Multiscale Evaluation of Acetohydroxamic Acid (AHA) Radiolysis Under Used Nuclear Fuel Reprocessing Solvent System Conditions

January 2022

Gregory P Horne
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Multiscale Evaluation of Acetohydroxamic Acid (AHA) Radiolysis Under Used Nuclear Fuel Reprocessing Solvent System Conditions

Gregory P Horne

January 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Multiscale Evaluation of Acetohydroxamic Acid (AHA) Radiolysis Under Used Nuclear Fuel Reprocessing Solvent System Conditions

INL/CON-21-01844
Radiation Chemistry and Used Nuclear Fuel Reprocessing

Solvent Extraction Reprocessing
Ligands/organic diluent: $\text{HNO}_3/\text{H}_2\text{O}$
(\pm additives)

- Gaseous Phase
- Organic Phase
- Aqueous Phase
- Oxide Layer
- Structural Materials

- Uranium mine
- Conversion to fuel
- Reactor
- Spent fuel
- Plutonium and recovered uranium
- Reprocessing
- Waste management and storage
Advanced Used Nuclear Fuel Reprocessing

Solvent Extraction Reprocessing
Ligands/organic diluent: HNO₃/H₂O
(± additives)

- **Gaseous Phase**
- **Organic Phase**
- **Aqueous Phase**
- **Precipitation**
- **Oxide Layer**
- **Structural Materials**

Figure 1. Concentration of NpO₂⁺ (■) and NpO₂²⁺ (●) ions as a function of absorbed gamma dose for formally 2 mM NpO₂²⁺ in 0.5 M HNO₃.

\[\text{Np}^{4+}/\text{NpO}_2^{2+} \rightarrow \text{Extractable} \]

\[\text{NpO}_2^{2+} \rightarrow \text{Inextractable} \]
Radiation Chemistry in Nitrate and Nitric Acid Solutions

Water Radiolysis

\[\text{H}_2\text{O} \leftrightarrow e_\text{aq}^-, \text{H}^+, \cdot\text{OH}, \text{H}_2, \text{H}_2\text{O}_2, \text{H}_\text{aq}^+ \]

Indirect Radiation Effects

\[\text{HNO}_3 + \cdot\text{OH} \rightarrow \cdot\text{NO}_3 + \text{H}_2\text{O} \]
\[\text{NO}_3^- + e_\text{aq}^- \rightarrow \text{NO}_3^{2-} \]
\[\text{NO}_3^{2-} + \text{H}_2\text{O} \rightarrow \cdot\text{NO}_2 + 2\text{OH}^- \]
\[\text{NO}_3^- + \text{H}^+ \rightarrow \text{HNO}_3^- \rightarrow \cdot\text{NO}_2 + \text{OH}^- \]
\[\cdot\text{NO}_2 + \cdot\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4 \]
\[\text{N}_2\text{O}_4 \rightarrow \text{HNO}_2 + \text{HNO}_3 \]

Direct Radiation Effects

\[\text{NO}_3^- \leftrightarrow \text{NO}_3^-* \rightarrow \text{NO}_2^- + \text{O} \]
\[\text{HNO}_3 \leftrightarrow \text{HNO}_3^* \rightarrow \text{HNO}_2 + \text{O} \]
\[\text{NO}_3^- \leftrightarrow \cdot\text{NO}_3 + e^- \]
\[\text{HNO}_3 \leftrightarrow \cdot\text{NO}_3 + \text{H}^- \]

The Role of AHA and its Radiolytic Behavior

Concentration of AHA, BTPS, and H$_{aq}^+$ vs. gamma dose for 2 h of AHA hydrolysis.

“...concentrations for both molecules (AHA and SO$_3$-Ph-BTP) are practically invariable with dose...”

“...the separation factor between Eu and Am to remain essentially unchanged.”

“...to scale up these kind of processes an in-depth knowledge of their resistance and long-term behavior is still required...”

“...it is essential to design reliable simulating strategies to predict the long-term performance of extraction systems...”

Experimental Methodology

Steady-State Gamma Radiolysis

Time-Resolved Pulsed Electron Radiolysis

Multiscale Modeling Irradiated Solutions

- 100 ps

- 50
- 100
- 150
0
50
100
150

-100
0
50
100
150

1. Track Structure Simulation
2. Physicochemical Processes
3. Nonhomogeneous Diffusion-Reaction Kinetics
4. Homogeneous Bulk Chemistry

Energy Transfer and Track Structure
Ultra-fast Chemistry
Intra-track Chemistry
Reaction of Long-lived Radiolysis Species

<1 femtosecond
<1 picosecond
<1 microsecond
>1 microsecond

Acetohydroxamic Acid (AHA) Radiolysis

- Loss of AHA by radiolysis and hydrolysis processes from the irradiation of 0.5 M AHA in 0.2 M NaNO₃ (▼) and HNO₃ (▲): (A) 51 Gy min⁻¹ at 36 °C; (B) 150 Gy min⁻¹ at 40 °C; and (C) 250 Gy min⁻¹ at 42 °C.
Dissolved Degradation Product Formation

Yields of **Acetic Acid** and **HA** from the irradiation of 0.5 M AHA in 0.2 M NaNO$_3$ (▼) and HNO$_3$ (▲): (A) 51 Gy min$^{-1}$ at 36 °C; (B) 150 Gy min$^{-1}$ at 40 °C; and (C) 250 Gy min$^{-1}$ at 42 °C.
Gaseous Degradation Product Formation

- Yields of N_2O and H_2 from the irradiation of 0.5 M AHA in 0.2 M NaNO$_3$ (▼) and HNO$_3$ (▲): (A) 51 Gy min$^{-1}$ at 36 °C; (B) 150 Gy min$^{-1}$ at 40 °C; and (C) 250 Gy min$^{-1}$ at 42 °C.

Dominant Reaction Mechanisms

\[
\begin{align*}
\text{H}_\text{aq}^+ \text{, H}_2\text{O} & \quad + \quad \text{HNO}_2 \\
\text{N}_2\text{O} & \quad + \quad \text{H}_2\text{C}_2\text{O}_4
\end{align*}
\]
Conclusions and Future Research

• Loss of AHA by hydrolysis > radiolysis.

• Radiolysis of AHA predominantly by oxidizing radicals (\(\cdot\text{OH}, \text{NO}_3\cdot\), and AHA\(\cdot\)).

• Multiscale model accurately predict loss of AHA in representative single cycle aqueous phase conditions.

• Biphasic conditions promote negligible changes in AHA and ligand (TBP, DEHBA, and DEHiBA) radiation chemistry.

• What is the impact of metal ions?
Impact of Metal Ions

\[(\text{HEH}\{\text{EHP}\}/\text{DD}) = 4.75 \times 10^{-4} \text{ kGy}^{-1} \]

\[(\text{HEH}\{\text{EHP}\}/\text{DD} + \text{La}^{3+}) = 6.55 \times 10^{-4} \text{ kGy}^{-1} \]

Table 1. Summary of second-order \(\text{RH}^{\cdot+} \) rate coefficients measured or revised by this work for TBP, DEHBA, and DEHBA in 0.5 M DCM/n-dodecane solutions with and without \(\text{UO}_2^{2+} \) present.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\text{RH}^{\cdot+}) Rate Coefficient ((10^{10} \text{ M}^{-1} \text{ s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBP</td>
<td>1.36 ± 0.07</td>
</tr>
<tr>
<td>([\text{UO}_2(\text{NO}_3)_2(\text{TBP})_2])</td>
<td></td>
</tr>
<tr>
<td>DEHBA</td>
<td>0.93 ± 0.02</td>
</tr>
<tr>
<td>([\text{UO}_2(\text{NO}_3)_2(\text{DEHBA})_2])</td>
<td>2.49 ± 0.06</td>
</tr>
<tr>
<td>DEHBA</td>
<td>1.14 ± 0.04</td>
</tr>
<tr>
<td>([\text{UO}_2(\text{NO}_3)_2(\text{DEHBA})_2])</td>
<td>1.59 ± 0.08</td>
</tr>
</tbody>
</table>

Acknowledgements