Elk: A New MOOSE Framework Application for Radio-frequency Electromagnetics

Casey Icenhour, Alexander Lindsay, David Green, Richard Martineau, Steven Shannon

November 2018

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Elk: A New MOOSE Framework Application for Radiofrequency Electromagnetics

Casey Icenhour, Alexander Lindsay, David Green, Richard Martineau, Steven Shannon

November 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

ELK: A New MOOSE Framework Application for Radio-Frequency Electromagnetics

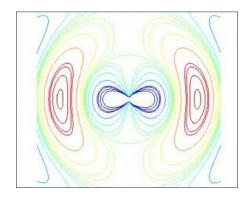
Casey Icenhour^{1,2}, Alex Lindsay², David Green³, Richard Martineau², Steven Shannon¹

71st Annual Gaseous Electronics Conference November 6, 2018

¹North Carolina State University, Raleigh, NC, USA ²Idaho National Laboratory, Idaho Falls, ID, USA ³Oak Ridge National Laboratory, Oak Ridge, TN, USA

Outline

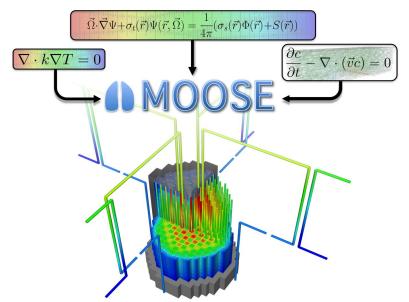
- Motivation / Background
- MOOSE Framework
- Electromagnetics Library for Kinetics and fluids (ELK)
- Current Progress and Issues
- Future Work



Motivation / Background

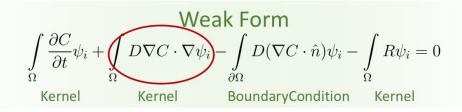
- Advanced research in science and engineering increasingly requires robust simulation tools
 - Whole device modeling high temp. plasma physics
 - Next generation nuclear reactors MHD flow
- However:
 - many well-used platforms are sometimes cost-prohibitive, or have a high barrier to entry.
 - some legacy applications have not been updated to modern code standards.

Credit: EUROfusion


Credit: Prof. Jin Au Kong, MIT

Multiphysics Object Oriented Simulation Environment (MOOSE)

- An open source, highly parallel finite element framework
- Designed for highly-coupled systems of PDEs
- Modular structure allows for easy extensions and maintenance of code
- NQA-1 (Nuclear Quality Assurance Level 1) development process
- http://mooseframework.org



MOOSE Code Example

Strong Form

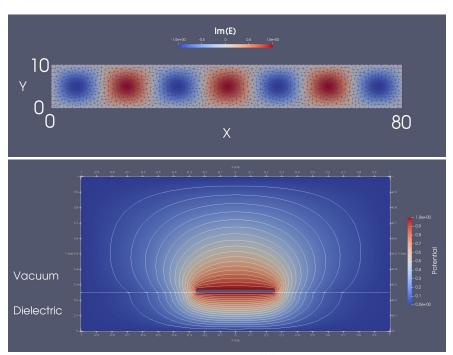
$$\frac{\partial C}{\partial t} - D\nabla^2 C = R$$

Actual Code

return _D[_qp]*_grad_u[_qp]*_grad_test[_i][_qp];

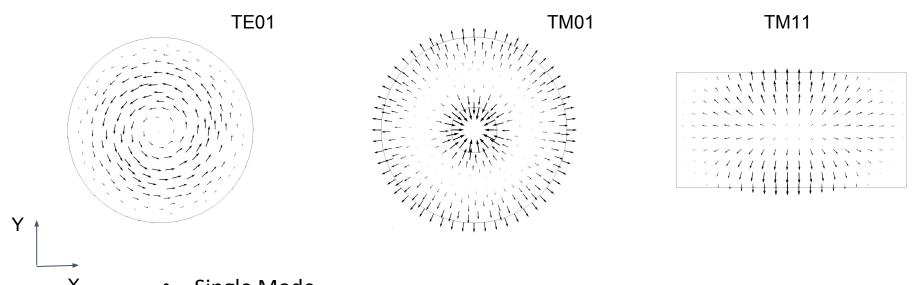
Why MOOSE for Electromagnetics / Plasma?

- Open-source!
- Responsive developer community!
- Vector Finite Elements
 - Currently: Nedelec first-order elements
- Easily mixed element types and orders
- Multiple spatial and temporal scales
- Easy mesh adaptivity
- Built-in postprocessing
- Just to name a few...



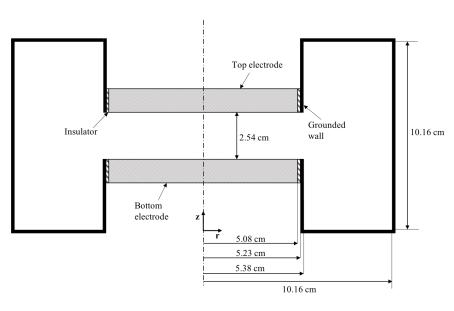
Electromagnetics Library for Kinetics and fluids (ELK)

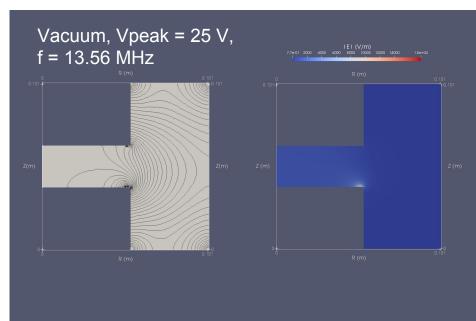
- Originally a MATLAB teaching code begun in 2016 / 2017 and transferred to MOOSE
- Current Capabilities:
 - 1D, 2D, 3D*
 - Poisson's Equation for scalar potential
 - Scalar (component-wise) and Vector forms of the Helmholtz Wave Equation for fields
 - Single-mode Port BCs (wave launch, absorbing, and reflection)
 - Current Sources and BCs
 - Post-processing for electrostatic field calculations, reflection coefficients


Top Right: Imaginary E-field TM11 Mode for 13.56 MHz wave launched at right

Bottom Right: calculation of potential around Teflon-backed microstrip line

MOOSE Results: Waveguide Mode Profiles (2D)

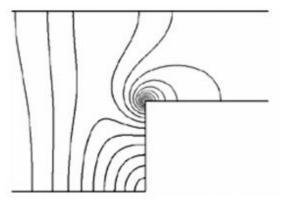



- Single Mode
- Preparing for electromagnetic eigenvalue problems for arbitrary waveguide geometries (utilizing the SLEPc package).

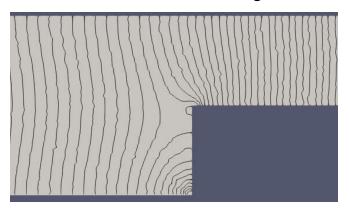
Target Problem - GEC CCP Reference Cell

[Figure Reference]

D. P. Lymberopolous and D. J. Economou, "Two-dimensional Self-Consistent Radio Frequency Plasma Simulations Relevant to the Gaseous Electronics Conference RF Reference Cell," *J. Res. Natl. Inst. Stand. Technol.*, vol. 100, p. 473, 1995.



9


Resolving Field Singularities at Discontinuities

Reference Solution:

MOOSE-calculated Real Electric field magnitude contour

Left: MOOSE-calculated Real E-field magnitude color plot - no wave motion?

- f = 10 GHz
- $J_v = 1 \text{ A/m}^2 \text{ (on left side)}$

Future Work

- Expansion of available boundary conditions
 - Multi-mode wave launching, absorption, etc.
- Electromagnetic Eigenvalue calculations
- Coupling to Zapdos (a MOOSE-based low temperature plasma fluid code) for simulation of RF plasma sources
 - For more on Zapdos for simulating the COST APPJ source: Session GT1, Poster 074
- Open-source licensing
- ELK → MOOSE Electromagnetics Module?

Acknowledgements

- Idaho National Laboratory Graduate Fellows Program
- MOOSE Development Team
- US Dept. of Energy Office of Science Graduate Student Research Program
- Oak Ridge Institute for Science and Education (ORISE)
- Oak Ridge National Laboratory Fusion and Materials for Nuclear Systems Division

Thank You!

Questions??

