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EXECUTIVE SUMMARY 
Artificial intelligence (AI) applications driven by machine learning (ML) are transformational 

technologies within the international nuclear security regime. Advancements realized by AI—faster and 
improved data insights, more efficient and automated processes, reductions in human error—enable 
nuclear security applications such as behavior analysis for insider threat mitigation, source tracking of 
stolen nuclear material, and facial recognition software for physical protection. In addition to the 
advantages, however, there are also inherent vulnerabilities and threats associated with its use and risk 
mitigations must be built into any AI/ML-enabled systems.  

This work provides a background on AI and ML and different data types used in the field, including 
open-source intelligence information (OSINT) that is discoverable by AI tools and application data that 
are used by AI tools for decision-making and automation. Current and potential AI applications and 
vulnerabilities related to their use within the nuclear security regime are also discussed.  

Key findings include: 

i. Data harvesting of OSINT can be performed offensively by adversaries for reconnaissance and 
future attack development as well as defensively for proactive identification of data and system 
security lapses. Nuclear security regimes must apply information security standards and best 
practices to reduce these vulnerabilities. 

ii. AI systems often use large amounts of data, whose quality are very important. Poor quality data 
can yield, at best, inaccurate results leading to improper decisions or, at worst, inaccurate (and 
dangerous) results leading to nuclear sabotage, theft of nuclear material, or personnel injury.  

iii. While the use of AI within nuclear security regimes is currently limited, many new applications 
could be developed introducing new vulnerabilities in the regime. It is imperative that AI 
application development follows best practices in AI application and data security to reduce the 
introduction of unmitigated threats and vulnerabilities.  

The principal recommendation for INS is to include information on the unique and enhanced data 
vulnerabilities introduced by AI/ML applications in appropriate cyber trainings, workshops, and technical 
exchanges. 
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Vulnerabilities in Artificial Intelligence and Machine 
Learning Applications and Data 

1. INTRODUCTION 
The field of AI is rapidly transforming the world with wide-ranging innovations across all industries, 

including international nuclear security. AI applications have the capability to advance the security of 
nuclear materials and facilities worldwide to help reduce nuclear proliferation and the risk of nuclear 
terrorism. Existing and near-term AI security solutions include technologies such as behavior monitoring 
for insider threat identification and enhanced security tools for information and communications 
technology (ICT) and operational technology (OT) environments. Mid- to long-term AI solutions include 
improved data-fusion applications for physical protection and nuclear materials accounting and control 
(NMAC) as well as advancements in unmanned, autonomous aerial and underwater vehicles used for 
perimeter defense. 

While there are vast opportunities for use of AI within the nuclear security regime, there is also a 
growing potential for misuse or compromise of these tools. Adversaries may use AI for their own 
purposes, such as probing system vulnerabilities and collecting open-source data for development of 
future attacks. They may also directly attack AI applications or models as well as compromise the 
underlying data used to train and operate them in order to adversely affect the model behavior. Protecting 
the models and data against adversarial AI is paramount to ensure the applications behave and perform as 
designed. Some protections can be accomplished with standard information security best practices, but 
some threats require more sophisticated approaches.  

This paper contains a brief primer on AI applications, data, and their vulnerabilities; potential current 
to long-term horizon AI applications for use in the international nuclear security regime; and 
recommendations for AI protections, including standards and best practices. 

 

2. TECHNOLOGY BACKGROUND 
2.1 Artificial Intelligence and Machine Learning 

AI is a broad field concerned with making computers or machines perform tasks that would normally 
require human intelligence [1]. As illustrated in Figure 1, AI mimics human intelligence, including the 
ability to sense, reason, engage, and learn through 
applications such as voice recognition, natural language 
processing, computer vision, robotics and motion, 
planning and optimization, and knowledge capture [1].   

Systems achieve AI capabilities by using ML 
algorithms, which are mathematical models that learn 
patterns in data for use in data analytics and decision-
making. In contrast to AI, ML can only perform based 
on what it was trained to do; it cannot adapt the 
learning process itself nor can it apply the results to 
understand a problem. As shown in Figure 1, there are 
three types of machine learning models: supervised, 
unsupervised, and reinforcement learning. These 
models use training data during the learning phase to 
teach the model, validation data to validate and verify Figure 1. Taxonomy of AI and ML [1]. 
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the behavior of the model, and inference data during the operational phase for data analytics.  

Training data are collected before an ML model is built; it is assumed that this training data include 
all the phenomena the model will need to interpret while operational. The quality of training data directly 
impacts model performance—better data lead to better performance. For supervised ML, the training data 
are labeled to reflect some notion of ground truth, such as known malware signatures in antivirus software 
or pictures of flying drones labeled as drones. In unsupervised ML, training data are unlabeled and 
uncategorized, such as infrared data from sensors in perimeter intrusion detection systems. Once an ML 
model (supervised or unsupervised) is fully trained and deployed for operations, it will ingest new data 
for inference and comparison or classification. The resulting output from this mathematical comparison 
depends on the application and algorithm design. Table 1 provides additional examples of model 
categories and where they arise in applications used within the nuclear security regime. 

Table 1. Real-world machine learning applications. 
Application ML Type Training Data Learning 

Process 
Inference 
Data 

Model Operation and 
Output 

Antivirus 
Software 

Supervised 
learning 

Known virus 
signatures 

Model learns to 
identify virus 
signature using 
training data 

Computer 
files 

As computer files are 
scanned, they are 
mathematically compared 
to the training set. Files 
are quarantined if a match 
to a virus signature is 
found. 

Perimeter 
intrusion 
detection 

Unsupervised 
learning 

Sensor data 
captured during 
normal 
operations, 
including 
known 
anomalies such 
as weather 
events 

Model learns to 
identify 
‘normal’ sensor 
data 

Real-time 
sensor data 
captured after 
training 
period 

As new sensor data are 
acquired by the model, 
mathematical or statistical 
functions are performed to 
determine if the new data 
are normal or abnormal. If 
data are anomalous, the 
detection system will 
provide an alert that there 
may be an intruder. 

Source 
detection by 
radiation 
detector on 
unmanned 
vehicle 

Positive 
reinforcement 
learning 

Simulated 
scenario with 
known fixed-
position source 
with detector 
mounted on 
vehicle 

If detector 
moves closer to 
source, the 
model is 
rewarded, else 
the model is 
punished 

Real-time 
radiation in 
environment 
as sensed by 
detector  

As the vehicle moves, the 
algorithm learns so the 
vehicle continuously 
moves closer to the 
radiation source until 
found. 

 
Contrary to supervised and unsupervised learning, reinforcement learning models are developed using 

a reward/punishment rule set in a trial-and-error approach aimed at maximizing the reward. Instead of just 
training on data, the model is trained by receiving a reward after correct behavior or a punishment after 
incorrect behavior. Over time, the model learns the behavior required to maximize the reward. 

 

2.2 DATA TYPES 
Data used in AI systems can be categorized as endpoint, communication, configuration, monitoring, 

or meta data as described in Table 2. Data can also be categorized as OSINT and application data. 
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Table 2. AI data type descriptions [2]. 
Data Type Description 
Endpoint Operational or security-related information generated by ICT, OT, or industrial internet of 

things (IIoT) edge devices, such as sensors, programmable logic controllers, cameras, or 
computers 

Communication Generated as part of the network transmission process 
Configuration Settings in ICT, OT, or IIoT devices 
Monitoring Generated during monitoring activities, such as system logs, alerts, and indications 
Metadata Describes other data 

 

2.2.1 Open-Source Intelligence 
OSINT is sensitive information about an organization, facility, or system that can be used by an 

adversary for opportunistic activities (see Table 3), including development of future attacks. The 
acquisition of OSINT datasets and information are adversarial techniques identified in MITRE’s 
ATT&CK framework, a knowledge base of adversary tactics and techniques based on real-world 
observations (IDs T1247, T1266, T1277) [3]. In fact, the Department of Homeland Security’s 
Cybersecurity and Infrastructure Security Agency (CISA) recently published an alert warning that they 
have consistently observed Chinese threat actors use publicly available, open-source data to plan and 
execute cyber operations [4]. OSINT is also a technique used in national defense [5].  

Table 3. OSINT examples and adversarial misuse cases. 
OSINT Example Potential Adversarial Misuse 
Facility layout and hardware, software, and firmware 
design information for digital systems and ICT or OT 
architectures 

Enables development of physical, cyber, or hybrid 
attacks against the facility infrastructure and systems 

Type, quantity, quality, and location of nuclear material 
or radioactive material 

Enables theft of nuclear or radioactive material 

Sensitive transport information, such as schedules, 
routes, and vehicles 

Enables theft of nuclear or radioactive material 

Personnel information, including phone numbers, email 
addresses, and work location 

Identifies targets for social engineering campaigns 

 
Examples of OSINT sources include: 

• Facility, company, or organizational websites including vendor, manufacturing, contractor, and 
service provider websites 

• Government, regulatory, or state agency public records 
• Search engines such as Shodan [6]; the OSINT Framework website provides an in-depth hierarchy 

of free OSINT tools and resources [7] 
• Curated public sources, such as wikis 
• Bug reports and vulnerability data repositories [8-12]; these repositories can be automatically cross-

referenced against target devices to fully elucidate weaknesses and vulnerabilities 
• Social media 
• News and media sources 
• Scholarly publications or conferences. 
Often facility owners, vendors, and regulators are unaware of the breadth and depth of sensitive 

information about their organizations that can be found in open data sources. 
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2.2.2 AI Application Data and Data Quality 
The type of data used in AI applications depends on the purpose. For instance, data-driven AI/ML 

perimeter intrusion detection and assessment systems (PIDAS) or behavioral anomaly detection 
applications for insider threat mitigation may use endpoint data while AI/ML-based security information 
and event management (SIEM) solutions may use both communication and monitoring data. 
Additionally, data can be in many different formats, including text, numerical, categorical, time series, 
images, videos, and audio. It is also common for AI applications to use data-fusion techniques that 
combine multiple data types.  

High-quality data are a key requirement for an effective, robust, and reliable AI application. Data 
must be correct, complete, and unbiased, otherwise the AI system will not behave as expected. Incorrect 
training data may result in inaccurate model design and/or learning, leading to unexpected behavior and 
confidence reduction in the model. Similar results occur if the validation data used during the 
development phase does not correctly represent the inference data used during the operational phase. 
Further, incorrect or corrupt inference data in the operational phase may skew the results over time. Bias 
may be a result of under- or over-sampling of data and lead to inaccurate model behavior and reduction in 
model confidence. To reduce bias, training and validation data must include a large enough dataset over 
the possible range of inputs. 

 

2.3 Vulnerabilities in OSINT  
Data harvesting is the use of AI/ML tools to programmatically search through online content to 

identify relevant information (i.e., OSINT) based on user inputs or requirements, such as key 
terminology. A quick internet search reveals that many data harvesting or data mining tools exist for 
OSINT, both free and for cost. Open-source frameworks and code libraries, rented hardware, and leaked 
versions of AI tools are available [13]. These tools may use combinations of AI/ML and natural language 
processing to acquire, cleanse, process, and store data. Results may be categorized and stored in a 
database that can be readily queried by the user. 

AI/ML data harvesting tools can be used by both sides in cyber warfare. Adversaries can use the tools 
to discover OSINT within the international security regime, including potential vulnerabilities about their 
target, to assist with development of cyber campaign strategies and attacks. These tools can be automated 
to enable fast and up-to-date acquisition of information. In addition to adversaries using AI/ML tools for 
reconnaissance to identify and collect OSINT about an organization or their activities, adversaries may 
also use AI/ML for opportunistic cyber campaigns targeting their digital technology.  

In addition to the recent CISA alert regarding Chinese use of OSINT for execution of cyber 
operations [4], an alert was released in 2018 documenting the use of open-source and network 
reconnaissance by the Russian government [14]. As identified in this report, seemingly innocuous 
information posted to company websites may contain sensitive data or information. It is postulated in this 
report that threat actors downloaded a small photo from a publicly accessible corporate website that, when 
enlarged, displayed control systems equipment models and status information [14]. The adversaries were 
able to use this information as part of a larger campaign to target the company’s industrial control system. 
In general, acquiring OSINT datasets and information is a standard approach for target reconnaissance to 
help the adversary identify vulnerabilities and develop cyber campaign strategies. Once vulnerabilities are 
identified, separate AI/ML tools can as be used to automatically generate exploits based on those 
weaknesses.  

Alternatively, stakeholders on the opposite side of the campaign (e.g., nuclear facility owners, 
government organizations, vendors) can use these same AI/ML tools to identify their vulnerabilities. 
Searching for OSINT about their own organization and operations is necessary so that measures can be 
implemented to remove or protect the data. Additionally, if sensitive information regarding their 
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operations is found, then organizations should recognize that adversaries may have already collected this 
information and thus should take protective measures to limit adverse consequences from the exposure. In 
addition to using AI/ML tools to identify OSINT, they can also be used for vulnerability and defense 
automation to enforce security policies to ensure sensitive information is not accessible from external 
locations or by autonomous AI programs.  

 

2.4 Vulnerabilities in AI Application Data and Models 
Incorrect, incomplete, and biased data in AI/ML systems may result in unexpected model behavior 

and confidence reduction. While these data quality issues may be the result of improper selection, design, 
or just bad data, data may also be corrupted by adversaries. Malicious compromise of AI/ML data or 
models is intended to cause degradation or failure of AI/ML systems. A draft National Institute of 
Standards and Technology (NIST) report identifies 11 unique attack techniques in adversarial ML [15]. A 
similar set of intentional failures are provided in [16].  

Direct data corruption attacks include data poisoning and data evasion attacks. Data poisoning occurs 
when an adversary injects or manipulates data in the training dataset. Contamination of the training 
dataset can skew model learning and cause misclassification or incorrect predictions during the inference 
phase. Similarly, imperceptible perturbations input during data evasion attacks in the operational phase 
can also result in misclassification or inaccurate predictions. As shown in Figure 2, the addition of a small 
amount of noise during the operational phase can cause misclassification by an image recognition 
program [17]. These evasion attacks often require knowledge of the model. In addition to data poisoning 
and data evasion attacks, there are many other less direct attacks that can result in model failure. Most of 
these attacks can be prevented by properly securing data [16].  

 
Figure 2. Example of a data evasion attack in which a small 0.005 perturbation of every pixel (every pixel 
is in the range [0,1]) causes misclassification by an image recognition program [17]. 

AI models themselves are also vulnerable to adversarial attacks [15,16]. Algorithms can be 
manipulated or reprogrammed, or sensitive information about the model can be leaked, enabling 
development of more sophisticated attacks such as data evasion and data poisoning [15]. Model 
tampering can lead to alteration of the learning process as well as result in the introduction of an 
algorithm backdoor in which the model performs correctly until a specific trigger condition is met 
[15,16]. For instance, a facial recognition application may perform well on most inputs but result in a 
planned misclassification when a specific feature is identified (e.g., unobtrusive sticker located on a face). 
This could result in an adversary gaining access to a facility when the application mistakenly misclassifies 
the image as an employee. 

The risk associated with cyber attacks can be challenging to determine as it is based on characterizing 
the adversarial threat, vulnerability associated with the system or environment, adverse impact resulting 
from the attack, and likelihood that an attack will occur and be successful. While there were no studies 
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found by the authors that rank the cyber risk specific to attacks on AI/ML data or systems, it is important 
to recognize that these attacks are possible today, even if their likelihood of occurring is much less than 
other, simpler cyber or physical attacks. In the 3- to 10-year horizon, as AI systems are deployed in 
greater number and as adversaries become more sophisticated, it is likely that AI-based attacks will 
become more probable and more frequent. 

 

3. AI SYSTEMS AND POTENTIAL VULNERABILITIES IN THE 
NUCLEAR SECURITY REGIME 

3.1 AI Security in Nuclear Facilities 
Like traditional cyber security, AI/ML cyber security goals include maintaining confidentiality, 

integrity, and availability of the system. Confidentiality is assurance that sensitive or confidential data and 
proprietary model design are not leaked or stolen; integrity is assurance that model data are not poisoned 
and models or functions are not compromised; and availability is assurance that there is no interruption of 
model operation, no degradation of performance, or loss of function. A cyber attack is defined as any 
attack by any method via cyber space intended to disrupt, disable, destroy, or maliciously control digital 
systems or infrastructure; or to destroy the integrity of data or steal controlled information [18].  

Cyber attacks in nuclear facilities occur through five threat vectors: wired, wireless, portable media 
(e.g., Universal Serial Bus (USB) drives, maintenance laptops), insiders, and supply chain. If a network is 
not properly segregated from the internet by secure architecture, an adversary may be able to penetrate the 
network enabling access to AI systems. Similarly, if wireless is used in a facility or wireless features are 
enabled on a device, an adversary can potentially gain access to an AI system. Even if wired and wireless 
access is prevented, digital systems can still be directly compromised during maintenance activities 
(configuration changes, updates) when portable media are connected to a network or device. Further, 
insiders such as employees or contractors may intentionally or unintentionally access and compromise a 
system. And finally, a system may be compromised during the acquisition process—AI software or 
system information can be corrupted or stolen throughout all phases of the supply chain lifecycle [19].  

AI systems are potentially vulnerable to compromise via each of these five threat vectors. Regardless 
of how an adversary gains access to an AI system, they can launch attacks against AI data and 
applications. Therefore, it is important for nuclear facilities to minimize the vulnerabilities associated 
with these vectors. Corporate networks, plant networks, and/or control networks should be segregated 
with proper ICT security controls (as defined in the next section) and wireless communications should be 
disabled or secured. Protections against compromise via portable media include disabling or removing 
unused access connections or ports and establishing administrative procedures to prohibit or securely 
control their use. Insider mitigation programs can assist with reducing the risk from insiders, as can 
behavior monitoring tools (which are discussed later). Finally, activities, such as developing awareness 
into supply chain vulnerabilities [19], adding cyber security vendor requirements to procurement 
contracts [20], and enhancing software validation and verification processes can help reduce supply chain 
cyber risk. 

 

3.2 AI Applications in the International Nuclear Security Regime 
The following sections describe current and future AI/ML applications in the international nuclear 

security regime and potential consequences if the data or the applications are corrupted. In addition to 
data and model corruption attacks, all AI/ML applications are susceptible to data or model theft attacks. 
These confidentiality or privacy attacks result in loss of sensitive data that can be maliciously used by 
adversaries for illegal purposes or development of future sophisticated attacks.  
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Some of the applications outlined are not fully matured and active in the field but may potentially be 
developed and implemented within the next 3 to 10 years. Additionally, the likelihood of cyber attacks 
against these systems may be relatively low, but it is still important to recognize the threats, 
vulnerabilities, and impacts associated with these AI technologies to ensure implementation of 
appropriate defenses and protections.  

3.2.1 Cyber Security 
Cyber security crosscuts the entirety of the international nuclear security regime due to the use of 

ICT, OT, and IIoT technologies. Since any malicious compromise of data used to build, train, test, and 
run AI/ML models is a cyber attack, cyber security plays a key role in securing the regime against AI/ML 
threats and vulnerabilities. 

Boundary security devices found in traditional ICT solutions within the regime, such as host 
intrusions detection systems, network intrusion detection systems, firewalls, antivirus software, and SIEM 
systems, typically use AI/ML-based technologies for anomaly detection, prediction, and prognostics. 
Endpoint detection and response platforms use advanced capabilities of AI/ML algorithms for malware 
identification, behavioral analysis, and exploit prevention to protect nuclear organizations against 
sophisticated and targeted attacks [21].   

While not all traditional ICT security devices use AI/ML, secure architecture technology for cyber 
security defense, detection, and response is (or should be) used within all organizations in the 
international nuclear security regime. The use of AI/ML for cyber defense may expand the attack surface, 
as most AI/ML-based defenses have not considered adversarial attacks against them [21], thus all ICT 
AI/ML-based security devices used within the regime are potentially vulnerable to data poisoning and 
evasion attacks. These attacks may skew the AI/ML models to misclassify data, enabling adversaries to 
stealthily enter secure architectures and/or launch undetected cyber attacks against the network and 
computer systems. Attacks that enable the adversary to maintain a long-term presence result in extended 
loss of sensitive data and information. In addition, undetected malware and advanced persistent threats 
can lie in wait until triggered.  

In addition to using traditional ICT tools, AI/ML tools can be used for preventing and detecting 
attacks within OT environments, such as digital instrumentation and control systems. Expert systems 
designed with data-driven and/or physics-based algorithms to detect and predict anomalies using process 
data or expected system behavior, respectively, provide additional defense-in-depth protections for OT 
environments in a nuclear facility. Similar to ICT security devices, compromise of OT security devices by 
data poisoning or evasion attacks may allow adversaries to gain entry and/or launch cyber attacks in OT 
networks without detection by AI/ML security tools. Cyber attacks that either compromise or bypass 
these AI systems and impact the digital instrumentation and control systems in a nuclear power plant or 
research and test reactor may result in radiological sabotage impacting the health and safety of the public; 
financial loss due to equipment damage, loss of generation, and/or repair costs; and intangible loss such as 
reputation or industry perception. 

3.2.2 Facility Operations 
Nuclear power plants and research and test reactors may also use AI/ML tools for condition 

monitoring—detection, prediction, and prognostics of equipment degradation and failure. In the future, 
big data applications that fuse historical process data, work management history, and corrective action 
program data may improve insight into equipment and reactor operational status. Data poisoning, evasion, 
or logic attacks against these AI/ML tools could result in unanticipated equipment failure or degradation. 

In addition to condition monitoring, other AI/ML applications have been proposed to improve 
performance and efficiency at nuclear power plants. For instance, computer-based procedures that 
automatically prompt operators to perform the next procedure step based on current plant conditions have 
been proposed by Oxstrand and Le Blanc [22]. In the future, AI/ML-based technology may proceed 
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through procedures automatically using expert systems, performing steps in sequence using autonomous 
control systems, with or without hold points requiring operator interaction. Attacks against these AI/ML 
systems could result in incorrect or out-of-order plant actions leading to an adverse or unknown reactor 
state. 

Furthermore, it is anticipated that, in addition to advanced displays and diagnostics using AI/ML and 
expert systems, advanced reactors and microreactors will use autonomous, AI/ML-based control systems 
with limited requirements for human interaction. Similar to autonomous, computer-based procedures, 
attacks against AI/ML reactor control systems could result in adverse impacts to the reactor, including 
challenges to safety systems resulting in radiological release.  

3.2.3 Insider Threat Mitigation 
The objectives for insider threat mitigation are to promote best practices, understand weakness, and 

provide recommendations on insider threat countermeasures for the protection of nuclear materials and 
facilities. Insider threats to nuclear facilities include physical and cyber threats. To assist with reducing 
both cyber and physical threats from insiders, insider mitigation programs may use AI/ML-based 
behavioral recognition programs to identify suspicious employee behavior. These programs monitor 
employee computer-based actions, such as file browsing, file usage, file downloads, USB usage, and 
application/ system logins as well as physical actions such as facility entries and exits, to identify normal 
and abnormal behavior. Data poisoning or evasion attacks could mask behavior of an insider such that 
abnormal or suspicious behavior is not detected [13]. 

3.2.4 Detection and Response 
Current AI/ML applications within physical protection systems (PPS) include facial recognition 

software and abnormal behavior identification. Near-term and future PPS applications include voice 
recognition and natural language processing applications. Additionally, PPS data-fusion algorithms can 
combine data from multiple PIDAS, such as integrated video management systems (IVMS), microwave 
systems, and infrared systems, to ensure high probability of intrusion detection while eliminating 
nuisance alarms. An example of a deliberate motion algorithm using sensor fusion was presented at the 
Light Water Reactor Sustainability Physical Security Stakeholder meeting in 2019 [24].  

In NMAC systems, equipment used for monitoring nuclear material includes flowmeters, mass 
spectrometers, tank-level indicators, nondestructive assay equipment, scales, video surveillance, and 
radiation monitoring and contamination control equipment [23]. Future AI/ML-based systems can use the 
data from these diverse and disparate systems to detect, predict, and respond to anomalies, including 
unanticipated removal of material. These data may be transmitted to central reporting locations for 
monitoring at the facility or company level, or at the State level by entities such as the State’s competent 
authority. 

In conjunction with PPS, future tools used in the sabotage area may be able to model a facility’s 
security defenses, vulnerabilities, and response capabilities. These tools may use AI/ML to integrate 
sensors (e.g., automatic identification sensors, radar, PIDAS, IVMS), vehicles, aircraft, UAS, unmanned 
underwater vehicles, personal devices (phones, tablets), and geographic information systems data to 
model a physical location’s vulnerabilities based on defensive posture against simulated threat events.  

While these sabotage applications may assist with vulnerability analysis, design basis threat, target 
set, and vital area identification to improve defensive capabilities, they may also be used as command and 
control platforms for event response including monitoring, anomaly detection, alerting, and response 
coordination between organizations (e.g., protective forces, law enforcement agencies, emergency 
response). Border and maritime security solutions as well as response tools may use data-fusion 
applications incorporating IVMS, facial recognition, natural language processing, and permanent or 
portable radiation detection systems. These AI systems may also incorporate global positioning and 
radiation detection systems on UAS and unmanned underwater vehicles for detecting, tracking, and 
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locating stolen or diverted nuclear material [25-27]. Similarly, AI systems could be used with tracking 
transport of known nuclear material shipments with geographic information-based systems to identify 
routes to maintain compliance with best practices and with vehicle global positioning systems, UAS, and 
radiation detection systems (permanent and portable) to track shipments during transit as well as during 
theft events.  

Compromise of these AI systems could have far-reaching consequences. For instance, data poisoning 
or evasion attacks against these PPS or NMAC intrusion detection systems could result in undetected 
adversarial entry from situations such as failure-to-alert due to masking of the intrusion pathway, or 
generation of too many alerts resulting in failure to identify the true intrusion. In addition, compromised 
AI/ML facial or voice recognition software could result in failure to identify an adversary or 
misidentification of a friendly as an adversary [13]. Further, compromise of AI/ML-based NMAC 
systems may result in inaccurate data for nuclear and radiologic materials and failure of the system to 
identify loss or removal of material. 

Data poisoning or evasion attacks against intrusion vulnerability assessment modeling applications 
for sabotage prevention could result in adversaries impacting simulation scenarios and assessment results 
leading to weakened or ineffective defenses. Adversarial AI could also cause loss of control with nuclear 
shipments or loss of security control at border or maritime facilities enabling adversaries to move 
unauthorized nuclear material across (or into) States without detection. Additionally, compromise of 
response systems could result in loss of tracking capability and/or misdirection of response forces. 
Compromise of emergency and/or security response coordination applications could impact necessary 
communications and collaborative actions between response forces.  

3.2.5 Perimeter Defense Equipment 
In addition to PPS, remotely operated [28] and autonomous weapon systems as well as ground, 

aquatic, and CUAS aerial robots or drones have been proposed for perimeter defense in the physical 
protection mission space. Cyber attacks against AI/ML weapons systems could result in friendlies being 
injured or intruders not being stopped. Similarly, cyber attacks against AI/ML-enabled CUAS could result 
in masking of the algorithm such that intruders remain undetected. 

 

4. RECOMMENDED COURSE OF ACTION 
4.1 STANDARDS AND GUIDANCE 

As reflected in Table 4, standards and best practices for securing OSINT and other sensitive or private 
data exist at both the domestic and international level. Not included in the table are a wide range of NIST 
standards related to cryptography which can be used to ensure data integrity. There are currently no 
standards or guidance documents specifically focused on data security in nuclear facilities issued from the 
Nuclear Regulatory Commission, Nuclear Energy Institute, International Atomic Energy Agency, CSA 
Group, NIST, or ISO/IEC. Since the NIST standards are free and available for use, they are often used 
internationally as well as domestically. At minimum, nuclear organizations should ensure they follow 
NIST, International Organization for Standardization (ISO)/International Electrotechnical Commission 
(IEC), or similar information protection standards or guidelines to ensure OSINT cannot be acquired by 
adversaries and that AI application data are protected against theft or compromise.  

While many States have published regulations and guidance for cyber security within nuclear 
facilities, this guidance does not generally include information specific to AI or ML security [41-45]. 
Additionally, standards organizations, such as NIST, ISO/IEC, and the European Telecommunications 
Standards Institute (ETSI), have not yet published cyber security standards related to AI. In 2019, NIST 
released a plan recommending that the U.S. government commit to standards development for building 
trustworthy AI systems [46]. Further along than NIST, ISO/IEC has numerous AI standards in various 
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stages of development [47]. Similarly, ETSI has an industry specification group developing standards 
focused on using AI to enhance security, mitigating against attacks that leverage AI, and securing AI 
itself from attack. States should continue to monitor these organizations to stay current in recommended 
AI security practices.   

Table 4. OSINT-related standards. 
U.S.-based Standards Description 
Federal Information Security 
Management Act [29] 

Requires federal agencies to protect sensitive data. 

NIST SP 800-18 [30] Requires federal organizations to develop and implement a system security 
plan to protect information systems. 

Federal Information Processing 
Standards (FIPS) 199 [31] 

Establishes requirements to inventory and classify information systems by 
security categories. 

FIPS 200 [32] Establishes requirements to implement minimum security controls. 
NIST SP 800-53 [18] Establishes requirements to implement minimum security controls. 
NIST SP 800-171 [33] Provides guidance for protecting controlled unclassified information in 

nonfederal systems. 
NIST SP 800-122 [34] Provides guidance for protecting the confidentiality of personally 

identifiable data. 
NIST SP 800-209 [35] Provides guidance for protecting storage infrastructure. 
NIST Data Security Website [36] Provides guidance documents and practice guides for protecting, detecting, 

and responding to data integrity and data confidentiality attacks. 
International-based Standards Description 
ISO 27001 [37] Provides guidance on establishing, implementing, and maintaining 

information security management systems. 
ISO 27002 [38] Provides guidance on implementing security controls defined in ISO 27001. 
ISO 27034 series [39] Provides guidance on application security. 
ISO 27040 [40] Provides guidance on storage security. 

 
NIST has issued SP 1800-7, Situational Awareness for Electric Utilities, which describes the use of 

SIEM solutions for aggregating data and performing anomaly detection on ICT and OT systems. Of note 
in this document is the acknowledgment that, while SIEMs are useful for identification of cyber attacks, 
these applications can also become an attack vector if left unprotected. Since an adversary can modify or 
delete SIEM data, alter analysis processes, or alter data in transit, it is necessary to provide for data 
control, verification, and integrity protection. 

 

4.2 Best Practices 
Data protection strategies are often designed based on the data type and state of the data—whether the 

data are at rest, in use, or in motion [2]. In addition, data security technologies sometimes overlap with 
boundary security technologies. In some cases, the technologies are independent and require integration. 
In cases where integration is required, such as encryption solutions, these technologies may enhance one 
aspect of security (privacy and integrity) at the cost of another (data verification).  

The goals for AI/ML data and application protections are to ensure reliability, discretion, robustness, 
and resilience. However, there is not a ‘one-size-fits-all’ solution to ensuring security of AI/ML data and 
models, especially since there are so many variations of algorithms. For instance, supervised machine 
learning uses a static training set that has different vulnerabilities than the dynamic training sets generated 
in unsupervised ML.  
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Ideally, the AI/ML model should be resilient by using techniques to identify anomalous behavior and 
prevent manipulation outside of normal boundaries [48]. For example, AI applications developed for the 
nuclear security regime must be able to reject malicious training data or user input that does not meet 
these acceptable behaviors and would result in a negative impact on model behavior. Multiple resilience-
centric security solutions exist [48,49]. In addition, Microsoft, Google, and others have suggested 
integrity-based security solutions for AI/ML [50-53]. Additional tools in the future will provide added 
validation that an application used in the nuclear security regime is trustworthy, robust, reliable, and 
resilient [48]. 

As AI systems are developed to improve and optimize facility operations, physical protection, 
material security, and other processes in the nuclear security regime, they must be designed with security 
in mind to mitigate consequences from adversarial misuse or compromise. Best practices, such as AI data 
and application hardening, and monitoring for indicators of compromise and anomalous behavior, should 
be baseline requirements.  

Additionally, it is important to identify if or when a human-in-the-loop is needed to validate the 
system design, operation, and/or output. In these instances, it is necessary to recognize that humans may 
also perform malicious or inadvertent actions that compromise the system. For example, if facial 
recognition software flags a person as an intruder, is a human required to confirm the assessment? And, if 
a human is needed for validation, what are the consequences if a wrong choice by the human is made? 
Similarly, if an AI-enabled UAS is used to track stolen or diverted nuclear material, when are humans 
deployed to confirm the UAS has tracked the material correctly? What human interaction is required if 
the UAS mistakenly tracks an incorrect item? These hypothetical scenarios highlight the importance of 
including human-in-the-loop security considerations along with AI data and model protection best 
practices in an AI system’s security strategy.  

 

5. CONCLUSIONS 
AI systems developed for cyber security, physical protection, insider mitigation, NMAC, transport, 

sabotage, and response have great potential for advancing global nuclear security by reducing nuclear 
proliferation and the risk of nuclear terrorism. However, it must be recognized that these systems are 
themselves susceptible to adversarial cyber attacks. AI systems must be developed and deployed 
following best practices in AI security in order to provide assurance that the system is secure, trustworthy, 
and reliable and is less likely to be successfully attacked.  

It must also be recognized that adversaries can use AI systems to identify OSINT for development of 
future sophisticated physical and/or cyber attacks. Not only must AI data and models be protected from 
compromise and corruption, but this open-source sensitive data be must also be protected from 
adversarial discovery. Use of standards and best practices for implementing data and information system 
protection can help prevent access of this sensitive data by adversarial AI systems.  
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