Multiphysics Modeling in Support of NASA Nuclear Thermal Propulsion Designs

October 2021

Mark D DeHart
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Multiphysics Modeling in Support of NASA Nuclear Thermal Propulsion Designs

Mark D DeHart

October 2021

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Multiphysics Modeling in Support of NASA Nuclear Thermal Propulsion Designs

The Ohio State University
October 13th, 2021

INL/MIS-21-64799
Overview

- Introduction to Idaho National Laboratory
- The Reactor Multiphysics Team
- MOOSE Background
- Griffin
- Nuclear Thermal Propulsion
- Analysis Workflow
- Analysis Approach
 - Cross section generation
 - Mesh generation
 - Fuel element modeling
 - Validation using SIRIUS measurements in TREAT
 - Full Core Modeling
- TREAT experiment simulations (time permitting)
- Closing Comments
Addressing the world’s most challenging problems

Nuclear S&T
- Nuclear fuels and materials
- Nuclear systems design and analysis
- Fuel cycle science and technology
- Nuclear safety and regulatory research
- Advanced Scientific Computing

Advanced Test Reactor Complex
- Steady-state neutron irradiation of materials and fuels
 - Naval Nuclear Propulsion Program
 - Industry
 - National laboratories and universities

Materials & Fuels Complex
- Transient testing
- Analytical laboratories
- Post-irradiation examination
- Advanced characterization
- Fuel fabrication
- Space nuclear power and isotope technologies

Energy & Environment S&T
- Advanced transportation
- Environmental sustainability
- Clean energy
- Advanced manufacturing
- Biomass

National & Homeland Security S&T
- Critical infrastructure protection and resiliency
- Nuclear nonproliferation
- Physical defense systems
The East Idaho Lifestyle

• Enjoy unparalleled access to the region’s world-class skiing, hiking, camping, climbing, mountain biking, hunting, fishing, and much more

• Live close to some of the country’s greatest natural wonders: Yellowstone National Park, Grand Teton National Park, Craters of the Moon National Monument, Jackson Hole, and more
The Reactor Multiphysics Team (RMT)

- Primary development of the Griffin (neutronics) and Pronghorn (coarse mesh TH) codes within the DOE/NE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program

- Partnering with several companies on GAIN vouchers and Advanced Reactor Demonstration Project (ARDP) awards

- Advises the US NRC on multiphysics tools for analysis of advanced reactors

- Funded by US NRC, NASA, NEAMS, Nuclear Reactor Innovation Center (NRIC), DOE/NE Advanced Reactor Technology (ART), INL Strategic Thermal Irradiation Program.

- Scope runs the gamut from algorithm development, implementation, to reactor analysis

- Reactors we work on: PBRs, FHRs, MSRss, NTPs, prismatic VHTRs, micro-Rx, and INL’s Transient Test Reactor (TREAT), Advanced Test Reactor (ATR) and the Neutron Radiography (NRAD) Reactor
\[\nabla \cdot k \nabla T = 0 \]

\[\nabla \cdot D \nabla u + b = 0 \]

\[\frac{\partial c}{\partial t} - \nabla \cdot (\vec{v} c) = 0 \]

MOOSE Enables Multiphysics Simulation
The MOOSE Herd

- MOOSE HPC Framework
- Marmot Mesoscale Materials
- Bison Nuclear Fuel Performance
- Grizzly Structural Mechanics for Component Aging
- Griffin Radiation Transport
- Pronghorn Engineering Scale Flow
- Sockeye Heat pipe Simulation
- SAM and RELAP-7 Multiscale Multiphysics Systems Analysis
Flexibility by MultiApps

- Master app owns a sub-app
- Recursive: sub-app can own its own sub-app tree
- Information transfer via flexible MOOSE transfers
- Different meshes & dimensionality (different length scales)
- Sub-cycling (different time scales)
- Mixing eigenvalue & transients
- Picard Iterations

- MOOSE supports loose coupling (operator split) & Picard via MultiApps
- MOOSE supports strongly coupled solves
What is Griffin and Why is it important?

Griffin is a generalized tool for reactor physics for non-LWR reactors

- **Multiphysics-oriented**
 - Provides native coupling to all MOOSE-based tools
 - Takes advantage from common investment in framework
- **Flexible and Extendable**
 - Regular and unstructured geometries
 - Various types of calculations (variable fidelity)
 - Easy addition of functionality
- **Robust**
 - Consistent with NQA-1 process
 - Strict software development cycle
 - NRC’s designated non-LWR neutronics code
 - 50/50 partnership between INL and ANL
Nuclear Thermal Propulsion (NTP) Engine

(0) Liquid hydrogen storage tank
(1) Pre-heated-hydrogen-driven turbopump
(2) Flow line from turbopump to nozzle
(3) Nozzle cooling
(4) Pressure vessel/reflectors/control drum cooling
(5) Gaseous hydrogen feed to turbopump(s)

(6) Gas plenum above core
(7) Reactor core and hydrogen cooling
(8) Exhaust nozzle
Why NTP?

• The value of NTP was recognized in 1947 and large experimental programs pursued NTP engine design in the 1950s and 1960s.

• NTP has several advantages over chemical H\(_2\) + O\(_2\) engines
 – First and foremost, a factor of 2-3 gain over performance (specific impulse, I\(_{sp}\), analogous to MPG in a car).
 • The I\(_{sp}\) represents the time over which 9.81 kilograms (or one Newton of weight on Earth) of propellant can produce one Newton of thrust.
 • The larger the I\(_{sp}\), the longer the engine can operate with a given mass of fuel.
 • For chemical engines the I\(_{sp}\) is about 450 s. For H\(_2\) in an NTP engine, the ISP is about 900 s. This is related to the molecular mass of the propellent.
 – Can cut transit time to Mars in half (reduced radiation exposure)
 – Large abort window relative to chemical system
 – Potential for doubled payload
Nuclear Thermal Propulsion
Support at INL

INL support for NASA Marshall
Flight Center and Glenn
Research Center

- Development of Griffin model
 NASA nominal plant design
 - 2D single assembly
 - 3D single assembly
 - 3D full core
 - Multiphysics simulations
 - Neutronics
 - Thermal-fluids
 - Heat transfer
 - Structural mechanics
 - Transient simulations
 - Simulation of SIRIUS series
 of experiments in TREAT
NTP (and TREAT) Analysis Workflow

- Build mesh (Cubit) and Serpent model*
- Align detectors (tally regions) in Serpent model with corresponding regions in mesh for cross section assignment.*
- Calculate k_{eff} and fluxes in cross section regions with Serpent (reference solution) tallied over MG energy groups
- Perform a Super-Homogenization (SPH) calculation using Griffin to find energy-dependent correction (SPH) factors that will match multigroup fluxes.
- Update cross section library to add SPH factors*
- Repeat for each state point (typically temperature, control element position)*
- Run steady state calculation, confirm agreement with reference
- Run transient simulations

*These processes are largely automated
Cross Section Preparation with Serpent

What is Serpent? A Monte-Carlo code created for reactor-physics calculations. **Bottom line:** it creates nuclear cross sections for us!

- **Monte Carlo method:**
 - Stochastic transport method
 - Highly accurate in energy resolution
 - Slow & limited to steady-state

- **Griffin:**
 - Deterministic transport method
 - Uses few-group cross sections
 - Designed for multiphysics transients

- We use Serpent's built-in cross section tallying, energy collapsing and spatial homogenization to generate cross sections in a user-specified group structure

Serpent NTP core calculation
Mesh Generation for the Neutronics Model

- Needs to occur before developing Serpent models to define homogenization zones in Serpent

Homogenization: Average nuclear cross sections over heterogeneous regions
 - Pro: Saving in computational resources
 - Con: Loss of fine resolution

- Often thermal-hydraulics drive uncertainties despite homogenization

- Homogenization equivalence and reconstruction mitigate loss of fine resolution

Geometry → Griffin
Coupled Fuel Element - Overview

- Neutronics geometry: 90-degree, fuel + axial reflectors
- Heat conduction: active fuel region, 30-degree
- Thermal-hydraulics: representative fuel and moderator flow channels
Coupled Fuel Element Steady-state – Results

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. Fuel T [K]</td>
<td>2188</td>
</tr>
<tr>
<td>Inlet Moderator T [K]</td>
<td>410</td>
</tr>
<tr>
<td>Max. T [K]</td>
<td>3033</td>
</tr>
<tr>
<td>Outlet T [K]</td>
<td>2656</td>
</tr>
</tbody>
</table>

- Neutronics: Griffin
- Heat Transfer: Griffin (MOOSE modules)
- Structural Mechanics: Griffin (MOOSE modules)
- Convection Cooling: RELAP-7
Full-Core Model Overview

- 61 Fuel Elements in 5 rings
- 18 Control Drums in Be reflector to adjust reactivity/power
- In most current simulations all the drums are simultaneously rotated with the same rotation angle
- Griffin allows independent rotation (e.g., for a simulated reactivity insertion accident)
Control Drum Worth with Griffin Cusping & SPH

- At state points (0, 60, 120, 180), eigenvalue and power profile exactly reproduced
- Between state points, cusping treatment from Griffin is utilized
- Bias between -40 and +60 pcm
- Series of eigenvalue calculation in both Serpent and Griffin are in good agreement.
Coupled NTP Full-Core Model

Full-core Neutronics: primary app

Full-core Heat Conduction: sub-app 1

Power density

Boundary condition

Heat removal

T_{refl}, T_{fuel}, T_{mod}

5 Fuel Element Heat Conduction: sub-app 2
5 TH channels: sub-app 3
Using MOOSE control logic, we have created a software proportional–integral–derivative (PID) controller. Requires less trial and error than manual control. Currently ignores any limitation on drum rotation (speed, etc.)
Start-up Transient with PID

Startup with PID control of the drums

- Power (W)
- Temperature (K)

Startup with PID control of the drums

- Power (W)
- Reactivity ($)
SIRIUS experiment series

- Experimental campaign for transient testing of new Nuclear Thermal Propulsion Fuel: UN-CERMET & UN-CERCER
- Experiments are performed in TREAT
- Challenges of NTP fuel:
 - Very hot: 2600-2850 K
 - Fast heat rates: 100 K/s
 - Strong temperature gradient (~25K/cm)
- SIRIUS series progresses in complexity:
 - SIRIUS-1: UN-CERMET – proof of principle
 - SIRIUS-2: Series of different materials, fab. processes, CERMET & CERCER
 - SIRIUS-3: Stack of 20 fuel specimens
 - SIRIUS-4: first hydrogen-cooled experiment, 10 stacked specimens CERMET
 - SIRIUS-5: second hydrogen-cooled experiment, CERCER stack of specimen
Multiphysics Simulations of SIRIUS-CAL

- Calibration experiment for SIRIUS-1

TREAT core configuration

Experiment vehicle and sample holder

Sample (size of a quarter)
Multiphysics Model of SIRIUS-CAL

- Multiphysics model uses 2-step process: Serpent cross section, Griffin diffusion with SPH equivalence
- Transient is a coupled Griffin neutronics + thermal model

Serpent steady-state for XS

Griffin (Diffusion + SPH) Multiphysics transient

Neutronics

Thermal
SIRIUS-CAL Multiphysics Results

- SIRIUS-CAL reactivity insertion is 0.55% dk/k
- We currently adjust control rod motion to match TREAT initial period – ongoing work to be fully predictive for TREAT transients
- Goal is validation for SIRIUS-CAL

Thermal fluxes in steady-state

Measured and simulated power traces

Temperature distribution in the specimen
Closing Remarks

• INL is the nation’s premier nuclear science and technology laboratory
• The reactor multiphysics team works at the forefront of solving some of the most challenging modeling problems for advanced reactors
• Our work relates directly to the nation’s energy future via ARDPs, private/public partnerships, & reactor demonstrations
• I only talked about nuclear thermal propulsion systems, but this team is engaged in many types of advanced reactor analysis
• Which is a perfect segue to…

Technology maturation with Marvel

Modeling autonomous fission batteries
Internships

• Paid opportunities available in a wide range of STEM and other fields for both undergraduate and graduate students

• Internship opportunities enable collaboration with experienced scientists and engineers to develop innovative solutions for challenging, real-world projects

80% of time spent working on projects and applying what you learned in the classroom to solve real work-related challenges

20% of time spent participating in enrichment & professional development activities (workshops, networking, etc.)
Want to learn more?

Visit inl.gov/inl-initiatives/education/

For Internships, Postdocs & INL Graduate Fellowships: academic@inl.gov

For Full-time Careers: careers@inl.gov

Drop your email address in the event chat
Start-up Transient Assumptions

- **Goal:** go from low power to full power in a few minutes

- Currently, we assume 100% H2 flow rate established at the beginning of the transient

- Assume initial temperature:
 - $T_{\text{fuel}} = 500$ K
 - $T_{\text{mod}} = 270$ K
 - $T_{\text{rrefl}} = 300$ K

- Initial power: 610 kW (10 kW/fuel element)

- Initial CD angle $\theta_i = 120^\circ$

- Final CD angle $\theta_f = 60^\circ$

- Drum rotation determined by PID controller
PID Control of Drums

- Requires less trial and error than manual control
- For now, ignores any limitation on drum rotation (speed, etc.)
• If only proportional term is included in PID:
 \[K_p = \frac{\Delta \theta}{\Delta \rho} \]

• For the CD angle between 60° to 120°, CD worth ~ 25-30 pcm/° or 24-30 °/$

• \(K_p = 25 \, °/$ should be reasonable

• Direct correlation between reactivity and CD angle: this is why we choose to rotate drums based on reactivity and not power (time delay between reactivity and power)
Start-up Transient with PID: $K_p = 25, K_i = K_d = 0$
Changing K_i

- Increasing temperature creates negative feedback not captured by ‘proportional-only’ PID
- Integral term can capture the persistent lag behind the setpoint
- During the early stages the transient,

$$
\int_0^t e(\tau)d\tau \approx 100 - 200 \text{ s}
$$

- Thus, we pick: $K_i = \frac{K_p}{100} = 0.25^{\circ}/(\text{s})$
Start-up Transient with PID: $K_p = 25$, $K_i = 0.25$, $K_d = 0$