/e	Ion Abundance Criteria	% Relative Abundance
51	10 - 80% of mass 198	46.4
68	Less than 2% of mass 69	1.4
69	Mass 69 Relative Abundance	43.8
70	Less than 2% of mass 69	0.5
127	10 - 80% of mass 198	52.6
197	Less than 2% of mass 198	0.8
198	Base Peak, 100% Relative Abundance	100
199	5 - 9% of mass 198	6.7
275	10 - 60% of mass 198	24.1
365	Greater than 1% of mass 198	3.4
441	Less than 24% of mass 442	15.4
442	Greater than 50% of mass 198	83.8
443	15 - 24% of mass 442	19.2

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, LCS, LCSD, BLANKS AND STANDARDS

Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
CCVMIX[A]01	WBN180311-86.3	s032918.B\s4c2908.D	29-MAR-18 15:12
BLK01LCS	1203998144	s032918.B\s4c2909.D	29-MAR-18 15:43
CFA18001 - Soil Location #1MS	1203998145	s032918.B\s4c2910.D	29-MAR-18 16:11
CFA18001 - Soil Location #1MS	1203998146	s032918.B\s4c2911.D	29-MAR-18 16:40
BLK01	1203998143	s032918.B\s4c2913.D	29-MAR-18 17:37
CFA18001 - Soil Location #1	446517001	s032918.B\s4c2915.D	29-MAR-18 18:34
CFA18003 - Soil Location #3	446517003	s032918.B\s4c2917.D	29-MAR-18 19:31
CFA18003 - DUP - Soil Location	446517004	s032918.B\s4c2918.D	29-MAR-18 19:59

Report Date: 04-APR-18

Page 1 of 1

Instrument Performance Check
DFTPP

Lab Name GEL Laboratories LLC Client SDG: 446517

Instrument ID: MSD4.I Injection Date/Time: 30-MAR-18 10:04

Column Description: DB-5ms Lab File ID s033018.B\s4c3004.D

m/e	Ion Abundance Criteria	% Relative Abundance
51	10 - 80% of mass 198	46.8
68	Less than 2% of mass 69	1.6
69	Mass 69 Relative Abundance	44.2
70	Less than 2% of mass 69	0.5
127	10 - 80% of mass 198	52.4
197	Less than 2% of mass 198	0.9
198	Base Peak, 100% Relative Abundance	100
199	5 - 9% of mass 198	6.9
275	10 - 60% of mass 198	23.5
365	Greater than 1% of mass 198	3.4
441	Less than 24% of mass 442	15.5
442	Greater than 50% of mass 198	78
443	15 - 24% of mass 442	19.4

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, LCS, LCSD, BLANKS AND STANDARDS

Client	Lab	Lab	Time
Sample ID	Sample ID	File ID	Analyzed
CCVMIX[A]02	WBN180311-86.3	s033018.B\s4c3005.D	30-MAR-18 10:20
CFA18002 - Soil Location #2	446517002	s033018.B\s4c3007.D	30-MAR-18 11:20

Report Date: 04-APR-18

Page 1 of 1

Internal Standard Area and RT Summary

Lab Name : GEL Laboratories LLC Client SDG: 446517

Instrument: MSD4.I STD Analysis Time: 29-MAR-1815:12

GC Column: DB-5ms Data File: s032918.B\s4c2908.D

	1,4-Dichloro	obenzene-d4	Naphtha	lene-d8	Acenaph	thene-d10	Phenanti	rene-d10	Chrys	ene-d12	Peryle	ne-d12
	Area	# RT	# Area	# RT #	Area	# RT #	Area	# RT #	Area	# RT #	Area	# RT #
12 Hour STD	44686	5.32	151444	7.12	59793	9.46	103405	11.3	36557	14.8	23798	17.9
Upper Limit	89372	5.82	302888	7.62	119586	9.96	206810	11.8	73114	15.3	47596	18.4
Lower Limit	22343	4.82	75722	6.62	29897	8.96	51703	10.8	18279	14.3	11899	17.4
Samp le ID												
BLK01LCS	41085	5.32	139010	7.12	61758	9.46	105372	11.3	39264	14.8	29612	17.9
CFA18001 - Soil Location #1MS	39714	5.32	137163	7.12	61952	9.46	107193	11.3	37310	14.8	27212	17.9
CFA18001 - Soil Location #IMSD	45260	5.32	156748	7.12	70848	9.45	135828	11.3	67720	14.8	43419	17.9
BLK01	40464	5.32	139544	7.12	67737	9.45	122793	11.3	62964	14.8	43321	17.9
CFA18001 - Soil Location #1	48389	5.32	168161	7.12	80456	9.45	135258	11.3	53540	14.8	41337	17.9
CFA18003 - Soil Location #3	42964	5.32	148739	7.12	70410	9.45	125260	11.3	55570	14.8	31651	17.9
CFA 18003 - DUP - Soil Location	47390	5.32	165616	7.12	79252	9.45	142160	11.3	68280	14.8	42454	17.9

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area

RT Upper Limit = \pm 0.50 minutes of internal standard RT RT Lower Limit = \pm 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk

^{*} Value outside of QC Limits

Report Date: 04-APR-18

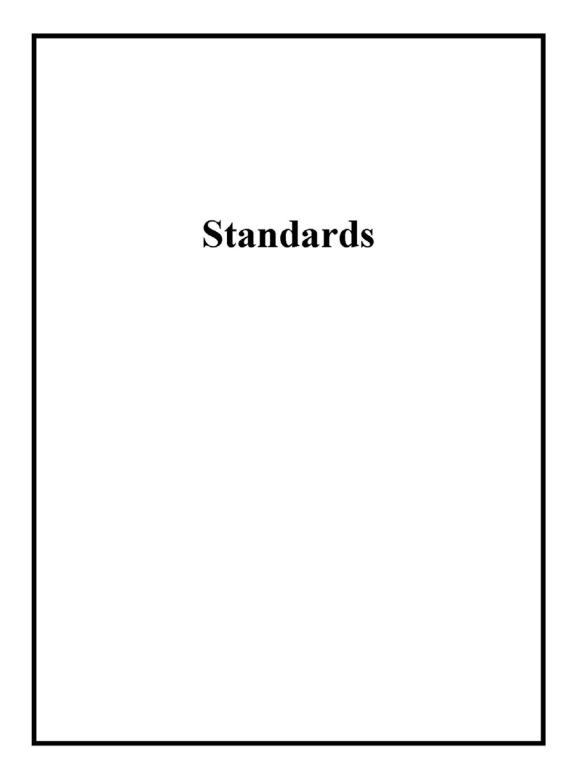
Page 1 of 1

Internal Standard Area and RT Summary

Lab Name : GEL Laboratories LLC Client SDG: 446517

Instrument: MSD4.I STD Analysis Time: 30-MAR-18 10:20

GC Column: DB-5ms Data File: s033018.B\s4c3005.D


	1,4-Dichlorober	zene-d	4	Naphthalene-	18	T	Acenaphthene-d	10	Phenanthrene-d	10	Chrysene-d12		Perylene-d12	
	Area	# R7	Т#	Area #	RT	#	Area #	RT #	Area #	RT #	Area #	RT #	Area #	RT #
12 Hour STD	20435	5.3	1	73187	7.11	1	30261	9.45	57368	11.3	30441	14.8	25965	17.9
Upper Limit	40870	5.8	1	146374	7.61		60522	9.95	114736	11.8	60882	15.3	51930	18.4
Lower Limit	10218	4.8	1	36594	6.61		15131	8.95	28684	10.8	15221	14.3	12983	17.4
Sample ID														
CFA18002 - Soil Location #2	20343	5.3	1	71519	7.11	Ť	36043	9.44	65908	11.3	32580	14.8	26166	17.9

Area Upper Limit = +100% of internal standard area Area Lower Limit = - 50% of internal standard area

RT Upper Limit = + 0.50 minutes of internal standard RT RT Lower Limit = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk

^{*} Value outside of QC Limits

SW846 8270/EPA 625	1									
Calibration Standard Concentration Levels*	1									
MEGA MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
1,4-Dichlorobenzene-d4 (INTERNAL STANDARD)										
Naphthalene-d8 (INTERNAL STANDARD)										
Acenaphthene-d10 (INTERNAL STANDARD)										
Phenanthrene-d10 (INTERNAL STANDARD)										
Chrysene-d12 (INTERNAL STANDARD)										
Perylene-d12 (INTERNAL STANDARD)										
2-Fluorophenol (SURROGATE)		10	20	40	50	80	100	120	30	60
Phenol-d5 (SURROGATE)		10	20	40	50	80	100	120	30	60
2-Chlorophenol-d4 (CLP SURROGATE)		10	20	40	50	80	100	120	30	60
1,2-Dichlorobenzene-d4 (CLP SURROGATE)		10	20	40	50	80	100	120	30	60
Nitrobenzene-d5 (SURROGATE)		10	20	40	50	80	100	120	30	60
2-Fluorobiphenyl (SURROGATE)		10	20	40	50	80	100	120	30	60
2,4,6-Tribromophenol (SURROGATE)		10	20	40	50	80	100	120	30	60
p-Terphenyl-d14 (SURROGATE)		10	20	40	50	80	100	120	30	60
N-Nitrosodimethylamine	1**	10	20	40	50	80	100	120	30	60
Pyridine		10	20	40	50	80	100	120	30	60
Aniline		10	20	40	50	80	100	120	30	60
Phenol		10	20	40	50	80	100	120	30	60
bis(2-Chloroethyl)ether		10	20	40	50	80	100	120	30	60
2-Chlorophenol		10	20	40	50	80	100	120	30	60
n-Decane		10	20	40	50	80	100	120	30	60
1,3-Dichlorobenzene		10	20	40	50	80	100	120	30	60
1,4-Dichlorobenzene		10	20	40	50	80	100	120	30	60
Benzyl Alcohol		10	20	40	50	80	100	120	30	60
1,2-Dichlorobenzene		10	20	40	50	80	100	120	30	60
bis(2-Chloro-1-methylethyl)ether		10	20	40	50	80	100	120	30	60
o-Cresol (2-Methylphenol)		10	20	40	50	80	100	120	30	60
N-Nitrosodipropylamine		10	20	40	50	80	100	120	30	60
m,p-Cresols (3-Methylphenol & 4-Methylphenol)		10	20	40	50	80	100	120	30	60
Hexachloroethane		10	20	40	50	80	100	120	30	60
Nitrobenzene		10	20	40	50	80	100	120	30	60
Isophorone		10	20	40	50	80	100	120	30	60
2-Nitrophenol		10	20	40	50	80	100	120	30	60
2,4-Dimethylphenol		10	20	40	50	80	100	120	30	60
bis(2-Chloroethoxy)methane		10	20	40	50	80	100	120	30	60
2,4-Dichlorophenol		10	20	40	50	80	100	120	30	60
Benzoic Acid			20	40	50	80	100	120	30	60
1,2,4-Trichlorobenzene		10	20	40	50	80	100	120	30	60
Naphthalene	1	10	20	40	50	80	100	120	30	60
alpha-Terpineol		10	20	40	50	80	100	120	30	60
4-Chloroaniline		10	20	40	50	80	100	120	30	60

Page 73 of 94

SW846 8270/EPA 625	\neg									
Calibration Standard Concentration Levels*										
MEGA MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
Hexachlorobutadiene		10	20	40	50	80	100	120	30	60
4-Chloro-3-methylphenol		10	20	40	50	80	100	120	30	60
2-Methylnaphthalene	1	10	20	40	50	80	100	120	30	60
1-Methylnaphthalene	1	10	20	40	50	80	100	120	30	60
Hexachlorocyclopentadiene		10	20	40	50	80	100	120	30	60
2,3-Dichloroaniline		10	20	40	50	80	100	120	30	60
2,4,6-Trichlorophenol		10	20	40	50	80	100	120	30	60
2,4,5-Trichlorophenol		10	20	40	50	80	100	120	30	60
2-Chloronaphthalene	1	10	20	40	50	80	100	120	30	60
o-Nitroaniline		10	20	40	50	80	100	120	30	60
m-Nitroaniline		10	20	40	50	80	100	120	30	60
Dimethylphthalate	1**	10	20	40	50	80	100	120	30	60
2,6-Dinitrotoluene		10	20	40	50	80	100	120	30	60
Acenaphthylene	1	10	20	40	50	80	100	120	30	60
Acenaphthene	1	10	20	40	50	80	100	120	30	60
2,4-Dinitrophenol			20	40	50	80	100	120	30	60
Dibenzofuran		10	20	40	50	80	100	120	30	60
2,4-Dinitrotoluene		10	20	40	50	80	100	120	30	60
Diethylphthalate	1**	10	20	40	50	80	100	120	30	60
4-Nitrophenol		10	20	40	50	80	100	120	30	60
Fluorene	1	10	20	40	50	80	100	120	30	60
4-Chlorophenyl phenyl ether		10	20	40	50	80	100	120	30	60
2-Methyl-4,6-dinitrophenol		10	20	40	50	80	100	120	30	60
p-Nitroaniline		10	20	40	50	80	100	120	30	60
Diphenylamine		10	20	40	50	80	100	120	30	60
1,2-Diphenylhydrazine		10	20	40	50	80	100	120	30	60
4-Bromophenyl phenyether		10	20	40	50	80	100	120	30	60
Hexachlorobenzene		10	20	40	50	80	100	120	30	60
Pentachlorophenol		10	20	40	50	80	100	120	30	60
n-Octadecane		10	20	40	50	80	100	120	30	60
Phenanthrene	1	10	20	40	50	80	100	120	30	60
Anthracene	1	10	20	40	50	80	100	120	30	60
Di-n-butylphthalate	1**	10	20	40	50	80	100	120	30	60
Fluoranthene	1	10	20	40	50	80	100	120	30	60
Pyrene	1	10	20	40	50	80	100	120	30	60
Butylbenzylphthalate	1**	10	20	40	50	80	100	120	30	60
Benzo(a)anthracene	1	10	20	40	50	80	100	120	30	60
Chrysene	1	10	20	40	50	80	100	120	30	60
bis (2-Ethylhexyl) phthalate	1	10	20	40	50	80	100	120	30	60
Di-n-octylphthalate	1**	10	20	40	50	80	100	120	30	60

SW846 8270/EPA 625	\neg									
Calibration Standard Concentration Levels*										
MEGA MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
Benzo(b)fluoranthene	1	10	20	40	50	80	100	120	30	60
Benzo(k)fluoranthene	1	10	20	40	50	80	100	120	30	60
Benzo(a)pyrene	1	10	20	40	50	80	100	120	30	60
Indeno-(1,2,3-cd)pyrene	1	10	20	40	50	80	100	120	30	60
Dibenzo(a,h)anthracene	1	10	20	40	50	80	100	120	30	60
Benzo(ghi)perylene	1	10	20	40	50	80	100	120	30	60
m-Dinitrobenzene		10	20	40	50	80	100	120	30	60
2,3,4,6-Tetrachlorophenol		10	20	40	50	80	100	120	30	60
Dinoseb		10	20	40	50	80	100	120	30	60
Carbazole	1	10	20	40	50	80	100	120	30	60
p-Benzoquinone		10	20	40	50	80	100	120	30	60
Methoxychlor		10	20	40	50	80	100	120	30	60
p-Toluidine		10	20	40	50	80	100	120	30	60
m-Toluidine		10	20	40	50	80	10	120	30	60
1,4-Dinitrobenzene		10	20	40	50	80	100	120	30	60
2-Ethoxyethanol		10	20	40	50	80	100	120	30	60
Phthalic anhydride		10	20	40	50	80	100	120	30	60
Methylenebis(2-chloroaniline)		10	20	40	50	80	100	120	30	60
Dibenzo(a,e)pyrene		10	20	40	50	80	100	120	30	60

SW846 8270/EPA 625	_									
Calibration Standard Concentration Levels*	\neg									
AP MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
Benzaldehyde		10	20	40	50	80	100	120	30	60
Acetophenone		10	20	40	50	80	100	120	30	60
Caprolactam		10	20	40	50	80	100	120	30	60
1,1'-Biphenyl		10	20	40	50	80	100	120	30	60
Atrazine		10	20	40	50	80	100	120	30	60
Benzidine		10	20	40	50	80	100	120	30	60
3,3'-Dichlorobenzidene		10	20	40	50	80	100	120	30	60
1,4-Dioxane		10	20	40	50	80	100	120	30	60
Methyl methacrylate		10	20	40	50	80	100	120	30	60
Ethyl methacrylate		10	20	40	50	80	100	120	30	60
2-Picoline		10	20	40	50	80	100	120	30	60
N-Nitrosomethylethylamine		10	20	40	50	80	100	120	30	60
2-Butoxyethanol		10	20	40	50	80	100	120	30	60
Methyl methanesulfonate		10	20	40	50	80	100	120	30	60
N-Nitrosodiethylamine		10	20	40	50	80	100	120	30	60
Ethyl methanesulfonate		10	20	40	50	80	100	120	30	60
Pentachloroethane		10	20	40	50	80	100	120	30	60
N-Nitrosopyrrolidine		10	20	40	50	80	100	120	30	60
N-Nitrosomorpholine		10	20	40	50	80	100	120	30	60
o-Toluidine		10	20	40	50	80	100	120	30	60
N-Nitrosopiperidine		10	20	40	50	80	100	120	30	60
a,a-Dimethylphenethylamine		10	20	40	50	80	100	120	30	60
2,6-Dichlorophenol		10	20	40	50	80	100	120	30	60

Page 75 of 94

SW846 8270/EPA 625	_									
Calibration Standard Concentration Levels*										
AP MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
Hexachloropropene		10	20	40	50	80	100	120	30	60
N-Nitrosodi-n-butylamine		10	20	40	50	80	100	120	30	60
Safrole		10	20	40	50	80	100	120	30	60
1,2,4,5-Tetrachlorobenzene		10	20	40	50	80	100	120	30	60
Isosafrole		10	20	40	50	80	100	120	30	60
1,4-Naphthoquinone		10	20	40	50	80	100	120	30	60
Pentachlorobenzene		10	20	40	50	80	100	120	30	60
1-Naphthylamine		10	20	40	50	80	100	120	30	60
2-Naphthylamine		10	20	40	50	80	100	120	30	60
5-Nitro-o-toluidine		10	20	40	50	80	100	120	30	60
1,3,5-Trinitrobenzene	1	10	20	40	50	80	100	120	30	60
Phenacetin		10	20	40	50	80	100	120	30	60
Diallate		10	20	40	50	80	100	120	30	60
cis-Diallate		1.5	3	6	7.5	12	15	18	4.5	9
trans-Diallate		8.5	17	34	42	68	85	102	25.5	51
4-Aminobiphenyl		10	20	40	50	80	100	120	30	60
Pentachloronitrobenzene		10	20	40	50	80	100	120	30	60
Pronamide		10	20	40	50	80	100	120	30	60
4-Nitroquinoline-1-oxide		10	20	40	50	80	100	120	30	60
Methapyrilene		10	20	40	50	80	100	120	30	60
Isodrin		10	20	40	50	80	100	120	30	60
Aramite		10	20	40	50	80	100	120	30	60
Kepone		10	20	40	50	80	100	120	30	60
p-(Dimethylamino)azobenzene		10	20	40	50	80	100	120	30	60
Chlorobenzilate		10	20	40	50	80	100	120	30	60
3,3'-Dimethylbenzidine		10	20	40	50	80	100	120	30	60
2-Acetylaminofluorene		10	20	40	50	80	100	120	30	60
7,12-Dimethylbenz(a)anthracene		10	20	40	50	80	100	120	30	60
3-Methylcholanthrene		10	20	40	50	80	100	120	30	60

SW846 8270/EPA 625	i									
Calibration Standard Concentration Levels*										
	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
Hexachlorophene		500	1000	1250	1500	1750	2000			
p-Phenylenediamine		500	1000	1250	1500	1750	2000			

Page 76 of 94

SW846 8270/EPA 625	1									
Calibration Standard Concentration Levels*	1									
PEST MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
bis(Chloromethyl)ether		10	20	40	50	80	100	120	30	60
Tributylphosphate		10	20	40	50	80	100	120	30	60
Triethylphosphorothioate		10	20	40	50	80	100	120	30	60
Thionazin		10	20	40	50	80	100	120	30	60
Sulfotepp		10	20	40	50	80	100	120	30	60
Phorate		10	20	40	50	80	100	120	30	60
Dimethoate		10	20	40	50	80	100	120	30	60
Disulfoton		10	20	40	50	80	100	120	30	60
Methyl parathion		10	20	40	50	80	100	120	30	60
Famphur		10	20	40	50	80	100	120	30	60
Parathion		10	20	40	50	80	100	120	30	60

SW846 8270/EPA 625	1									
Calibration Standard Concentration Levels*	1									
NEVADA MIX	Level 1	Level 2	Level 3	Level 4#	Level 5	Level 6	Level 7	Level 8	Level 9	Level 10
bis(Chloromethyl)ether		10	20	40	50	80	100	120	30	60
4-Chlorothiophenol		10	20	40	50	80	100	120	30	60
4-Chlorothioanisole		10	20	40	50	80	100	120	30	60
Phthalic acid		10	20	40	50	80	100	120	30	60
Hydroxymethyl phthalimide		10	20	40	50	80	100	120	30	60
Diphenyl sulfide		10	20	40	50	80	100	120	30	60
Diphenyl disulfide		10	20	40	50	80	100	120	30	60
Phenyl sulfone		10	20	40	50	80	100	120	30	60
Octachlorostyrene		10	20	40	50	80	100	120	30	60
Thiophenol		10	20	40	50	80	100	120	30	60
2,2'-Dichlorobenzil		10	20	40	50	80	100	120	30	60
bis(p-Chlorophenyl)disulfide		10	20	40	50	80	100	120	30	60
bis(p-Chlorophenyl)sulfone		10	20	40	50	80	100	120	30	60

All values are mg/L without the prep factor.
Indicates the calibration verification concentration level used
* Usual calibration levels using SCAN methodology
** This analyte included in this level at special client request.

EPA 522	İ							
Calibration Standard Concentration Levels#								
	Level 1	Level 2	Level 3	Level 4	Level 5	ICV	CCV	
Tetrahydrofuran-d8 (INTERNAL STANDARD)								
1,4-Dioxane-d8 (SURROGATE)	50	100	200	400	500	200	See Method	
1,4-Dioxane	50	100	200	400	500	200	See Method	

All values are ug/L without the prep factor.

Usual calibration levels using SIM methodology

calibration levels82701016care.xls(102716)

SW846 8270SIM	٦ .									
Calibration Standard Concentration Levels*	7									
MEGASIM analytes (A)	Level 1	Level 2	Level 3	Level 4	Level 5	_evel 6	Level 7	Level 8	Level 9	Level 1
1,4-Dichlorobenzene-d4 (INTERNAL STANDAF	(D)									
Naphthalene-d8 (INTERNAL STANDARD)										
Acenaphthene-d10 (INTERNAL STANDARD)										
Phenanthrene-d10 (INTERNAL STANDARD)										
Chrysene-d12 (INTERNAL STANDARD)										
Perylene-d12 (INTERNAL STANDARD)										
5-alpha-Androstane (SURROGATE)	\$0.1	0.2	0.5	1	2	5	10	20		
\$N-Methyl-N-nitrosomethylamine		0.2	0.5	1	2	5	10	20		
\$bis(2-Chloroethyl)ether	0.1	0.2	0.5	1	2	5	10	20		
\$N-Nitrosodipropylamine	0.1	0.2	0.5	1	2	5	10	20		
Naphthalene	\$0.1	0.2	0.5	1	2	5	10	20		
2-Methylnaphthalene	\$0.1	0.2	0.5	1	2	5	10	20		
1-Methylnaphthalene	\$0.1	0.2	0.5	1	2	5	10	20		
2-Chloronaphthalene	\$0.1	0.2	0.5	1	2	5	10	20		
Acenaphthylene	\$0.1	0.2	0.5	1	2	5	10	20		
Acenaphthene	\$0.1	0.2	0.5	1	2	5	10	20		
Fluorene	\$0.1	0.2	0.5	1	2	5	10	20		
Phenanthrene	\$0.1	0.2	0.5	1	2	5	10	20		
Anthracene	\$0.1	0.2	0.5	1	2	5	10	20		
Fluoranthene	\$0.1	0.2	0.5	1	2	5	10	20		
Pyrene	\$0.1	0.2	0.5	1	2	5	10	20		
Benzo(a)anthracene	\$0.1	0.2	0.5	1	2	5	10	20		
Chrysene	\$0.1	0.2	0.5	1	2	5	10	20		
Benzo(b)fluoranthene	\$0.1	0.2	0.5	1	2	5	10	20		
Benzo(k)fluoranthene	\$0.1	0.2	0.5	1	2	5	10	20		
Benzo(a)pyrene	\$0.1	0.2	0.5	1	2	5	10	20		
Indeno-(1,2,3-cd)pyrene	\$0.1	0.2	0.5	1	2	5	10	20		
Dibenzo(a,h)anthracene	\$0.1	0.2	0.5	1	2	5	10	20		
Benzo(ghi)perylene	\$0.1	0.2	0.5	1	2	5	10	20		

\$ By special request - Not for regulatory purposes

SW846 8270SIM										
Calibration Standard Concentration Levels*										
APSIM analytes (A)	Level 1	Level 2	Level 3	Level 4	Level 5	_evel 6#	Level 7	Level 8	Level 9	Level 10
\$N-Nitrosodimethylamine	0.1	0.2	0.5	1	2	5	10	20		
\$N-Nitrosopyrrolidine	0.1	0.2	0.5	1	2	5	10	20		
\$N-Nitrosodi-n-butylamine	0.1	0.2	0.5	1	2	5	10	20		
\$Benzidine			2.5	5	10	25	50	100		
\$3,3'-Dichlorobenzidine	0.1	0.2	0.5	1	2	5	10	20		

^{\$} By special request - Not for regulatory purposes All values are mg/L without prep factor.

calibration levels82701016care.xls(102716)

[#] indicates the calibraton verification concentration level used.

^{*} Usual calibration levels using SIM methodology (10/16/Full list)

Calibration History Report MSD4

GEL Laboratories, LLC

Method File: C:\msdchem\1\data\s032918.B\MSD4_SIMPAHPLUS_8270D_8270C_030118.m

O3/29/2018

Integrator: (RTE Integrator)

Integrator : (RTI	E Integrator)	Response via : Initial Calibration
Cal Lvl:1 Amt:0.10	Last Updated with: C:\msdche	m\1\data\s030118.B\s4c0102.D
Injection Date	Mix Calibration File	
01 Mar 2018 09:25 01 Mar 2018 09:25	A C:\msdchem\1\data\s0301 B C:\msdchem\1\data\s0301	
Cal Lv1:2 Amt:0.20	None of the compounds use th	is level.
Injection Date	Mix Calibration File	
+	-+ <u>+</u>	
Cal Lvl:3 Amt:0.50	Last Updated with: C:\msdche	m\1\data\s030118.B\s4c0103.D
Injection Date	Mix Calibration File	
01 Mar 2018 09:53 01 Mar 2018 09:53	A C:\msdchem\1\data\s0303 B C:\msdchem\1\data\s0303	
Cal Lvl:4 Amt:1.00	Last Updated with: C:\msdche	m\1\data\s030118.B\s4c0104.D
Injection Date	Mix Calibration File	
01 Mar 2018 10:21 01 Mar 2018 10:21	A C:\msdchem\1\data\s0301 B C:\msdchem\1\data\s0301	
Cal Lvl:5 Amt:2.00	None of the compounds use th	in level
†	-++	
Injection Date	Mix Calibration File -++	
+	-+	+
Cal Lvl:6 Amt:5.00	Last Updated with: C:\msdche	m\1\data\s030118.B\s4c0105.D
Injection Date	Mix Calibration File	
01 Mar 2018 10:49 01 Mar 2018 10:49	A C:\msdchem\1\data\s0303 B C:\msdchem\1\data\s0303	
Cal Lv1:7 Amt:10.00	Last Updated with: C:\msdch	em\1\data\s030118.B\s4c0106.D
Injection Date	Mix Calibration File	-
01 Mar 2018 11:17 01 Mar 2018 11:17	A C:\msdchem\1\data\s0301 B C:\msdchem\1\data\s0301	
Cal Lvl:8 Amt:20.00	Last Updated with: C:\msdch	em\1\data\s030118.B\s4c0107.D
Injection Date	Mix Calibration File	
01 Mar 2018 11:46	A C:\msdchem\1\data\s0301	18.B\s4c0107.D
01 Mar 2018 11:46	B C:\msdchem\1\data\s0301	

MSD4_SIMPAH...70C_030118.m Thu Mar 29 15:33:19 2018

MSD4_SIMPAH...70C_030118.m Thu Mar 29 15:33:16 2018

Page 79 of 94

Response Factor Report MSD4

GEL Laboratories, LLC

Method File: C:\msdchem\l\data\s032918.B\MSD4_SIMPAHPLUS_8270D_8270C_030118.m

Last Update: Thu Mar 01 12:09:52 2018

Integrator: (RTE Integrator)

Response via . The state of the state o

For Linear Calibration: x = concentration ratio, y = response ratio. y = b + ml(x) + m2(xE2)

b	Compound ml m2	7	2 8	3	4	5	6	Avg	Curve	Exp	%RSD/r2
2)AM N-Meth	yl-N-nitrosomethyl		0.8838720	0.7363695	0.7960170		0.8088700	0.7742	AVRG		14.1952
3)AM bis(2	Chloroethyl) ether		1.2179693	1.1737825	1.2681212		1.1428539	1.1793	AVRG		5.2024
	cosodipropylamine 0.8739 0.00	569 65903		2907	5646		38160		1/x^2 LINR	 	0.9961
6)AM Naphth		1.1516635	1.0577659	1.1708486	1.2252096		1.0698585	1.1278			5.8156
7)AM 2-Meth	nylnaphthalene	0.6776630		0.7283657	0.7883614		0.7134851				
8)AM 1-Meth	nylnaphthalene	0.7218044	0.6948893	0.6668062	0.7171525		0.6360468	0.7208	AVRG 		5.2680
10)AM 2-Chlo	pronaphthalene	0.6353706	0.6201867	 1.6808036	 1.7972387		1.6131550	0.6531	AVRG		5.3387
11)AM Acenar		1.6557561	1.6386759		2.4995559		2.3947911	1.6586	AVRG		4.7312
		2.4877236	2.4946028					2.4150	AVRG		3.8796
12)AM Acenar	hthene	1.5163109	1.4947567	1.5197173	1.6201523		1.4707392	1.5198	AVRG		3.4356
13)AM Fluore	ene	1.4268552 1.5659245	1.5973250	1.4942336	1.6518018		1.5711021	1.5512	AVRG	 	5.1223
15)AM Phenar	threne	1.3635178 1.3571877	1.3176934	1.3836311	1.4588130		1.3254610	1.3677	AVRG		3.7236
16)AM Anthra	cene	1.0864083	1.2365732	1.1494996	1.2460551		1.2166288	1.1992	AVRG		5.6338
17)SA 5-alph	na-Androstane	0.1391345 0.1302853	0.1303944	0.1270746	0.1313303		0.1230432	0.1302	AVRG		4.0947
18)AM Fluora	inthene	0.9119105		1.0940073	1.2185225		1.1717106	1.0959	AVEC		9.5977
20)AM Pyrene		3.1245275			3.3873688		2.8477290				
		3.2219563	3.0536736					3.1310	AVRG		5.7249

Response via : Initial Calibration

MSD4_SIMPAH...70C_030118.m Thu Mar 29 15:33:16 2018

Response Factor Report MSD4

GEL Laboratories, LLC

Method File: C:\msdchem\1\data\s032918.B\MSD4_SIMPAHPLUS_8270D_8270C_030118.m

Last Update: Thu Mar 01 12:09:52 2018

Integrator: (RTE Integrator)

Response via

Response via : Initial Calibration

For Linear Calibration: x = concentration ratio, y = response ratio. y = b + m1(x) + m2(xE2)

Compound b ml m2	7	2 8	3	4	5	6	Avg	Curve	Exp	%RSD/r2
21) AM Benzo(a) anthracene	1.5844378 1.5220261	1.5607207	1.3284936	1.4619565		1.4448617	1.4837	AVRG		6.2950
22)AM Chrysene	1.5622638	1.4872197	1.5201452	1.6746627		1.4589952	1.5348	AVRG		4.9959
24) AM Benzo(b) fluoranthene	1.6594033	2.0213493	1.7846222	2.0141781		1.8278896	1.8692	AVRG		7.5103
25) AM Benzo(k) fluoranthene	1.5990613	2.0074461	1.7159828	1.9375277		1.8381171	1.8387	AVRG		8.4179
26) AM Benzo (a) pyrene	1.3040563	1.6607073	1.2548675	1.4124945		1.3936668	1.4248	AVRG		10.4029
27)AM Indeno(1,2,3-cd)pyrene	0.9520617	1.1068396	0.8201518	0.8560035		0.8268013	0.9250	AVRG		12.1520
28)AM Dibenzo(a,h)anthracene	0.9989943	0.9592423	0.7383126	0.7585290		0.7573592	0.8529	AVRG		13.5267
29)AM Benzo(ghi)perylene	1.2738854	1.1435850	1.0269497	1.0943731		0.9550384	1.1033	AVRG		9.8559
31)BM N-Nitrosodiethylamine -0.0055 0.5325 0.00	332 41143		1686	3274		23295		1/x^2 LINR	#	0.9916
32)BM N-Nitrosopyrrolidine	0.2612503	0.5935886	0.3831698	0.4514570		0.5224042	0.4603	AVRG	#	26.6668
34)BM N-Nitrosodi-n-butylamine -0.0021 0.2169 0.00	462 54558		2316	4473		31196		1/x^2 LINR	#	0.9940
36)BM Benzidine -0.1531 0.3566 0.00	230269	578183	6072	16305		176378		LINR	#	0.9976
38)BM 3,3'-Dichlorobenzidine -0.0057 0.3927 0.00	165 19174		689	1601		14438		1/x LINR	#	0.9916

(#) = Out of Range (\$) = Individual RF Out of Range AVRG = Average, LINR = Linear Regression, 1/x = the inverse of concentration, $1/x^2$ = the inverse square of concentration

MSD4 SIMPAH...70C 030118.m Thu Mar 29 15:33:16 2018

Continuing Calibration Summary

Client SDG: 446517

Instrument ID: MSD4.I Injection Date: 01-MAR-18 12:16

Data File: s030118.B\s4c0108.D Init. Cal. Date(s): 01-MAR-18 09:25 - 01-MAR-18 11:4

 Lab Sample ID
 WBN180301-89
 Method:
 s030118.B\MSD4_SIMPAHPLUS_8270D_8270C_

Quant Type ISTD Method Update: 01-MAR-18 12:09

Compound	AVERF / Amount	RF CCV	Nominal CCV	Min RF	RF Q	%D / %Drift	Max	Drift Q	Curve Type
5-alpha-Androstane	0.1302	0.11819		.01		-9.22427	30		Averaged
Naphthalene	1.1278	1.06558		.7		-5.51694	30		Averaged
Acenaphthene	1.5198	1.42055		.9		-6.53046	30		Averaged
Fluorene	1.5512	1.51179		.9		-2.54061	30		Averaged
Anthracene	1.1992	1.18409		.7		-1.26001	30		Averaged
Fluoranthene	1.0959	1.10453		.6		0.78748	30		Averaged
Pyrene	3.131	3.04916		.6		-2.61386	30		Averaged
Benzo(a)anthracene	1.4837	1.36811		.8		-7.79066	30		Averaged
Chrysene	1.5348	1.14189		.7		-25.60008	30		Averaged
Benzo(b)fluoranthene	1.8692	1.77275		.7		-5.15996	30		Averaged
Benzo(k)fluoranthene	1.8387	1.87331		.7		1.88231	30		Averaged
Benzo(a)pyrene	1.4248	1.32805		.7		-6.79043	30		Averaged

Continuing Calibration Summary

Client SDG: 446517

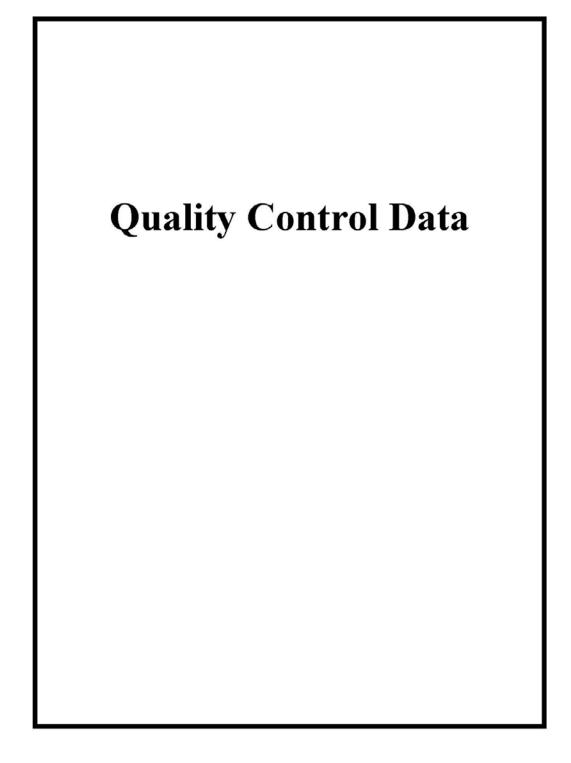
Instrument ID: MSD4.I Injection Date: 29-MAR-18 15:12

 Lab Sample ID
 WBN180311-86.3
 Method:
 s032918.B\MSD4_SIMPAHPLUS_8270D_8270C_

Quant Type ISTD Method Update: 01-MAR-18 12:09

Compound	AVERF / Amount	RF CCV	Nominal CCV	Min RF	RF Q	%D / %Drift	Max	Drift Q	Curve Type
5-alpha-Androstane	0.1302	0.14082	A000 0	.01		8.15668	20		Averaged
Naphthalene	1.1278	1.0773		.7		-4.47774	20		Averaged
Acenaphthene	1.5198	1.52008		.9		0.01842	20		Averaged
Fluorene	1.5512	1.65894		.9		6.94559	20		Averaged
Anthracene	1.1992	1.17774	,	.7		-1.78953	20		Averaged
Fluoranthene	1.0959	1.18478		.6		8.11023	20		Averaged
Pyrene	3.131	3.17886		.6		1.52859	20		Averaged
Benzo(a)anthracene	1.4837	1.62921		.8		9.80724	20		Averaged
Chrysene	1.5348	1.47564	1	.7		-3.85457	20		Averaged
Benzo(b)fluoranthene	1.8692	1.81313		.7		-2.99968	20		Averaged
Benzo(k)fluoranthene	1.8387	1.67732		.7		-8.77685	20		Averaged
Benzo(a)pyrene	1.4248	1.52591		.7		7.09643	20		Averaged

Continuing Calibration Summary


Client SDG: 446517

Instrument ID: MSD4.I Injection Date: 30-MAR-18 10:20

 Lab Sample ID
 WBN180311-86.3
 Method:
 s033018.B\MSD4_SIMPAHPLUS_8270D_8270C_

Quant Type ISTD Method Update: 01-MAR-18 12:09

Compound	AVERF / Amount	RF CCV	Nominal CCV	Min RF	RF Q	%D / %Drift	Max	Drift Q	Curve Type
5-alpha-Androstane	0.1302	0.12923		.01		-0.74501	20		Averaged
Naphthalene	1.1278	1.08447		.7		-3.84199	20		Averaged
Acenaphthene	1.5198	1.4859		.9		-2.23056	20		Averaged
Fluorene	1.5512	1.69419		.9		9.21802	20		Averaged
Anthracene	1.1992	1.23301		.7		2.81938	20		Averaged
Fluoranthene	1.0959	1.2305		.6		12.28214	20		Averaged
Pyrene	3.131	2.53187		.6		-19.13542	20		Averaged
Benzo(a)anthracene	1.4837	1.66181		.8		12.00445	20		Averaged
Chrysene	1.5348	1.75032		.7		14.04222	20		Averaged
Benzo(b)fluoranthene	1.8692	1.80649		.7		-3.35491	20		Averaged
Benzo(k)fluoranthene	1.8387	1.71277		.7		-6.84886	20		Averaged
Benzo(a)pyrene	1.4248	1.57181		.7		10.31794	20		Averaged

Page 1

Final Volume: 1 mL

of 1

SDG Number: 446517 Matrix: SOIL

 Lab Sample ID:
 1203998143

 Client Sample:
 QC for batch 1750980
 Client:
 POEN004
 Project:
 QC

Client ID: MB for batch 1750980 Method: SW846 3541/8270D SIM P. SOP Ref: GL-OA-E-009 1750981 MSD4.I Dilution: Batch ID: Inst: 1 Run Date: 03/29/2018 17:37 Analyst: JMB3 Inj. Vol: 1 uL

 Prep Date:
 03/29/2018 06:18
 Aliquot:
 30.017 g

 Data File:
 s032918.B\s4c2913.D
 Column:
 DB-5ms

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene	U	3.33	ug/kg	1.10	3.33
20-12-7	Anthracene	U	3.33	ug/kg	1.10	3.33
6-55-3	Benzo(a)anthracene	U	3.33	ug/kg	1.10	3.33
-32-8	Benzo(a)pyrene	U	3.33	ug/kg	1.10	3.33
5-99-2	Benzo(b)fluoranthene	U	3.33	ug/kg	1.10	3.33
-08-9	Benzo(k)fluoranthene	U	3.33	ug/kg	1.10	3.33
01-9	Chrysene	U	3.33	ug/kg	1.10	3.33
44-0	Fluoranthene	U	3.33	ug/kg	1.10	3.33
3-7	Fluorene	U	3.33	ug/kg	1.10	3.33
20-3	Naphthalene	U	3.33	ug/kg	1.10	3.33
-00-0	Pyrene	U	3.33	ug/kg	1.10	3.33

Page 1

of 1

SDG Number: 446517 Matrix: SOIL

 Lab Sample ID:
 1203998144

 Client Sample:
 QC for batch 1750980
 Client:
 POEN004
 Project:
 QC

 Client ID:
 LCS for batch 1750980
 Method:
 SW846 3541/8270D SIM P. SOP Ref:
 GL-OA-E-009

 Batch ID:
 1750981
 Inst:
 MSD4.I
 Dilution:
 1

 Run Date:
 03/29/2018 15:43
 Analyst:
 JMB3
 Inj. Vol:
 1 uL

 Run Date:
 03/29/2018 15:43
 Analyst:
 JMB3
 Inj. Vol:
 1 uL

 Prep Date:
 03/29/2018 06:18
 Allquot:
 30.015 g
 Final Volume:
 1 mL

Data File: s032918.B\s4c2909.D Column: DB-5ms

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene		269	ug/kg	1.10	3.33
120-12-7	Anthracene		282	ug/kg	1.10	3.33
56-55-3	Benzo(a)anthracene		324	ug/kg	1.10	3.33
50-32-8	Benzo(a)pyrene		316	ug/kg	1.10	3.33
205-99-2	Benzo(b)fluoranthene		278	ug/kg	1.10	3.33
207-08-9	Benzo(k)fluoranthene		269	ug/kg	1.10	3.33
218-01-9	Chrysene		293	ug/kg	1.10	3.33
206-44-0	Fluoranthene		304	ug/kg	1.10	3.33
86-73-7	Fluorene		288	ug/kg	1.10	3.33
91-20-3	Naphthalene		272	ug/kg	1.10	3.33
129-00-0	Pyrene		270	ug/kg	1.10	3.33

Page 1

of 1

Date Collected: 03/22/2018 11:10 SDG Number: 446517 SOIL Matrix: Lab Sample ID: 1203998145 03/23/2018 08:55 Date Received: %Moisture: 16.3 Client Sample: QC for batch 1750980 Client: POEN004 Project: QC Client ID: CFA18001 - Soil Location #1MS Method: SW846 3541/8270D SIM P. SOP Ref: GL-OA-E-009

1750981 MSD4.I Dilution: Batch ID: Inst: 1 Run Date: 03/29/2018 16:11 Analyst: JMB3 Inj. Vol: 1 uL Prep Date: 03/29/2018 06:18 Aliquot: 30.101 g Final Volume: 1 mL

Data File: s032918.B\s4c2910.D Column: DB-5ms

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
3-32-9	Acenaphthene		288	ug/kg	1.31	3.97
20-12-7	Anthracene		311	ug/kg	1.31	3.97
-55-3	Benzo(a)anthracene		389	ug/kg	1.31	3.97
-32-8	Benzo(a)pyrene		375	ug/kg	1.31	3.97
-99-2	Benzo(b)fluoranthene		332	ug/kg	1.31	3.97
-08-9	Benzo(k)fluoranthene		317	ug/kg	1.31	3.97
01-9	Chrysene		348	ug/kg	1.31	3.97
4-0	Fluoranthene		344	ug/kg	1.31	3.97
3-7	Fluorene		315	ug/kg	1.31	3.97
0-3	Naphthalene		274	ug/kg	1.31	3.97
00-0	Pyrene		330	ug/kg	1.31	3.97

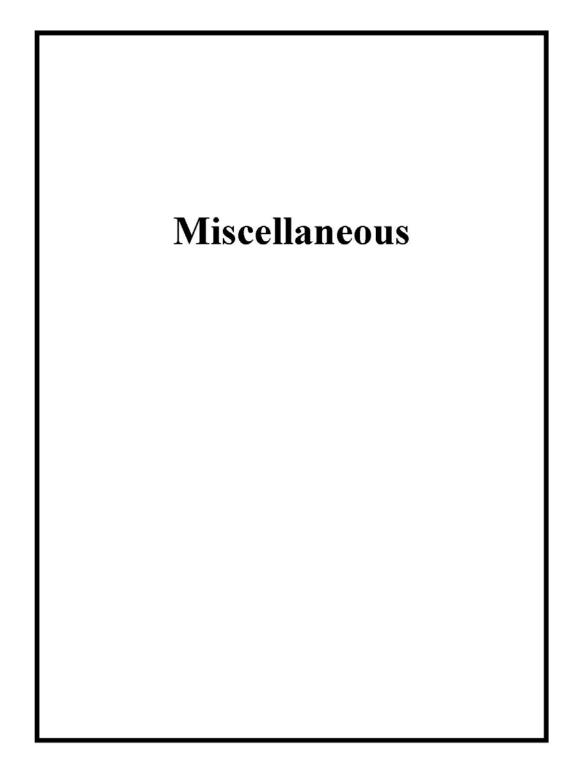
Page 1

of 1

03/22/2018 11:10 SDG Number: 446517 Date Collected: SOIL Matrix: Lab Sample ID: 1203998146 03/23/2018 08:55 Date Received: %Moisture: 16.3 Client Sample: QC for batch 1750980 Client: POEN004 Project: QC Client ID: CFA18001 - Soil Location Method: SW846 3541/8270D SIM P. SOP Ref: GL-OA-E-009

 Batch ID:
 #1(446517001MSD
 Inst:
 MSD4.I
 Dilution:
 1

 Run Date:
 1750981
 Analyst:
 JMB3
 Inj. Vol:
 1 uL


 03/29/2018 16:40
 Allquot:
 30.145 g
 Final Volume:
 1 mL

03/29/2018 16:40 Allquot: 30.145 g Final Volume: 1 mL
Prep Date: 03/29/2018 06:18 Column: DB-5ms

 Prep Date:
 03/29/2018 06:18
 Column:
 DB-5ms

 Data File:
 s032918.B\s4c2911.D

CAS No.	Parmname	Qualifier	Result	Units	MDL/LOD	PQL/LOQ
83-32-9	Acenaphthene		237	ug/kg	1.31	3.96
120-12-7	Anthracene		260	ug/kg	1.31	3.96
6-55-3	Benzo(a)anthracene		332	ug/kg	1.31	3.96
0-32-8	Benzo(a)pyrene		326	ug/kg	1.31	3.96
05-99-2	Benzo(b)fluoranthene		305	ug/kg	1.31	3.96
07-08-9	Benzo(k)fluoranthene		289	ug/kg	1.31	3.96
3-01-9	Chrysene		299	ug/kg	1.31	3.96
6-44-0	Fluoranthene		327	ug/kg	1.31	3.96
5-73-7	Fluorene		266	ug/kg	1.31	3.96
1-20-3	Naphthalene		220	ug/kg	1.31	3.96
9-00-0	Pyrene		225	ug/kg	1.31	3.96

Prep Logbook

Automated Soxhlet Extraction

Daten ID:	1/50900	verified by:		
Analyst:	Stacey Grant		Lab SOP:	GL-OA-E-066 REV#8
Method:	SW846 3541		Instrument:	Semi-Volatiles Manual

Sample ID	Prep Date	Aliquot (g)	Prepped Aliquot (mL)	Prepped Factor (mL/g)			
1203998143 MB	29-MAR-2018 06:18:00	30.017	1	0.03331			
1203998144 LCS	29-MAR-2018 06:18:00	30.015	1	0.03332			
446517001	29-MAR-2018 06:18:00	30.079	1	0.03325			
1203998145 MS (446517001)	29-MAR-2018 06:18:00	30.101	1	0.03322			
1203998146 MSD (446517001)	29-MAR-2018 06:18:00	30.145	I	0.03317			
446517002	29-MAR-2018 06:18:00	30.435	1	0.03286			
446517003	29-MAR-2018 06:18:00	30.124	1	0.0332			
446517004	29-MAR-2018 06:18:00	30.027	1	0.0333			
ype Sample Id	Description			Serial Number	Spike Amt	Units	S Comments:

Туре	Sample Id	Description	Serial Number	Spike Amt	Units	Comments:
LCS	1203998144	PAH SIM LCS 10 mg/L	UE180322-20	1	mL	Soxtherm Unit:: 1,2
MS	1203998145	PAH SIM LCS 10 mg/L	UE180322-20	1	mL	Final Solvent: CH2Cl2
MSD	1203998146	PAH SIM LCS 10 mg/L	UE180322-20	1	mL	Start Time:: 6:32
SURR	All	BNA for all Surrogate	UE180209-12	1	mL	End Time:: 7:35
REGNI	All	Sand pure 40-100 mesh	2600642-A	30	g	Verified by: DF
REGNI	All	Acetone	2651865-B4	60	mL	
REGNI	All	Methylene Chloride	2662636	60	mL	

Analytical Logbook version 2 12-08-2004

GEL Laboratories LLC

Page____

Page 91 of 94

ORGANIC RUN LOG - INSTRUMENT ID#MSD4

Page 92 GEL ORGANIC RUN LOG DATE: 1-1

DATE: 1-Mar-18 METHOD: See Data OPERATOR: JMB3 Sequence Number: S03011

Multiplier Voltage: 1941 Internal Std ID: UBN171221-01.1 Internal Std ID: WBN180209-99 (SIM) Solvent Reference ID: 2620130

Calibration Information:
Initial Calibration Dates: See Calibration History
Initial Calibration Std ID's: See Associated Data and Run Log
GEL SOP: GL-OA-E-009

Analysis					Dil.	AS	Analyst	Comments
Date Time	Data File	Lab Sample ID	Client	Batch #	Factor	Slot#	,	
03/01/2018 09:09	s4c0101.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	V
03/01/2018 09:25	s4c0102.D	WBN180209-88	SIM-1	ICAL	1	2	JMB3	V
03/01/2018 09:53	s4c0103.D	WBN180209-86	SIM-3	ICAL	1	3	JMB3	V
03/01/2018 10:21	s4c0104.D	WBN180209-85	SIM-4	ICAL	1	4	JMB3	V
03/01/2018 10:49	s4c0105.D	WBN180209-83	SIM-6	ICAL	1	5	JMB3	√ IS1: 35355
03/01/2018 11:17	s4c0106.D	WBN180209-82	SIM-7	ICAL	1	6	JMB3	V
03/01/2018 11:46	s4c0107.D	WBN180209-81	SIM-8	ICAL	1	7	JMB3	V
03/01/2018 12:16	s4c0108.D	WBN180301-89	SIM-ICV	ICV	1	8	JMB3	V
03/01/2018 12:45	s4c0109.D	1203979323	MB	1742417	1	9	JMB3	Report: SIM 3541
03/01/2018 13:40	s4c0110.D	1203979324	LCS	1742417	1	10	JMB3	Report: SIM 3541
03/01/2018 14:08	s4c0111.D	444392002	QCQA(1/2MDL)	1742417	1	11	JMB3	Report: SIM 3541
03/01/2018 14:36	s4c0112.D	444392003	QCQA(MDL)	1742417	1	12	JMB3	Report: SIM 3541
03/01/2018 15:05	s4c0113.D	444392004	QCQA(LOD)	1742417	1	13	JMB3	Report: SIM 3541
03/01/2018 15:33	s4c0114.D	444392005	QCQA(LOQ)	1742417	1	14	JMB3	Report: SIM 3541
03/01/2018 16:01	s4c0115.D	1203979402	MB	1742457	1	15	JMB3	Report: SIM 3510
03/01/2018 16:29	s4c0116.D	1203979403	LCS	1742457	1	16	JMB3	Report: SIM 3510
03/01/2018 16:57	s4c0117.D	444318002	QCQA(1/2MDL)	1742457	1	17	JMB3	Report: SIM 3510
03/01/2018 17:25	s4c0118.D	444318003	QCQA(MDL)	1742457	1	18	JMB3	Report: SIM 3510
03/01/2018 17:53	s4c0119.D	444318004	QCQA(LOD)	1742457	1	19	JMB3	Report: SIM 3510
03/01/2018 18:21	s4c0120.D	444318005	QCQA(LOQ)	1742457	1	20	JMB3	Report: SIM 3510
03/01/2018 18:49	s4c0121.D	WBN180209-83	SIM-CCV	CCV	1	21	JMB3	V

ORGANIC RUN LOG - INSTRUMENT ID#MSD4

JMB 04/04/2018

Page 93 GEL ORGANIC RUN LOG DATE: 29-1

DATE: 29-Mar-18 METHOD: See Data OPERATOR: JMB3 Sequence Number: S032918.B

Multiplier Voltage: 1671 Internal Std ID: UBN171221-01.2 Internal Std ID: WBN180311-99 (SIM) Solvent Reference ID: 2620130

Calibration Information:
Initial Calibration Dates: See Calibration History
Initial Calibration Std ID's: See Associated Data and Run Log
GEL SOP: GL-OA-E-009

Anal	ysis					Dil.	AS	Analyst	Comments
Date	Time	Data File	Lab Sample ID	Client	Batch #	Factor	Slot#		
03/29/20	18 10:49	s4c2901.D	RINSE				100	JMB3	DUSE
03/29/20	18 11:04	s4c2902.D	RINSE				100	JMB3	DUSE
03/29/20	18 11:19	s4c2903.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	DUSE: passed
03/29/20	18 11:34	s4c2904.D	WBN180220-05.2	M-CCV	CCV	1	2		DUSE: HCCPD, acids low> performed maintenance
03/29/20	18 12:43	s4c2905.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	DUSE: no PCP
03/29/20	18 12:59	s4c2906.D	WBN180220-05.2	M-CCV	CCV	1	2	JMB3	DUSE: acids low> performed maintenance
03/29/20	18 14:56	s4c2907.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	√ no PCP, not required for SIM PAH's
03/29/201	18 15:12	s4c2908.D	WBN180311-86.3	S-CCV	CCV	1	3	JMB3	√ IS1: 44686
03/29/20	18 15:43	s4c2909.D	1203998144	LCS	1750981	1	4	JMB3	Report
03/29/20	18 16:11	s4c2910.D	1203998145	MS	1750981	1	5	JMB3	Report
03/29/20	18 16:40	s4c2911.D	1203998146	MSD	1750981	1	6	JMB3	Report
03/29/20	18 17:08	s4c2912.D	1203998158	LCS	1750987	1	7	JMB3	Report
03/29/20	18 17:37	s4c2913.D	1203998143	MB	1750981	1	8	JMB3	Report
03/29/20	18 18:05	s4c2914.D	1203998157	MB	1750987	1	9	JMB3	DUSE: failed ISTD - see rr s4c3006
03/29/20	18 18:34	s4c2915.D	446517001	POEN	1750981	1	10	JMB3	Report
03/29/20	18 19:02	s4c2916.D	446517002	POEN	1750981	1	11	JMB3	DUSE: failed ISTD - see rr s4c3007
03/29/20	18 19:31	s4c2917.D	446517003	POEN	1750981	1	12	JMB3	Report
03/29/20	18 19:59	s4c2918.D	446517004	POEN	1750981	1	13	JMB3	Report
03/29/20	18 20:28	s4c2919.D	446352002	SAME	1750987	1	14	JMB3	DUSE: failed surr - RX s2d0309 passed w/in hold
03/29/20	18 20:56	s4c2920.D	446352003	SAME	1750987	1	15	JMB3	Report
03/29/20	18 21:24	s4c2921.D	446352004	SAME	1750987	1	16	JMB3	DUSE: failed ISTD - see rr s4c3022
03/29/20	18 21:53	s4c2922.D	446352005	SAME	1750987	1	17	JMB3	DUSE: failed ISTD - see rr s4c3023
03/29/20	18 22:21	s4c2923.D	446352006	SAME	1750987	1	18	JMB3	DUSE: failed ISTD - see rr s4c3024
03/29/20	18 22:50	s4c2924.D	446352008	SAME	1750987	1	19	JMB3	DUSE: failed ISTD - see rr s4c3025
03/29/20	18 23:18	s4c2925.D	446352001	SAME	1750987	1	20	JMB3	Report
03/29/201	18 23:47	s4c2926.D	1203998159	MS	1750987	1	21		Report
03/30/20	18 00:15	s4c2927.D	1203998160	MSD	1750987	1	22	JMB3	DUSE: MSD mislabeled with MSD for Scan - see rr s4c3008
03/30/20	18 00:43	s4c2928.D	446352007	SAME	1750987	1	23	JMB3	DUSE: possible carryover - see rr s4c3026
03/30/20	18 01:12	s4c2929.D	446352009	SAME	1750987	1	24	JMB3	Report
03/30/20	18 01:40	s4c2930.D	446352010	SAME	1750987	1	25		Report
03/30/20	18 02:08	s4c2931.D	446352011	SAME	1750987	1	26		Report
03/30/20	18 02:36	s4c2932.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	DUSE: post seguence screen - breakdown >20%

ORGANIC RUN LOG - INSTRUMENT ID#MSD4

Page 94 GEL ORGANIC RUN LOG DATE: 30-

DATE: 30-Mar-18 METHOD: See Data OPERATOR: JMB3 Sequence Number: S033018.B

Multiplier Voltage: 1671 Internal Std ID: UBN171221-01.2 Internal Std ID: WBN171226-99 (SIM) Solvent Reference ID: 2620130

Calibration Information:
Initial Calibration Dates: See Calibration History
Initial Calibration Std ID's: See Associated Data and Run Log
GEL SOP: GL-OA-E-009

Ana	lysis					Dil.	AS	Analyst	Comments
Date	Time	Data File	Lab Sample ID	Client	Batch #	Factor	Slot#		
03/30/20	18 08:51	s4c3001.D	WBN180108-99	DFTPP	DFTPP	1	1		DUSE
03/30/20	18 09:08	s4c3002.D	WBN180311-86.3	S-CCV	CCV	1	2	JMB3	DUSE
03/30/20	18 09:36	s4c3003.D	WBN180311-86.3	S-CCV	CCV	1	2	JMB3	DUSE
03/30/20	18 10:04	s4c3004.D	WBN180108-99	DFTPP	DFTPP	1	1	JMB3	√
03/30/20	18 10:20	s4c3005.D	WBN180311-86.3	S-CCV	CCV	1	2	JMB3	√ IS1: 20435
03/30/20	18 10:51	s4c3006.D	1203998157	MB(rr)	1750987	1	3	JMB3	Report
03/30/20	18 11:20	s4c3007.D	446517002	POEN(rr)	1750981	1	4	JMB3	Report
03/30/20	18 11:48	s4c3008.D	1203998160	MSD(rr)	1750987	1	5	JMB3	Report
03/30/20	18 12:16	s4c3009.D	446352012	SAME	1750987	1	6	JMB3	Report
03/30/20	18 12:45	s4c3010.D	446352013	SAME	1750987	1	7	JMB3	Report
03/30/20	18 13:13	s4c3011.D	446352014	SAME	1750987	1	8	JMB3	DUSE: failed surr - RX s2d0310 passed w/in hold
03/30/20	18 13:42	s4c3012.D	1203999907	MB	1751727	1	15	JMB3	Report
03/30/20	18 14:10	s4c3013.D	1203999908	LCS	1751727	1	16	JMB3	Report
03/30/20	18 14:39	s4c3014.D	446573002	OLAB(rx)	1751727	1	17	JMB3	Report: RX of s8c2821 - passed w/in hold
03/30/20	18 15:07	s4c3015.D	446573005	OLAB(rx)	1751727	1	18	JMB3	Report: RX of s8c2832 - passed w/in hold
03/30/20	18 15:36	s4c3016.D	446573006	OLAB(rx)	1751727	1	19	JMB3	DUSE: failed ISTD, OR hits - see s4c2920 for 4x results
03/30/20	18 16:04	s4c3017.D	446913003	OLAB	1751727	1	20	JMB3	Report
03/30/20	18 16:32	s4c3018.D	1203999909	MS	1751727	1	21	JMB3	Report
03/30/20	18 17:01	s4c3019.D	1203999910	MSD	1751727	1	22	JMB3	Report
03/30/20	18 17:29	s4c3020.D	446573006	OLAB(rx)	1751727	4	27	JMB3	Report: RX of s8c2833 - passed w/in hold
03/30/20	18 17:58	s4c3021.D	446352015	SAME	1750987	1	9	JMB3	Report: failed surr - RX s2d0311 confirmed surr failure
03/30/20	18 18:26	s4c3022.D	446352004	SAME(rr)	1750987	1	10	JMB3	Report
03/30/20	18 18:55	s4c3023.D	446352005	SAME(rr)	1750987	1	11	JMB3	Report
03/30/20	18 19:23	s4c3024.D	446352006	SAME(rr)	1750987	1	12	JMB3	Report
03/30/20	18 19:52	s4c3025.D	446352008	SAME(rr)	1750987	1	13	JMB3	Report
03/30/20	18 20:20	s4c3026.D	446352007	SAME(rr)	1750987	1	14	JMB3	Report
03/30/20	18 20:49	s4c3027.D	446762003	OLAB	1751727	1	23	JMB3	Report
03/30/20	18 21:17	s4c3028.D	446762004	OLAB	1751727	10	24	JMB3	Report
03/30/20	18 21:46	s4c3029.D	446762005	OLAB	1751727	10	25	JMB3	Report
03/30/20	18 22:14	s4c3030.D	446762007	OLAB	1751727	1	26	JMB3	DUSE: outside tune, OR hits, failed ISTD - see rr s4c3105 (4x)

Appendix F Idaho Risk Evaluation Manual for Petroleum Releases

Idaho Risk Evaluation Manual for Petroleum Releases

Idaho Department of Environmental Quality 1410 North Hilton Boise, Idaho 83706

August 2012

Table 2 lists the screening levels for unrestricted use. For comparison, Table 2 provides the risk-based concentrations in soil and groundwater for all the pathways and ROE listed above. The screening level values incorporated in the Rule are indicated in bold.

Because of the methods and assumptions used in the development of the screening levels and the current limitations of laboratory analytical methods, the calculated screening levels may be lower than the practical quantitation limit reported by a laboratory for selected chemicals. In these situations, site-specific review by DEQ will be required based on the criteria provided in Section 500 of the Rule and Appendix K.

Table 2. Screening Level Concentrations for Soil, Groundwater, and Soil Vapor

		SOIL (mg/kg)	GROUNI (mg		DEEP SOIL VAPOR (ug/m3) (>3- 5 feet bgs)		
						Unrestricted Use	Commercial/ Industrial	
CHEMICAL	Vapor Intrusion	Direct Contact	Groundwater Protection	Vapor Intrusion	Ingestion	Vapor Intrusion	Vapor Intrusion	
Benzene	0.08	8.3	0.025	0.044	0.005	31	160	
Toluene	1300	7930	6.6	340	1	520000	2200000	
Ethylbenzene	0.25	39	7.4	0.05	0.700	97	490	
Xylenes	27	6170	91	8.7	10	10000	44000	
Naphthalene	0.12	44	9.2	0.07	0.73	7	36	
MTBE	2.4	340	0.08	6.8	0.04	940	4700	
1,2-Dichloroethane	0.02	3.7	0.013	0.03	0.005	9	47	
Ethylene Dibromide	0.001	0.27	0.00014	0.004	0.00005	0.4	2	
Acenaphthene	NA	4470	200	NA	2.2	NA	NA	
Anthracene	NA	22300	3200	NA	11	NA	NA	
Benz(a)anthracene	NA	0.19	0.09	NA	0.00003	NA	NA	
Benzo(a)pyrene	NA	0.02	2.1	NA	0.0002	NA	NA	
Benzo(b)fluoranthene	NA	0.19	0.31	NA	0.00003	NA	NA	
Benzo(k)fluoranthene	NA	1.9	3.1	NA	0.0003	NA	NA	
Chrysene	NA	19	9.5	NA	0.003	NA	NA	
Fluoranthene	NA	2970	1400	NA	1.5	NA	NA	
Fluorene	NA	2970	240	NA	1.5	NA	NA	
Pyrene	NA	2230	1000	NA	1.1	NA	NA	

Values in bold are current screening level values specified in the Rule. Screening level values for deep soil vapor are equivalent to EPA Regional Screening Levels (EPA, 2012) for residential and industrial ambient air divided by an attenuation factor of 0.01. NA: not applicable because the chemical does not meet EPA volatility criteria or does not have a Regional Screening Level for ambient air.