

Alloy 709 Advanced Austenitic Stainless Steel

February 2022

Ting-Leung Sham

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Alloy 709 Advanced Austenitic Stainless Steel

Ting-Leung Sham

February 2022

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

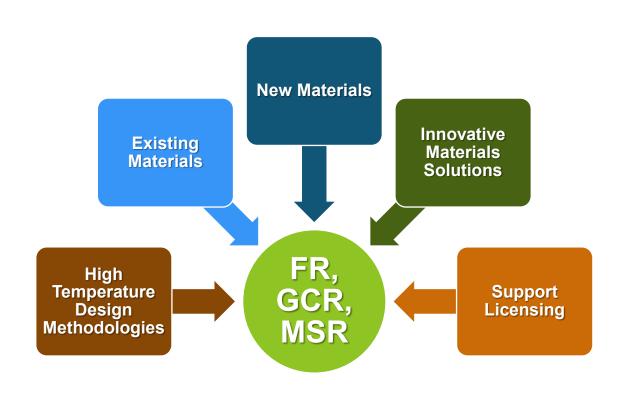
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Ting-Leung (Sam) Sham

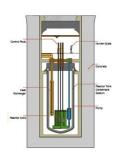
Nuclear Science & Technology Directorate

<u>TingLeung.Sham@inl.gov</u>

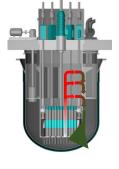
Alloy 709 Advanced Austenitic Stainless Steel

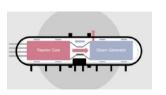

GIF Very High Temperature Reactor System

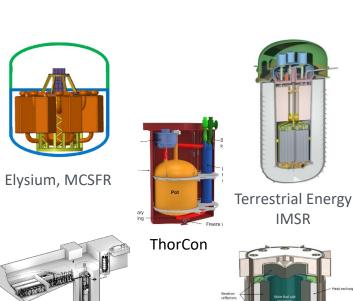
Metals and Design Methods Working Group Virtual Meeting
February 21, 2022

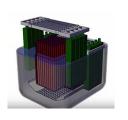

DOE Office of Nuclear Energy, Advanced Reactor Technologies (ART) Program, Advanced Materials

- Provide material solutions to enabling design, construction, licensing and operation of advanced reactors
 - Including Fast Reactors, Gas-cooled Reactors and Molten Salt Reactors (solid or liquid fuel)
 - Could be of modular or micro designs, and from hundreds of MWe to kWe
- Provide technical bases needed for design and licensing of advanced reactor components
 - Develop & validate improved high temperature design methodology
 - Provide qualification data (to NQA-1 or equivalent) on structural materials
 - Utilize consensus standards when appropriate (e.g., ASME, ASTM, etc.)
- Target resolution of issues needed for near to mid-term deployment of advanced reactors


Examples of Different Advanced Reactor Designs







MIT, Horizontal Compact HTGR

MCFR

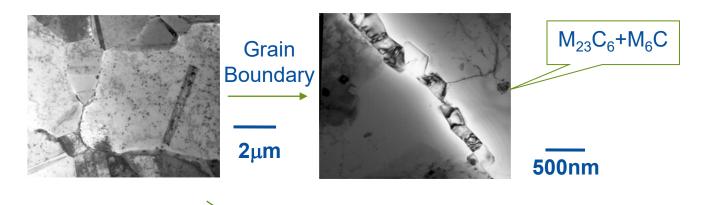
Moltex Energy, SSR

DOE ART Program Effort on Alloy 709 Qualification

- Collaboration among staff from DOE Lab complex and subject matter experts
 - Idaho National Laboratory
 - Richard Wright, Ryann Rupp, Michael McMurtrey, Rongjie Song, Sam Sham, Laura Carroll (former)
 - Oak Ridge National Laboratory
 - Yanli Wang, Zhili Feng, Hong Wang, Yukinori Yamamoto
 - Argonne National Laboratory
 - Meimei Li, Xuan Zhang, Yiren Chen, Ken Natesan (retired)
 - Subject Matter Expert
 - George Young

History of 20Cr-25Ni Austenitic Alloys

- Used as fuel cladding in UK AGR fleet (since 1962)
- Temperature 550°C to 850°C
- Neutron exposure ~ 6 yrs
- 0.38 mm wall thickness, 14.5 mm diameter, 1 m long
- Approximately 90,000 fuel pins per AGR
- 14 AGRs built

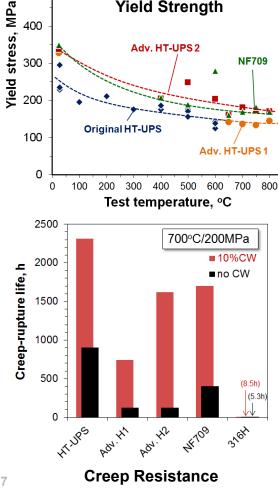


- Nippon Steel NF709 seamless tubing (1980s)
- Superheater and reheater applications in power boilers ('95 to '05, ~500 metric tons used in Japan power plants)
- Based on modified 20Cr25Ni composition
- UNS No. S31025
- ASTM A213 TP310MoCbN (for seamless tubes)
- ASME SA-213 Code Case 2581 for Section I power boilers

	С	Mn	Si	Р	S	Cr	Ni	Nb	В	Мо	Ti	N
20Cr25Ni/Nb	0.015	0.5	0.6	0.01	0.02	20	25	0.6	0.0001			<0.004
NF 709 Spec	0.10 max	1.50 max	1.00 max	0.03 max	0.01 max	19.0-23.0	22.0-28.0	0.10-0.40	0.002- 0.010	1.0-2.0	0.02-0.20	0.10-0.25
Typical NF 709	0.07	0.97	0.4	0.001	0.007	20.68	24.7	0.24	0.005	1.45	0.04	0.17

Alloy 709 Is Nitrogen-stabilized, Niobium-Strengthened Austenitic Alloy

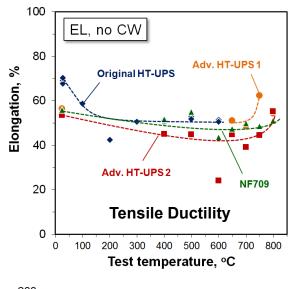
- Based on the Fe-20Cr-25Ni composition for power boiler applications
- Excellent oxidation resistance at high temperatures
- Niobium and nitrogen additions increase the tensile and creep strength

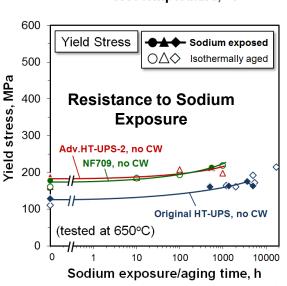

Microstructure after creep test for 5015h @ 750C, 100MPa (TEM-BF images)

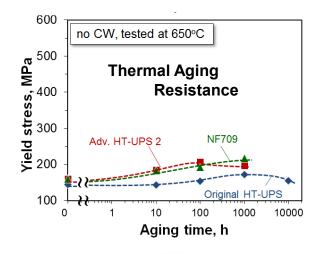
Grain Interior

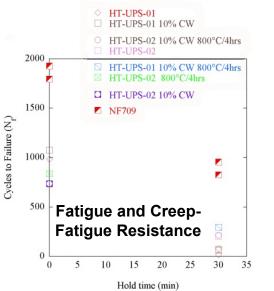
- Most of the grain boundary (GB) is fully covered by precipitates
- Two different sizes of precipitates in the grain interior (GI)

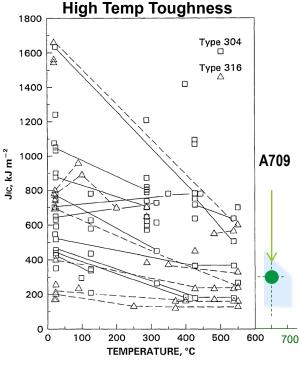
Austenitic Alloys Down-Selection – Balanced Properties

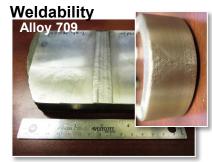


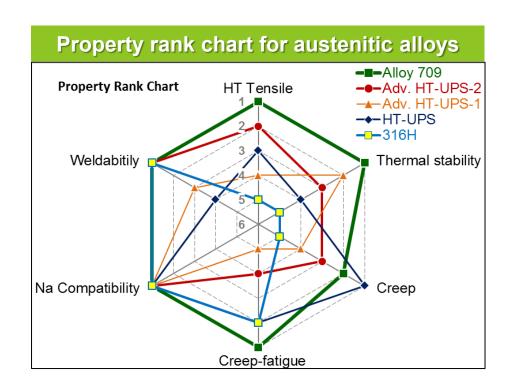

YS, no CW


Yield Strength


Adv. HT-UPS 2


500





Down-Selected Alloy 709 for ASME Code Qualification

- Alloy 709 offers improved safety margins and design flexibility as well as reduced commodity requirements compared to the austenitic stainless steels qualified for high-temperature nuclear construction
- Alloy 709 ranked as #1 in 5 different properties comparing to other austenitic alloys under consideration in previous analysis
- Alloy 709 has the following improved properties compared to 316H
 - Higher creep strength
 - Better performance in sodium and supercritical CO₂ according to short-term test data
 - Higher swelling resistance based on ion irradiation

Comparison Between Alloy 709 and 316H Stainless Steel

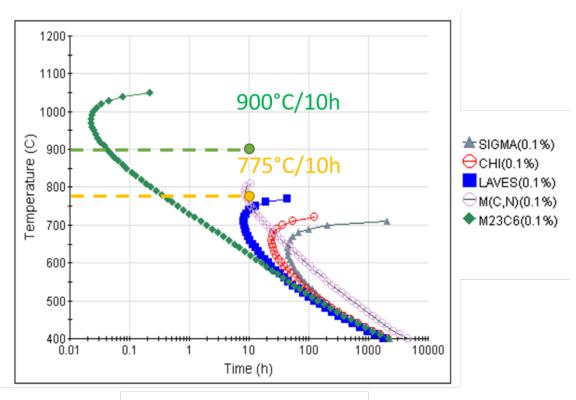
	316H Stainless Steel	Alloy 709
Composition	18Cr-12Ni- 2Mn- 2.5Mo- 0.07C	22Cr-25Ni -2Mn- 1.5Mo- V-Nb-C-B-N
Strengthening mechanism	Solution hardening (Mo) + Precipitate hardening (M ₂₃ C ₆)	Precipitate hardening {M(C,N), M ₂₃ C _{6,} CrNbN}
YS/UTS/EL (RT)	205MPa/ 515MPa/ 35%	270MPa/ 640MPa/ 30%
at 650°C	156MPa/ 349MPa/ 24%	200MPa/ 450MPa/ 45%
Advantage	 Lower material cost Good oxidation resistance Good weldability Good sodium compatibility Widely used, large experience base 	 Excellent creep properties Better oxidation resistance Good sodium compatibility Better compatibility with sCO2 Higher creep strength expands design envelope
Disadvantage	Lower creep strength restricts design envelope	 Higher commodity cost due to high Ni Need improvement on welding

Alloy 709 Fabrication Scale-up

2nd 40,000-lb commercial heat, from ATI 3rd 40,000-lb commercial heat, from ATI, to be delivered in June 2022

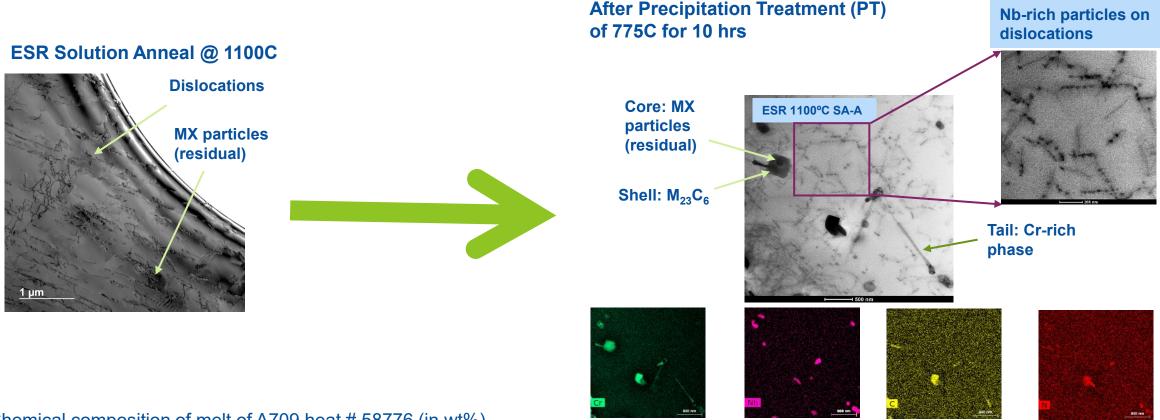
1st 45,000-lb commercial heat, from Carlson

400-lb heats


Precipitation Treatment (PT) of Alloy 709

Objective

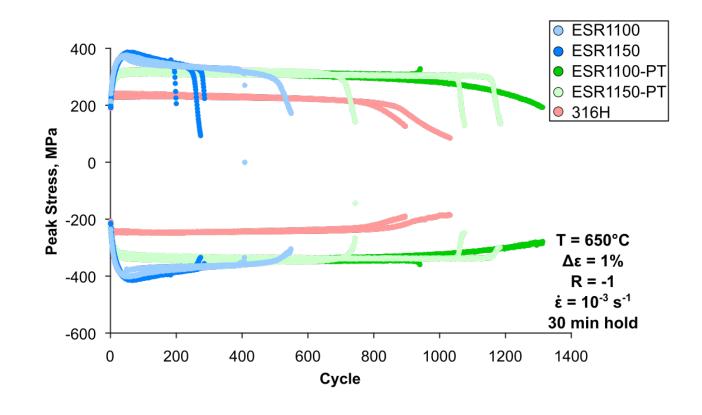
- Develop heat treatment plan to age Alloy 709
- To bring out the desired nano-sized precipitates, such as MX (Nb, Ti, V:C, N) or Z-phase (CrNbN) on dislocations
- To result in optimized and balanced mechanical properties (creep versus creep-fatigue)


Modeling

- Conducted thermodynamic and kinetics modeling
- Selected precipitation treatment (PT) of 775C for 10 hours (775C/10hrs) to:
 - Avoid the formation of the intermetallic laves phase (Fe₂Mo, Fe₂Nb), and
 - Promote the formation of M₂₃C₆ (Cr, Fe, Mo, Ni:C)

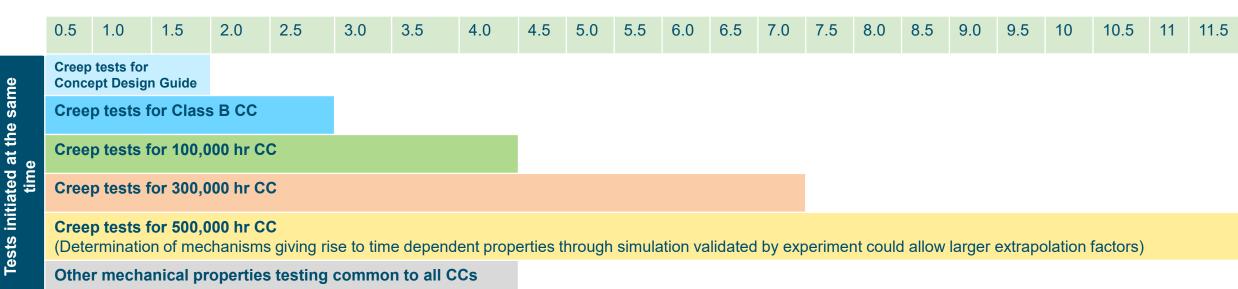
Quench temperature: 1150 °C

Characterization of Precipitation Treated Alloy 709



Chemical composition of melt of A709 heat # 58776 (in wt%)

A709	С	Cr	Ni	Mn	Мо	N	Si	Р	Ti	Nb	В	Fe
Actual	0.066	19.93	24.98	0.91	1.51	0.148	0.44	0.014	0.04	0.26	0.0045	Bal


Creep-Fatigue Performance of Alloy 709 (PT and Non-PT) and 316H

- ESR A709 Solution Anneal (SA) <u>plus</u>
 Precipitation Treatment (PT) has the
 greatest number of cycles to failure
- Followed by 316H and finally ESR A709-SA
- The ESR A709-SA heat exhibits a different creep-fatigue behavior than ESR A709-PT and 316H
- The overall peak stress of the ESR A709-SA and ESR A709-PT is greater than 316H

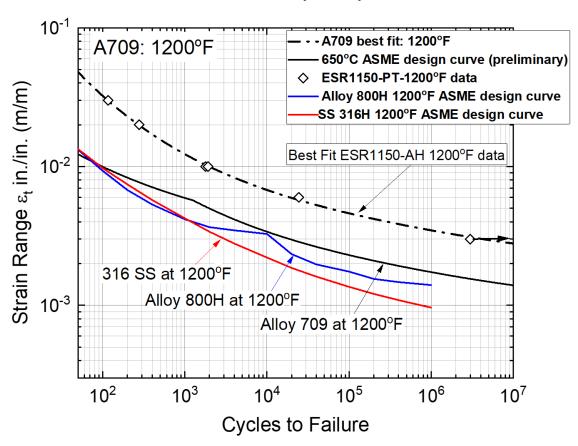
A Staged Approach to Code Qualification

Time from initiation of long-term testing (years)

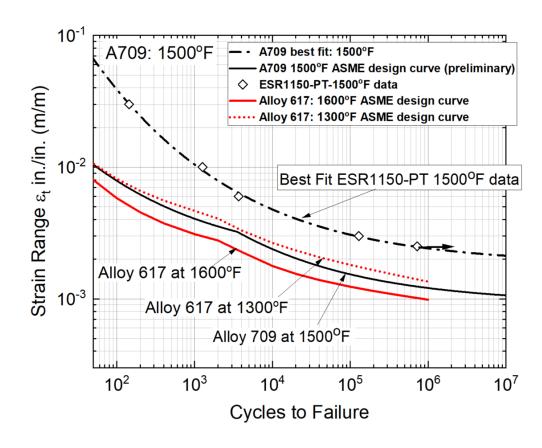
A four-year testing program, without resource constraints, would generate data package to support:

- Conceptual design
 - Conceptual Design Guide for 500,000-hour lifetime
- Preliminary design
 - 100,000-hour Class A code case
 - Class B material code case

Additional creep data at 7-year mark from start:

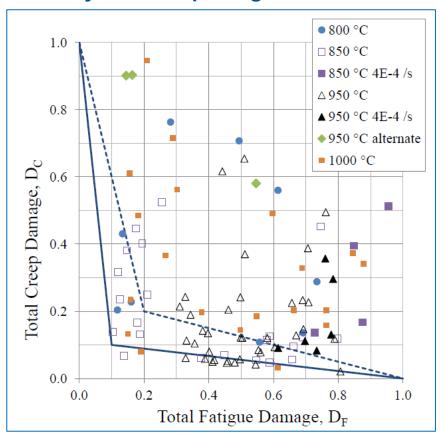

- Final design
 - 300,000-hour Class A code case

Additional creep data at 12-year mark from start:

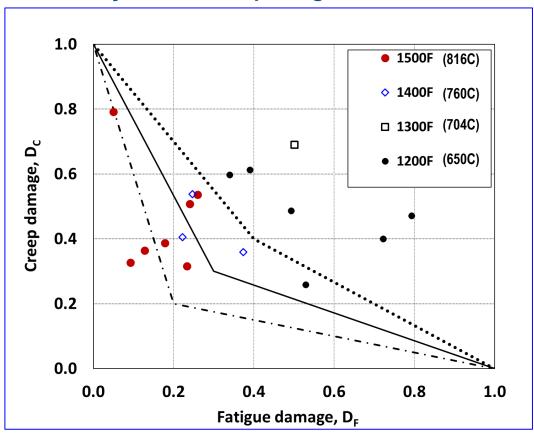

- Nth-of-a-kind
 - 500,000-hour Class A code case

Alloy 709-PT Has Enhanced Fatigue Properties

Alloy 709-PT better than Alloy 800H and 316H at 1200F (650C)



Alloy 709-PT comparable to Alloy 617 at 1500F (816C)



Alloy 709-PT Has Very Good Resistance to Creep-Fatigue Interaction

Alloy 617 Creep-Fatigue Interaction

Alloy 709-PT Creep-Fatigue Interaction

Extrapolated 100,000-Hour Minimum Rupture Stress

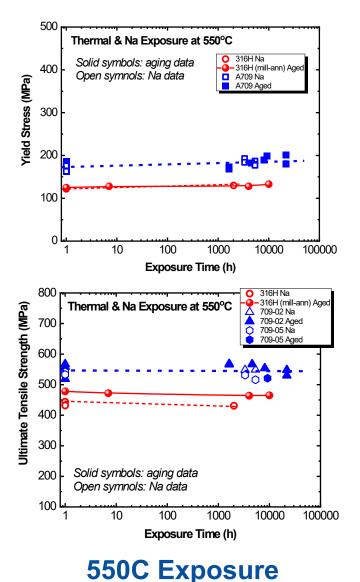
	Minimum Rupture Stress Values							
Temp, C	_	nperature oys	Stainless Steels					
	A617	A800H	316H	A709-PT				
650	127.1	63.0	58.2	99.8				
675	102.5	51.2	45.1	80.2				
700	82.6	41.6	34.6	64.2				
725	66.5	33.8	26.3	51.1				
750	53.5	27.5	19.6	40.4				
775	43.0	22.3	14.5	31.8				
800	34.6	18.1	10.4	24.8				
825	27.7	14.8	7.4	19.3				
850	22.3	12.0	5.1	14.8				
875	17.8	9.8	3.4	11.3				
900	14.3	7.9	2.1	8.5				
925	11.4	6.5	1.2	6.4				

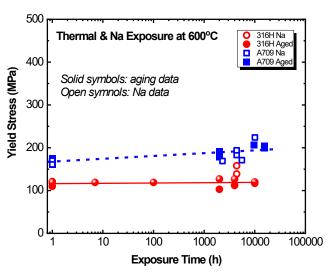
	Minimum Rupture Stress Ratios (Relative to A617)								
Temp, C		nperature oys	Stainless Steels						
	A617	A800H	316H	A709-PT					
650	1.0	0.50	0.46	0.78					
675	1.0	0.50	0.44	0.78					
700	1.0	0.50	0.42	0.78					
725	1.0	0.51	0.39	0.77					
750	1.0	0.51	0.37	0.76					
775	1.0	0.52	0.34	0.74					
800	1.0	0.53	0.30	0.72					
825	1.0	0.53	0.27	0.69					
850	1.0	0.54	0.23	0.67					
875	1.0	0.55	0.19	0.63					
900	1.0	0.56	0.15	0.60					
925	1.0	0.56	0.11	0.56					

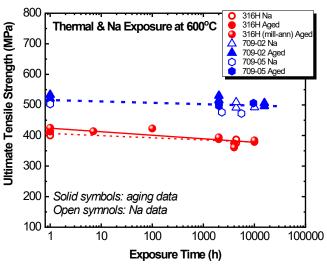
Chemical Compositions (in wt %)

	A617 N06617	A800H N08810	316H S31609	A709 S31025			
С	0.05-0.15	0.05-0.10	0.04-0.10	0.10 max			
Ni	44.5 min	30.0-35.0	10.0-14.0	23.0-26.0			
Cr	20.0-24.0	19.0-23.0	16.0-18.0	19.5-23.0			
Co	8.0-10.0	-	-	-			
Мо	8.0-10.0	-	2.0-3.0	1.0-2.0			
Ti	0.6 max	0.15-0.6	0.04 max *	0.2 max			
Fe	3.0 max	39.5 min	balance	balance			
Mn	1.0 max	1.5 max	2.0 max	1.5 max			
Si	1.0 max	1.0 max	0.75 max	1.0 max			
* ASI	* ASME Section III. Division 5 additional requirement						

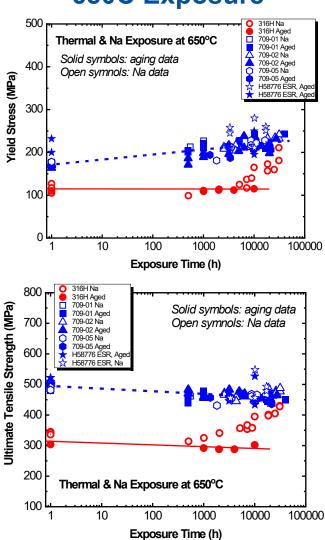
	A617 N06617	A800H N08810	316H S31609	A709 S31025			
Cu	0.5 max	0.75 max	-	-			
Al	0.8-1.5	0.15-0.6	0.03 max *	-			
Р	-	0.045 max	0.045 max	0.03 max			
S	0.015 max	0.015 max	0.03 max	0.03 max			
В	0.006 max	-	-	0.002-0.010			
Nb	-	-	-	0.1-0.4			
N	-	-	0.05 min *	0.1-0.25			
* ASI	* ASME Section III, Division 5 additional requirement						


Alloy 709 Weldment


- Weld consumable: Matching filler metal
- Welding process: Gas tungsten arc (GTA)
- Completed optimizing Alloy 709 GTA welding parameters for matching filler metal weld consumable
- Fabricated ASME Section IX qualified weldment using Carlson ESR1150-PT base metal and weld wire with low phosphorus (< 20 ppm)
- Ongoing fabricating production welds to support Alloy 709 Code Case testing using the second commercial Alloy 709 heat from ATI Specialty Rolled Products



Sodium Compatibility of Alloy 709



600C Exposure

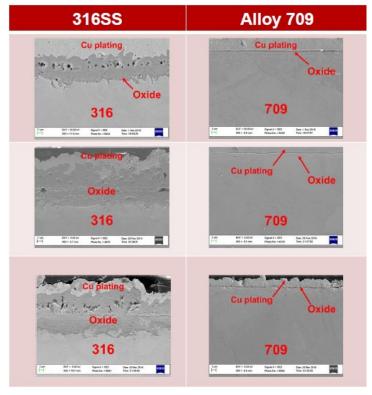
650C Exposure

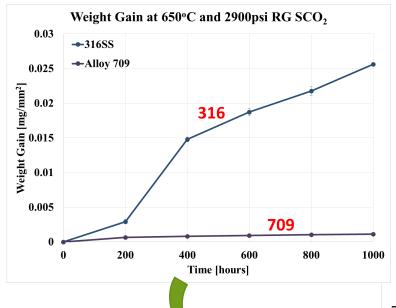


IDAHO NATIONAL LABORATORY

Swelling Scoping Study Through Ion Irradiation (1)

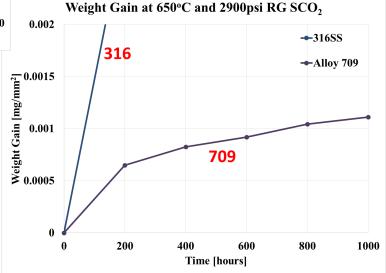
- Ion irradiation results for Alloy 709 and Type 316 stainless steel (~5% cold work) show that Alloy 709 had a significantly longer swelling transient regime
- Demonstrate enhanced swelling resistance of Alloy 709 over 316 under heavy ion irradiation (3.5 MeV Fe⁺² ions)


Heavy ion irradiation results at 575C, the peak swelling temperature


Short-term Supercritical CO2 Compatibility Scoping

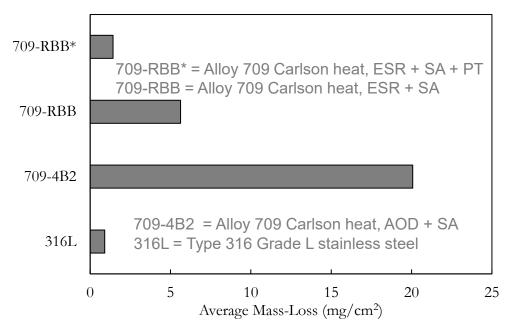
Study (1)

2900 psi, research grade (99.998% pure) CO2, 650C


SEM Cross-Sectional Image after Testing

Magnified

Scale


Need longer term exposures on tensile specimens to determine effects on mechanical properties

(1) Kumar Sridharan, NEUP Project 13-4900, University of Wisconsin-Madison

Alloy 709 Chloride Salt Compatibility Scoping Study (1)

- Chloride salt: Purified MgCl₂-NaCl-KCl (45-53-2 wt.%)
- Uncoated materials
 - Corrosion exposure at 800C for 100 hours in static capsule
 - Average corrosion rate (slowest to fastest)
 - 1. 316L (0.91 mg/cm²)
 - 2. 709-RBB* (1.42 mg/cm²)
 - 3. 709-RBB (5.63 mg/cm²)
 - 4. 709-4B2 (20.07 mg/cm²)

- Selected Alloy 709 material with processing condition that gave the worst corrosion performance, 709-4B2 (AOD + SA), for <u>boronization</u> surface treatment
 - Chloride salt exposure at 700C for 120 hours in static capsule
 - Preliminary examination of pre-exposure and post-exposure coated sample
 - Boronization surface treatment is effective in preventing chloride salt corrosion for the worst performing uncoated Alloy 709 processing condition (709-4B2)

⁽¹⁾ Results courtesy of J. Zhang, Virginia Tech

Nuclear Energy University Projects (NEUPs) on Alloy 709

Project #	Title	PI, Affiliation
14-6346	Integrated computational and experimental study of radiation damage effects in Grade 92 Steel and Alloy 709	Haixuan Xu, University of Tennessee, Knoxville
14-6762	Microstructural evolution of advanced ferritic/martensitic alloys under ion irradiation	Jim Stubbins, University of Illinois, Urbana-Champaign
15-8308	Creep and creep-fatigue crack growth mechanisms in Alloy 709	Afsaneh Rabiei, North Carolina State University
15-8432	Multi-scale experimental study of creep-fatigue failure initiation in a 709 Stainless Steel alloy using high resolution digital image	John Lambros, University of Illinois, Urbana-Champaign
15-8548	Assessment of Aging Degradation Mechanisms of Alloy 709 for Sodium Fast Reactors	Kip Findley, Colorado School of Mines
15-8582	Mechanistic and Validated Creep/Fatigue Predictions for Alloy 709 from Accelerated Experiments and Simulations	Korukonda Murty, North Carolina State University
15-8623	Characterization of Creep-Fatigue Crack Growth in Alloy 709 and Prediction of Service Lives in Nuclear Reactor Components	Gabriel Potirniche, University of Idaho

Summary

- Alloy 709 is an advanced austenitic alloy, has very high creep rupture strength among austenitic stainless steels
- Alloy 709-PT (Precipitation Treatment) has balanced creep vs. creep-fatigue performance
- Creep strength of Alloy 709-PT is lower than nickel alloys such Alloy 617 but has significant advantage over Type 316 stainless steel
- Alloy 709-PT maintains reasonable creep strengths up to 925C to accommodate short-term elevated temperature excursions under some postulated accident scenarios
- Fatigue and creep-fatigue performance of Alloy 709-PT is excellent
- Data package generation sponsored by DOE-NE is ongoing to codify Alloy 709-PT in ASME Boiler and Pressure Vessel Code, Section III, Division 5 for high temperature reactor applications
- Alloy 709 has good compatibility with sodium and supercritical CO2 (very short-term data) as compared with Type 316 stainless steel
- Limited heavy ion irradiation data showed that Alloy 709 has higher swelling resistance than Type 316 stainless steel
- While Alloy 709 is not optimum for molten salt resistance, boronization surface treatment shows potential
 - Longer term exposure and high temperature mechanical properties testing are required to confirm the beneficial effect of surface treatment for Alloy 709-PT in molten salts
- In addition to SFR and MSR, Alloy 709 is a potential candidate for HTGR applications for outlet temperatures in the range 1400 to 1500F