

Bio-project derisking through development of systematic methodologies and frameworks for risk assessment

November 2021

Rachel M Emerson, Jordan Solomon, Marcin Lewandowski, Shyam Nair, Lorenzo J Vega Montoto, Pralhad Hanumant Burli

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Bio-project derisking through development of systematic methodologies and frameworks for risk assessment

Rachel M Emerson, Jordan Solomon, Marcin Lewandowski, Shyam Nair, Lorenzo J Vega Montoto, Pralhad Hanumant Burli

November 2021

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Acknowledgement

Co-Authors

Jordan Solomon Ecostrat Inc.

Marcin Lewandowski Ecostrat Inc.

Shyam Nair Los Alamos National Laboratory

Lorenzo Vega-Montoto Idaho National Laboratory

Pralhad Burli Idaho National Laboratory

Funding

This research was supported by the U.S. Department of Energy under Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517.

Bio-Project Risk Project Risk Organizational & Technical ★ **External Management** Technology Feedstock supply ★ Costs Performance Market Logistics Product yield/quality Customers **Planning** Capacity Suppliers Personnel Environmental Financing * Contracts Regulations

- Variability in biomass feedstock properties translates to risk for bio-project
- Success of bio-economy depends on low cost of capital which is determined by project risk

Systematic Risk Assessment

Biomass Supply Chain Risk Standards (BSCRS)

Systemized approach for quantifying supply chain risk

Bio-project financing

Failure Mode and Effects Analysis (FMEA)

Industrial relevant risk management tool to systematically identify and assess the causes and effects of potential failures in a system

Technology risk

Why Create Standards for Biomass Supply Chain Risk?

"Lack of BSCR Standards is a material barrier to bio-project finance."

AGF, Stern Brothers, Raymond James, Jefferies Investment Banking

- Risks associated with biomass supply chains are not well understood.
- No established protocols, standards, or recognized industry best-practices to rely upon to empirically quantify supply chain risks.
- Developers, investors, commercial lenders, insurance companies, and rating agencies independently use inconsistent approaches and evaluation criteria.
 - Leads to unreliable assessment of project risks.
- There are many reasons for low ratings, but a key reason is confusion about the degree of long-term supply chain risk.

Industry Stakeholder Group Formation

Industry buy-in and expert input is critical to BSCRS success

ELEAF

- **150+** member industry stakeholder group
 - Suppliers
 - Finance agencies
 - Landowners
 - Equipment manufacturers
 - Project developers
- One-on-one interviews
- Review

Industry Stakeholder Group

BSCRS Framework Overview

Supplier

- Credit Worthiness
- Contracts
- Conflicts of interest
- Control over production and transportation
- Distance
- Experience
- Harvesting/Collection/Processing capacity
- Motivation

Feedstock Quality

- Quality Variability
- Specific Feedstock Quality Variables

Competitor

- Influence on Market
- Competitive advantage

Feedstock Scale-up

Feedstock Scale-up

Internal Management

- Feedstock Cost Margins
- On-site Inventory
- Internal Yard Operations
- Management and Personnel

Supply Chain

- Feedstock Availability
- Historical Issues
- Non-Weather Externalities
- Production, harvest, and collection
- Transportation
- Resiliency
- Climate and Natural Risks
- Political and social
- GHG Accounting

BSCRS Framework Overview cont.

Risk Indicator 4.1.5 Geographic Location Influence on Feedstock Variability

Justification ——	Rationale	Feedstock from different regions may differ in quality due to variations in soil quality, topography, harvest practices, weather, fertilizer applied, etc.
Reporting	Reporting	Reporting Requirements
Requirements	reporting	Proponent shall demonstrate understanding of geographic regions from which feedstock will be sourced, and the effect on feedstock quality.
Guidance and Resources	Guidance	Guidance for Reporting Requirement 1 Because of the variability associated with supply from multiple regions, blending or pre- processing may be required to attain the desired raw material specifications.
		Variability in herbaceous feedstock quality parameters is typically much higher than in woody feedstocks. Blending of herbaceous materials to produce a single feedstock with a narrow range of desired quality parameters is therefore a bigger challenge than with woody feedstocks.
Source -	Guidance	Spikes (2017, interview); Swan (2018, interview)
,	Source	

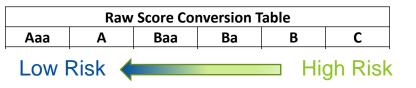
BSCRS Risk Scoring

Risk Factor	Factor X (Weig	Factor X (Weighting factor)						
Risk Indicator	Aaa	Α	Baa	Ва	В	С		
Reporting Requirement 1	Risk mitigated/ understood at by some quantified level >A	Risk mitigated/ understood at by some quantified level >Baa	Risk mitigated/ understood at by some quantified level >Ba	Risk mitigated/ understood at by some quantified level >B	Risk mitigated/ understood at by some quantified level >C	Risk mitigated/ understood at by some quantified level or not understood		
	AND	AND	AND	AND	AND	AND		
Reporting Requirement 2	Risk mitigated/ understood at by some quantified level >A	Risk mitigated/ understood at by some quantified level >Baa	Risk mitigated/ understood at by some quantified level >Ba	Risk mitigated/ understood at by some quantified level >B	Risk mitigated/ understood at by some quantified level >C	Risk mitigated/ understood at by some quantified level or not understood		
	AND	AND	AND	AND	AND	AND		
Reporting Requirement n	66.93	6633	6693	6693	6633	6639		

Raw Score Conversion Table					
Aaa	Α	Baa	Ba	В	С

U.S. Patent Application No. 63/229,315 "Biomass Supply Chain Risk Quantification Methodology"

Low Risk


High Risk

Case Study

- Existing bio-projects
- Verification of BSCRS Framework ability to quantify risk in a standard, consistent manner
- Potentially reduce perceived risk of bioprojects

Financial Institution Feedback

"I think this is a great tool and would be beneficial for lenders and investors as they explore opportunities in the biomass industry. I wish we had access to this on our prior projects."

	Cat. Weight	Without BSCRS	With BSCRS
1.0 Supplier Risk	100	Α	Α
2.0 Competitor Risk	100	В	♣ Baa
3.0 Supply Chain Rsik	95	Baa	Baa
4.0 Feedstock Quality	100	Baa	🗸 Aaa
5.0 Feedstock Scale-Up	25	Α	
6.0 Internal Organization	75	С	↓ Ba
Overall		Ва	Baa

- Results
- Decreased project risk for Case Study 27% (Ba to Baa)
- Primarily driven by increase in available and requested data between two scenarios used to develop scoring changes.

Key Takeaways

- The Biomass Supply Chain Risk Standards has been demonstrated to capture the risk associated with a project's supply chain.
- We are continuing our efforts to improve our scoring methodologies.
- Expansion of feedstocks; including waste.
- Mapping out feasible pathway for industry adoption.

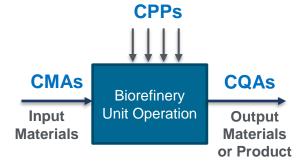
Risk: Variability in Biomass Properties

Variability in biomass feedstock properties translates to **risk** for bio-projects

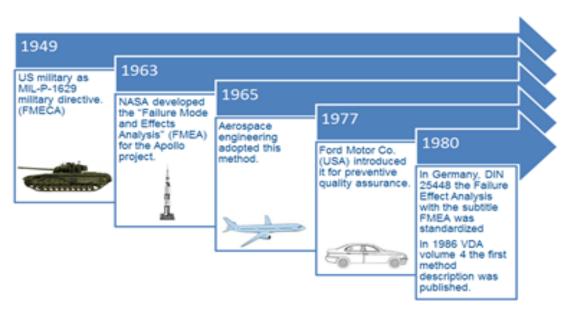
- Shutting down of existing biorefineries
- High capital costs for emerging bio-projects

Understanding sources of variability Quantifying ranges in variability

Supply Chain and Market Risks


 Spatial and temporal variability in supply

Identifying critical material attributes


- Equipment failure
- Inconsistent product quality

Example: Jet Fuel Production
CMA: lignin content, H₂ content
CPP: process design & operation

CQA: Aromatic content < 25%

Failure Mode and Effects Analysis

Benefits

- Combining qualitative and quantitative data
- Easily adaptable
- Couples well with Quality-by-Design approaches

FMEA Overview

- Well-accepted risk assessment tool
- Systematic semi-quantitative analysis based on failure identification for a given operation in a process
- Ranking of Severity (S), Occurrence (O) and Detection (D) by Subject Matter Experts to calculate Risk Priority Number (RPN).

$$RPN = S \times O \times D = Risk \times D$$

Failure defined as "not performing or producing as intended".

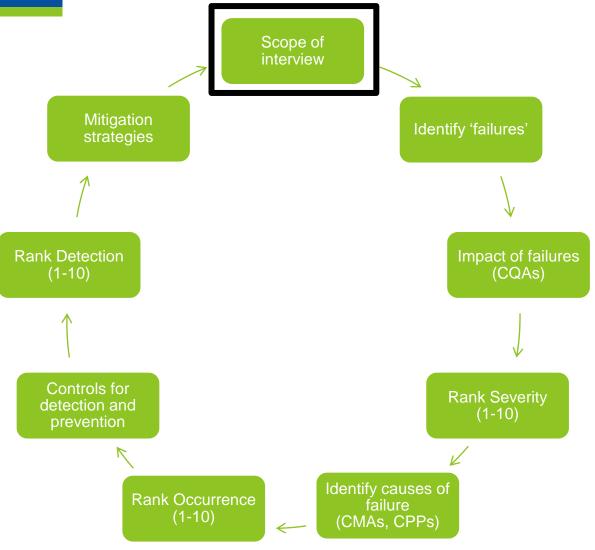
Guidance Scale Development

- Severity (S)—how serious the impact of the failure mode
- Occurrence (O)—the likelihood or frequency of the given failure
- **Detection (D)**—how effective are the methods for detecting and/or preventing the failure.

 $RPN = S \times O \times D = Risk \times D$

Severity Guidance Scale

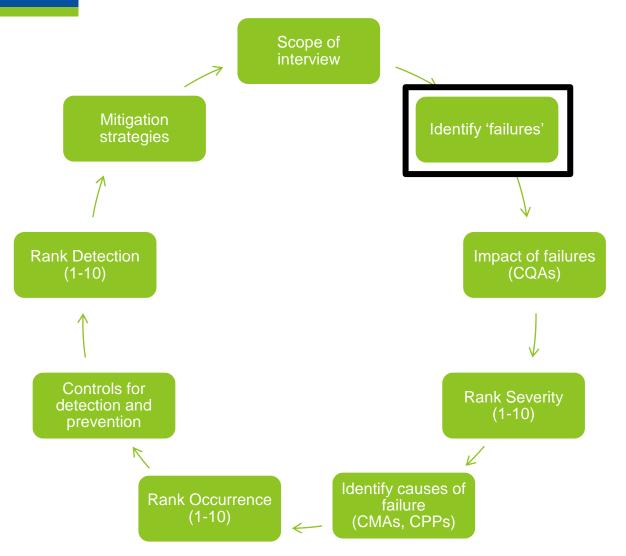
Effect	Rank	Criteria
Minor	1	None to minor disruption to production line. A small portion (much <5%) of product may have to be reworked online.
Low	3	Low disruption to production line. A small portion (<15%) of product may have to be reworked online. Process up. Minor annoyance exist
Moderate	6	Moderate disruption to production line. A small portion (>20%) of product may have to be reworked online. Process up. Some inconvenience exist
High	8	High disruption to production line. A portion (>30%) of product may have to be scrapped. Process maybe stopped. Customer dissatisfied.
Very high	10	Major disruption to production line. Close to 100% of product may have to be scrapped. Process unreliable. Failure occurs without warning. Customer very dissatisfied. May endanger operator and/or equipment.


Guidance Scale Development Cont.

Occurrence Guidance Scale

Occurrence	Rank	Criteria
Remote	1	Failure is very unlikely. No failures associated with similar processes.
Low	3	Few failures. Isolated failures associated with similar processes.
Moderate	6	Occasional failures associated with similar processes.
High	8	Repeated failures. Similar processes have often failed
Very high	10	Process failure is almost inevitable.

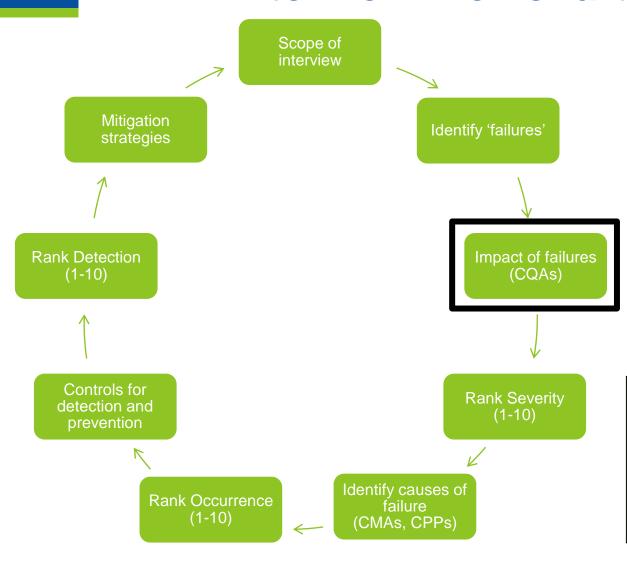
Detection Guidance Scale


Detection	Rank	Criteria
Almost certain	1	Process control will almost certainly detect or prevent the potential cause of subsequent failure mode.
High	3	High chance the process control will detect or prevent the potential cause of subsequent failure mode.
Moderate	6	Moderate chance the process control will detect or prevent the potential cause of subsequent failure mode.
Remote	8	Remote chance the process control will detect or prevent the potential cause of subsequent failure mode.
Very uncertain	10	There is no process control. Control will not or cannot detect the potential cause of subsequent failure mode.

Scope of Interview:

- Specific equipment configuration
- Operational mode
- Feedstock focus
- Establish TRL

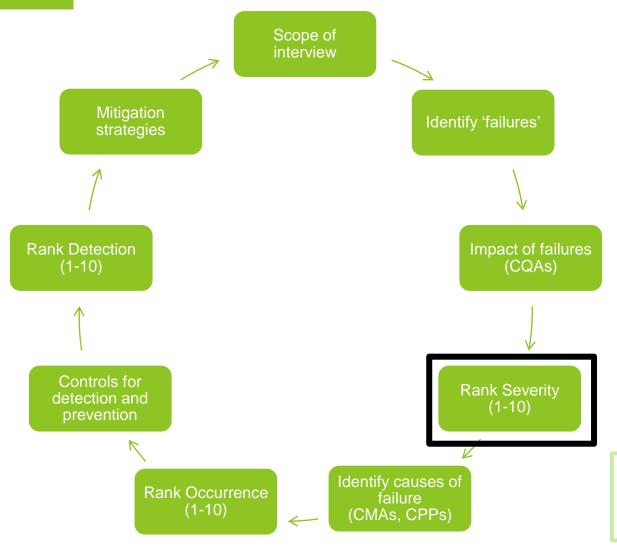
Preprocessing Interview Scope				
Unit Operation	Hammer mill			
TRL	A (7-9)			
System	Upstream: Bale grinder and conveyor;			
Configuration	Downstream: screw conveyor			
	(Biochemical Conversion)			
Feedstock	Corn stover (square bales)			
Input/Output	≥3 inch / ≥1 inch			
Format				
Equipment Scale	5 tons/hr			



Identify 'Failures':

- Not performing or producing as intended
- Deviations from CQAs

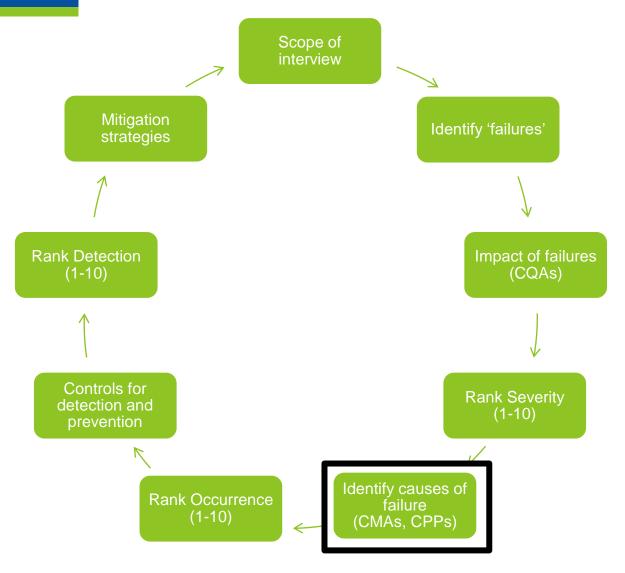
Hammer Mill Primary Failures:


- Plugging of the screen
- Process slowdown
- Deviation from target particle size (excessive overs)
- Deviation from target particle size (excessive fines)

Impact of failures:

- What is the impact if this failure is not prevented or corrected?
- What are the direct or indirect CQAs associated with the failure
- How would the impacts and/or CQAs be categorized:
 - Process Efficiency (Proc)
 - Product Quality (Prod)
 - Economics (Eco)
 - Sustainability (LCA)

	Impacts	CQA	Layer
Plugged screen	Downtime	Throughput	Proc



Rank Severity:

- Semi-quantitative translation guidance scales (TRL dependent)
- Considering the impacts

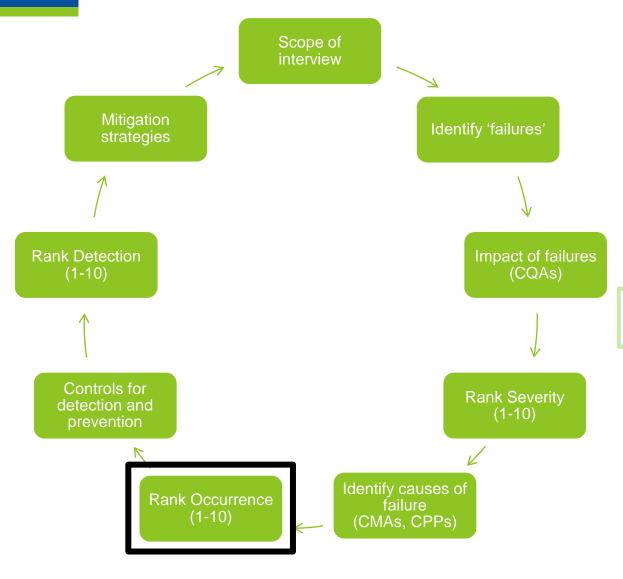
Effect	Rank	Criteria
Minor	1	None to minor disruption to production line. A small portion (much <5%) of product may have to be reworked online.
Low	3	Low disruption to production line. A small portion (<15%) of product may have to be reworked online. Process up. Minor annoyance exist
Moderate	6	Moderate disruption to production line. A small portion (>20%) of product may have to be reworked online. Process up. Some inconvenience exist
High	8	High disruption to production line. A portion (>30%) of product may have to be scrapped. Process maybe stopped. Customer dissatisfied.
Vom biolo	40	Major disruption to production line. Close to 100% of product may have to be scrapped. Process unreliable. Failure occurs without warning. Customer very
Very high	10	dissatisfied. May endanger operator and/or equipment.

Plugged Screen

Identify causes of failure:

- Why or how does failure occur
- Material properties (CMAs)
- Process parameters (CPPs)

Causes

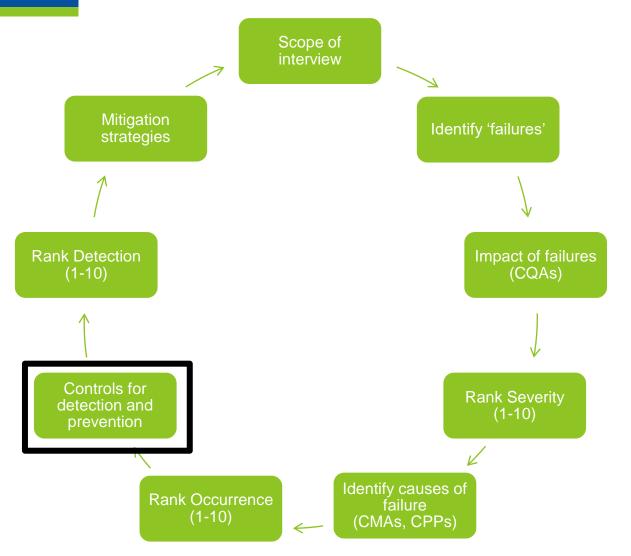

Material buildup and particle agglomeration

CMAs

- High moisture (40%)
- Excessive fines (self-heated)

CPPs

Feedrate



Rank Occurrence:

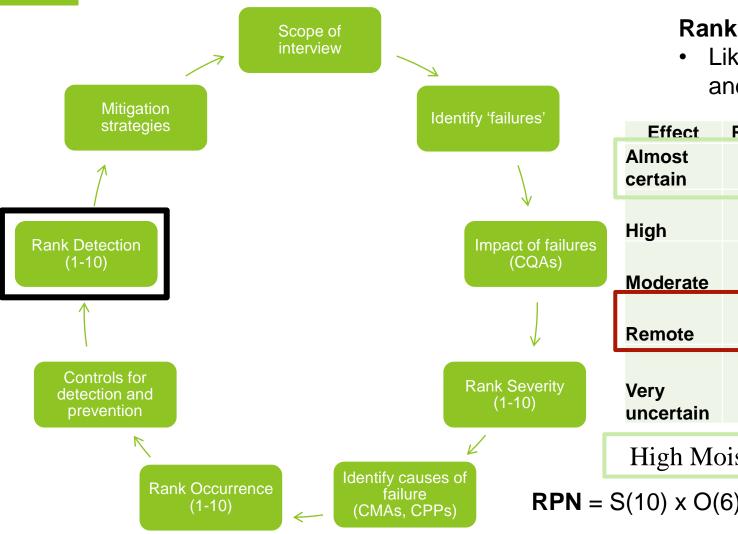
- Likelihood of the failure occurring
- Guidance scales

Occurrence	Rank	Criteria
Remote	1	Failure is very unlikely. No failures associated with similar processes.
Low	3	Few failures. Isolated failures associated with similar processes.
Moderate	6	Occasional failures associated with similar processes.
High	8	Repeated failures. Similar processes have often failed
Very high	10	Process failure is almost inevitable.

Plugged Screen

Controls for detection and prevention:

 What controls exists to detect or prevent a failure before it occurs?


Sensors:

- Current/amperage readings
- Inline moisture sensor and probe based
- Visual observations

Controls:

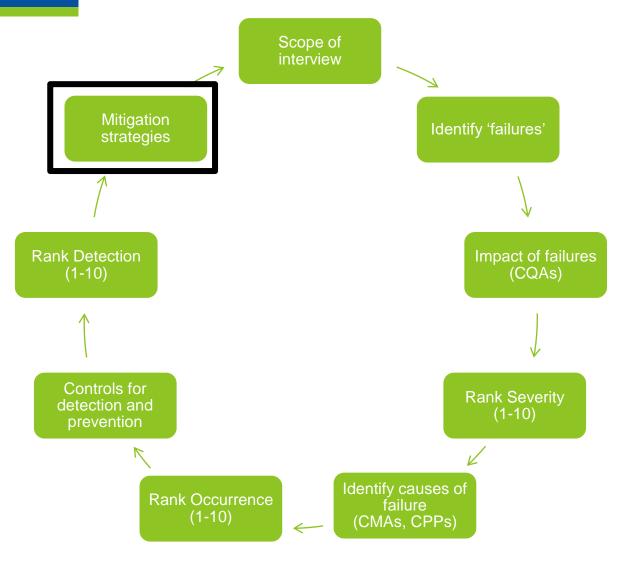
Feedrate

*Address high moisture driven situations

Rank Detection:

Likelihood of available controls to detect and/or prevent a given failure

Effect	Rank	Criteria
Almost certain	1	Process control will almost centainly detect or prevent the potential cause of subsequent failure mode.
High	3	High chance the process control will detect or prevent the potential cause of subsequent failure mode.
Moderate	e 6	Moderate chance the process control will detect or prevent the potential cause of subsequent failure mode.
Remote	8	Remote chance the process control will detect or prevent the potential cause of subsequent failure mode.
Very uncertai	n 10	There is no process control. Control will not or cannot detect the potential cause of subsequent failure mode.


High Moisture

Fines (self-heating)

RPN = $S(10) \times O(6) \times D(1) = 60$

RPN = $S(10) \times O(6) \times D(8) = 480$

Plugged screen

Mitigation Strategies:

- What actions can be taken with respect to severity, occurrence, and detection?
- New sensors (e.g., spectral), additional equipment (e.g., fractionation)
- Re-evaluate Severity, Occurrence, and Detection (if data available)
- Recalculate RPN

Theoretical Sensor Improvements:

- Machine learning to detect self-heating and soil contamination through image analysis
- Detection: 8 (remote) > 3 (high)
- RPN: 480 > 180

FMEA Simplified Example

Potential Failure Mode	Potential Failure Effects	CQA	Y	Potential Causes	CMA	СРР	ICE	N	
In what ways could the step, change or feature go wrong?	Impact on the customer if this failure is not prevented or corrected	CQAs impacted by this failure	SEVERITY	What causes the step, change or feature to go wrong?	Identified CMA associated with failure and cause	CPP associated with failure	OCCURRENCE	DETECTION	RPN
				Screen plugging due to high	Moisture content (>40% Fresh	Feedrate			
Plugged Screen	Complete shutdown	Throughput		moisture.	and stored)	Screen size	6	1	60
				Screen plugging due to fines	Fines generated from self-	Feedrate			
		Throughput	10	production.	heating (storage)	Screen size	6	8	480
	>50% decrease in			Decrease in feedrate because of	Moisture content >25% (Fresh	Feedrate			
Process slowdown	throughput	Throughput	10	partial screen plugging	and stored)		8	3	240
				Moisture content 25-35% (Fresh or	Moisture content 25-35% (Fresh	Feedrate			
	50% decrease in throughput	Throughput	8	"Gooey" from storage)	and stored)		8	3	192
				Moisture content 15-25% (Fresh or	Moisture content 15-25% (Fresh	Feedrate			
	25% decrease in throughput	Throughput	6	"Gooey" from storage)	and stored)		8	3	144
	<u> </u>					Feedrate			
	Decrease in throughput	Throughput	1	Overs from 1st stage bale grinder.	Particle size (overs)		6	10	60
	Missed particle size			Moisture >15% (Fresh and "Gooey"	Moisture >15% (Fresh and				
Overs production	<u> </u>	Particle size		from storage)	stored)		6	3	144
•	•			,	<u> </u>				
		Particle size	8	Early hammer wear	Inorganic species		6	8	384
	Missed particle size								
Fines production	specification	Particle size	6	Self-heated material (storage)	Fines		6	8	288

Key Takeaways

- Standardized framework to represent and semi-quantitatively rank CMAs, CPPs, and CQAs in the context of a 'Failure' across multiple unit operations.
- Criticality evidence.
- Help in prioritization of experimental needs.
- Ability to quantify impacts of research driven improvements.

Summary

Biomass Supply Chain Risk Standards (BSCRS)

Systemized approach for quantifying supply chain risk

Bio-project financing

Failure Mode and Effects Analysis (FMEA)

Industrial relevant risk management tool to systematically identify and assess the causes and effects of potential failures in a system

Technology risk

Questions

Contact Information:

Rachel Emerson rachel.emerson@inl.gov 208-526-1931