

MRWFD Center for Radiation Chemistry Research Activities

October 2021

Gregory P Horne

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

MRWFD Center for Radiation Chemistry Research Activities

Gregory P Horne

October 2021

Idaho National Laboratory Idaho Falls, Idaho 83415

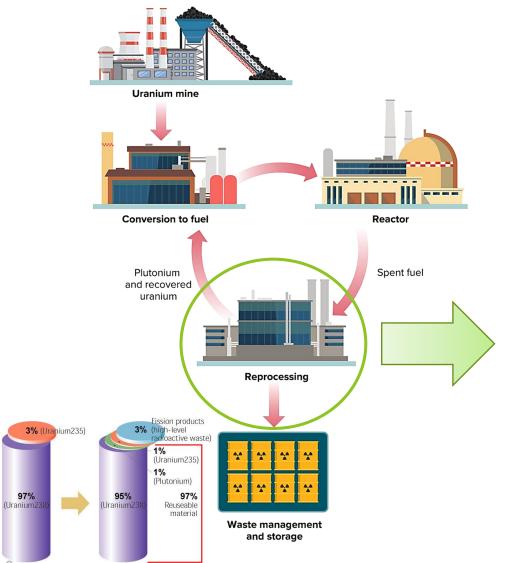
http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 October 1st, 2021

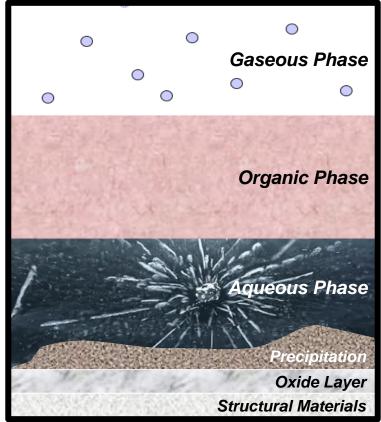
Dr. Gregory P. Horne
Center for Radiation
Chemistry Research

MRWFD Center for Radiation Chemistry Research Activities

LRS Number: INL/MIS-21-64462 Rev:000


DOE-NE Aqueous Separation 2021 Pls' Meeting

Separations R&D and Radiation Chemistry

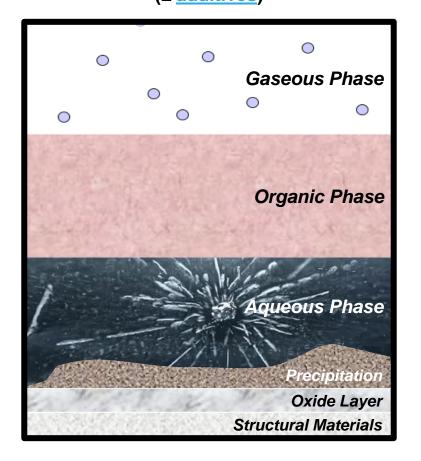


Uranium fuel

Spent fuel

Solvent Extraction Reprocessing

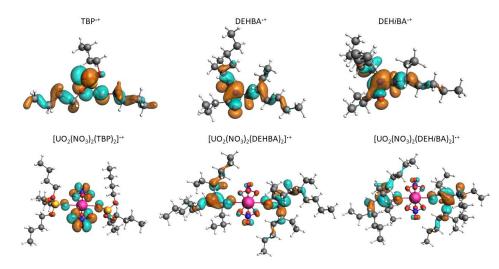
Ligands/organic diluent:HNO₃/H₂O (± additives)



Separations R&D and Radiation Chemistry

Solvent Extraction Reprocessing Ligands/organic diluent: HNO₃/H₂O (± additives)

Aim

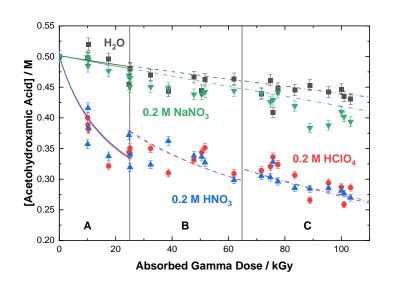

Provide quantitative, fundamental experimental data and insight into the effects of multi-component radiation fields on aqueous separation technologies to develop and evaluate complementary predictive multi-scale modelling capabilities.

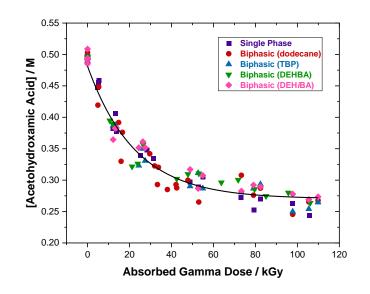
Effect of Metal Ion Complexation on the Radiolysis of TBP and Monoamide Extractants

Sample	RH** Rate Coefficient (10 ¹⁰ M ⁻¹ s ⁻¹)
ТВР	1.36 ± 0.07
[UO ₂ (NO ₃) ₂ (TBP) ₂]	-
DEHBA	0.93 ± 0.02
[UO ₂ (NO ₃) ₂ (DEHBA) ₂]	2.49 ± 0.06
DEHiBA	1.14 ± 0.04
[UO ₂ (NO ₃) ₂ (DEH <i>i</i> BA) ₂]	1.59 ± 0.08
·	

Canonical Kohn-Sham molecular orbitals of the electron holes in the geometry-optimized radical cation species for TBP, DEHBA, and DEH/BA.

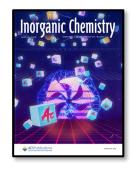
C.C. Barros, C.D. Pilgrim, A.R. Cook, S.P. Mezyk, T.S. Grimes, and G.P. Horne, Influence of Uranyl Complexation on the Reaction Kinetics of the Dodecane Radical Cation with Used Nuclear Fuel Extraction Ligands (TBP, DEHBA, and DEH*i*BA), *PCCP*, **2021**, *in review*.

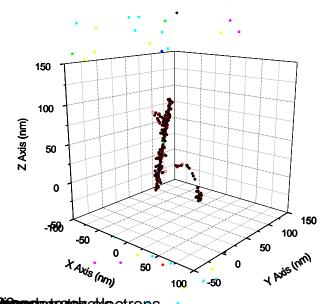


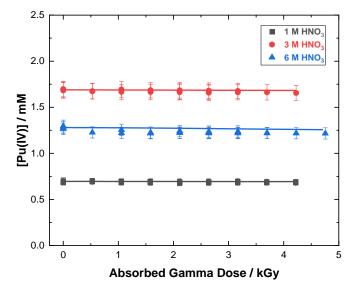


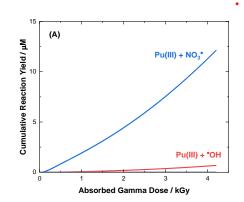
Radiolytic Evaluation of AHA and CDTA Additives by Multi-Scale Modeling

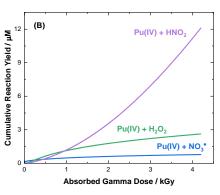
Radiolytic Species	CDTA Rate Coefficient (k, M ⁻¹ s ⁻¹)
e _{aq}	$(5.31 \pm 0.14) \times 10^7$
н•	$(2.75 \pm 0.15) \times 10^8$
•ОН	$(6.41 \pm 0.11) \times 10^9$
NO ₃ °	$(4.06 \pm 0.10) \times 10^8$

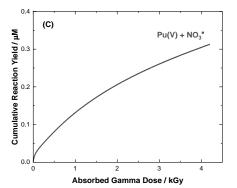


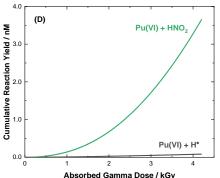





Elucidating the Radiation-Induced Redox Chemistry of Plutonium by Multi-Scale Modeling







- Clifford, P., Green, N.J.B., Oldfield, M.J., Pilling, M.,J., Pimblott, S.M., J. Chem. Soc., Faraday Trans., 1986, 82, 2673.
- Pimblott, S.M., LaVerne, J.A., Mozumder, A., J. Phys. Chem., 1996, 100, 8595.
 - Horne, G.P., Donoclift, T.A., Sims, H.E., Orr, R.M., Pimblott, S.M., J. Phys. Chem. B., 2016, 120 (45), 11781.

Vision for the Future (~10 Years)

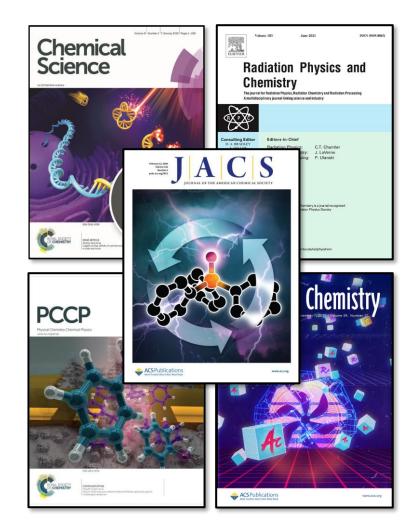
Aim

 Provide quantitative, fundamental experimental data and insight into the effects of multi-component radiation fields on aqueous separation technologies to develop and evaluate complementary predictive multi-scale modelling capabilities.

Research Needs

- <u>Integrate</u> multi-scale modelling capabilities with process scale codes and phenomena.
- <u>Develop</u> multi-scale modelling capabilities for (i) organic and (ii) biphasic solution radiation chemistry.
- <u>Evaluate</u> the effect of real system formulations on previously established fundamental chemistry in 'pristine' systems.
- <u>Accelerate</u> molecular design through the development of advanced screening approaches

Acknowledgements



Summary of FY21 Deliverables

- 1. M3FT-21IN030101026: "Effect of Metal Ion Complexation on the Radiolysis of TBP and Monoamide Extractants" submitted to PCCP, in peer-review.
- 2. M3FT-21IN030101025: "Radiolytic Evaluation of CDTA and AHA Additives" manuscripts in preparation for submission to JACS, Chem. Sci., PCCP, and Rad. Phys Chem.
- 3. M3FT-21IN030101027: "Modeling Radiation-Induced Plutonium Redox Chemistry" model has been developed and milestone manuscript in preparation with CEA collaborators.

