

Exposed Kernel Heating Tests

July 2022

John D Stempien

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Exposed Kernel Heating Tests

John D Stempien

July 2022

Idaho National Laboratory Idaho Falls, Idaho 83415

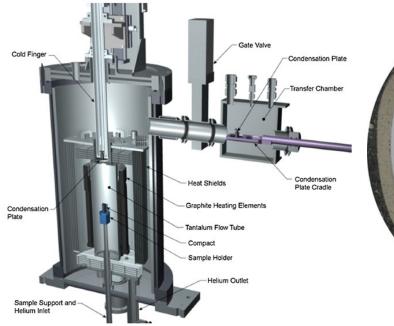
http://www.inl.gov

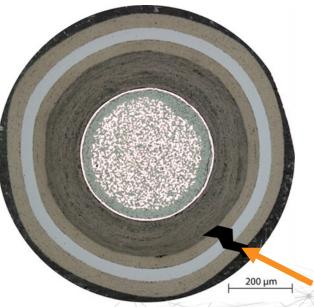
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 July 12, 2022

John Stempien, PhD
TRISO Fuel PIE Technical Lead

Exposed Kernel Heating Tests

Utilizing AGR-2 and AGR-3/4 Fuel

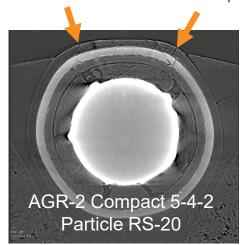


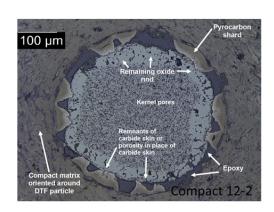

Use Heating Tests of Fuel with Exposed Kernels to Measure Release of Key Fission Products

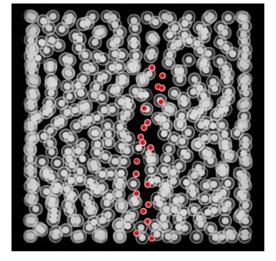
- Use as-irradiated fuel for long-lived fission products and reirradiated fuel for both long-lived and short-lived fission products
- Short-lived I-131 ($t_{1/2} = 8.02 \text{ d}$) and Xe-133 ($t_{1/2} = 5.2 \text{ d}$) will decay before PIE can begin
- Use short reirradiation in the Neutron Radiography (NRAD) reactor to produce I-131 and Xe-133
- Quickly transfer fuel from NRAD to the Fuel Accident Condition Simulator (FACS) furnace

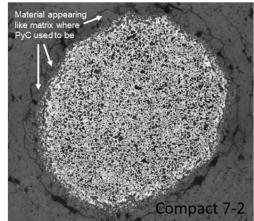
Fuel Accident Condition Simulator (FACS) Furnace

Neutron Radiography Reactor (NRAD) reirradiation capsule in C4SW position


For Exposed Kernels, Employ Loose-cracked AGR-2 Particles and AGR-3/4 Compacts X-ray of Unirradiated AGR-3/4 Compact


AGR-2 Compact 6-4-1 bare kernel with TRISO coating


removed at INL


- Deconsolidated particle deliberately cracked at ORNL and shipped to INL
 - Cracking extends through OPyC, SiC, and IPyC
 - Avoid significant SiC shearing
 - Avoid SiC cracks at bottom of hemisphere

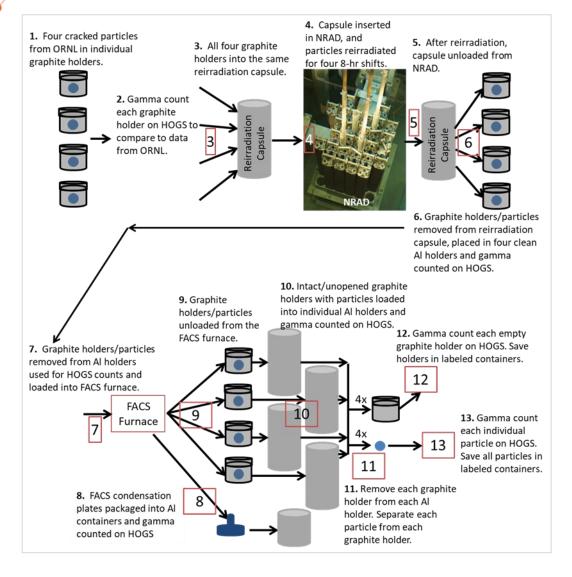
Irradiated
AGR-3/4 DTF
particles in
compact cross
section

Particle Reirradiation Heating Tests – Status and Purpose

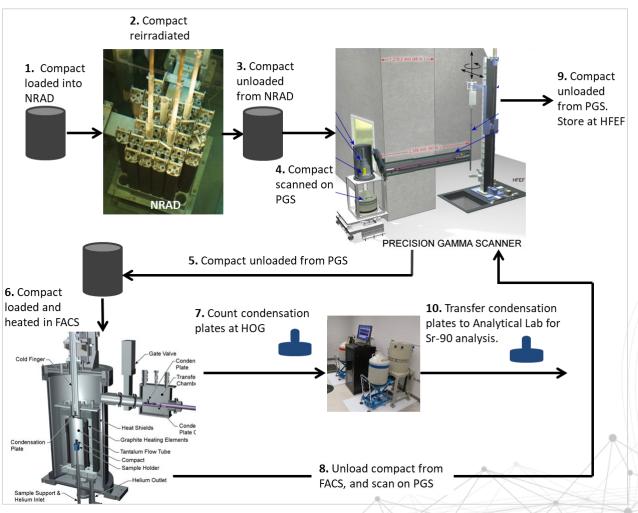
Tests serve four purposes:

- Determine I-131 and Xe-133 retention in exposed kernels to address scarcity of data
- Provide FACS condensation plate collection efficiencies for temperatures other than 1600°C
 - Needed for AGR-3/4 testing and upcoming AGR-5/6/7 testing
 - Challenge: Ag-110m in AGR-2 fuel has already decayed through ~10 half-lives.
- Provide data for use in source term estimates
- Investigate kernel diffusivity

AGR-2 Compact	Burnup (% FIMA)	TAVA Irradiation Temperature (°C)	Test Number	FACS Temperature (°C)	Sample Type	Status	
6-4-1	9.24	1018	1	1600	Bare kernels	Complete FY18	
	5-4-2 12.03		2	1600	Cracked loose particles	Complete FY18	
5-4-2		1071	3	1400	Cracked loose particles	Complete FY19	
					4	1200	Cracked loose particles
			5	1000	Cracked loose particles	Complete FY20	
2-2-1 12.47	1287	6	1200	Cracked loose particles	Completed FY22		
			7	1400	Cracked loose particles	Completed FY22	

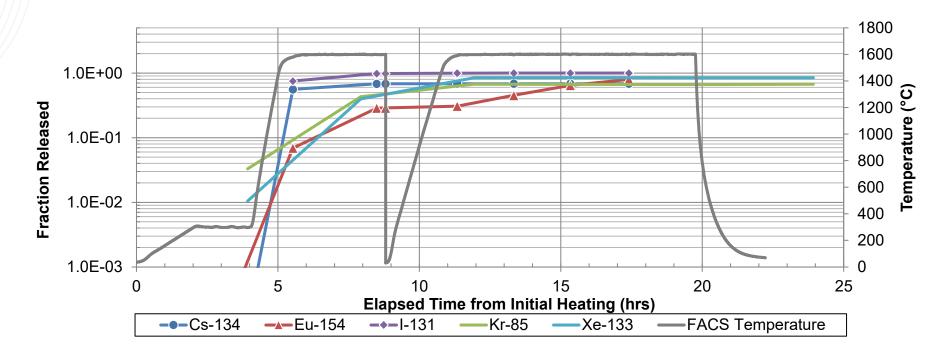

Completed all Planned AGR-3/4 Compact As-irradiated and Reirradiation-Heating Tests

- Determine release of residual long-lived fission products
- Determine integral release of short-lived fission products from exposed kernels in compacts
- Tests covered a wide range of temperatures and irradiation histories


Compact ID	Condition	Status	Burnup (% FIMA)	TAVA Temp (°C)	FACS Furnace Temp (°C)
3-1	Reirradiated	Complete	12.2	1138	1600
8-1	Reirradiated	Complete	14.5	1165	1200
10-1	Reirradiated	Complete	12.1	1172	1400
4-3	Reirradiated	Completed late FY21	14.3	1035	1000
1-2	Reirradiated	Completed late FY21	5.9	941	1400
3-2	As-irradiated	Complete	12.5	1196	1600/1700
8-2	As-irradiated	Complete	14.6	1213	1400
10-2	As-irradiated	Complete	12.0	1213	1200
10-4	As-irradiated	Complete	11.4	1168	1400

Reirradiation Test Process

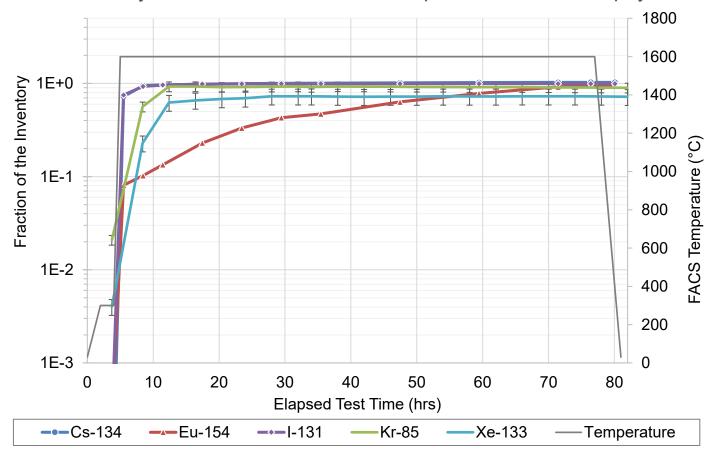
AGR-2 Particle Reirradiation Tests

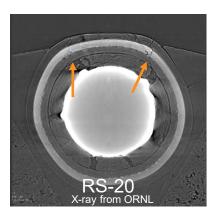


AGR-3/4 Compact Reirradiation Tests

1600°C Test of Reirradiated AGR-2 6-4-1 Four Bare Kernels

- I-131 and Xe-133: Releases similar; Supports assumption that I-131 behaves like Xe-133
- Kr-85: release indicates most (~70%) Kr-85 is in kernel when TRISO coatings intact
- Eu-154: ~20% retention in kernel

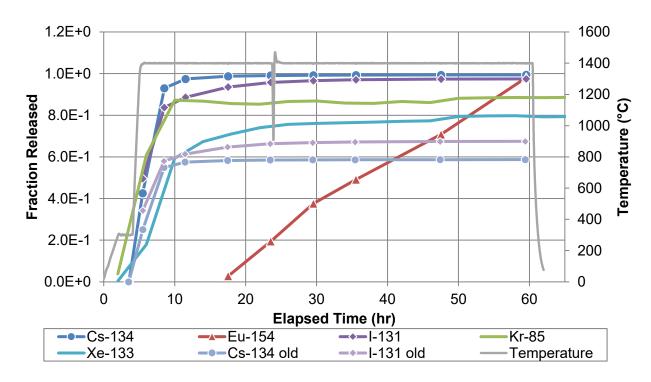


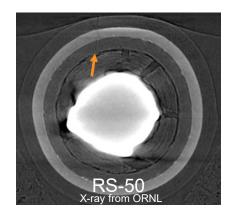

Isotope	Total Fraction Released
Cs-134	0.852
Eu-154	0.795
I-131	1.00
Kr-85	0.671
Xe-133	0.842

Fractions based on measured/calculated ratio.

1600°C Test of Four Reirradiated Cracked 5-4-2 Particles

- This test ~ 4 times longer than test with 6-4-1 bare kernels. At longer time, shows additional Eu-154 release compared to short test.
- Potentially an underestimate of Xe-133 production from the physics calculations

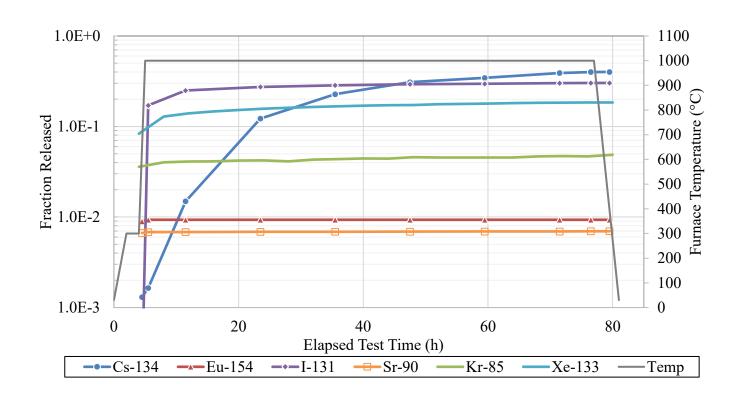


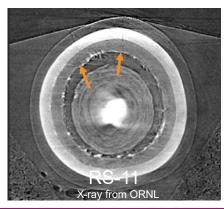


Isotope	Total Fraction Released
Cs-134	1.03
Eu-154	0.964
I-131	0.996
Kr-85	0.898
Xe-133	0.720

1400°C Test of Four Reirradiated Cracked 5-4-2 Particles

- Kr-85 and Xe-133 releases like prior 1600°C tests
- Cs-134 and Eu-154 releases like 5-4-2 cracked particle 1600°C test
- I-131 release is slightly less than at 1600°C

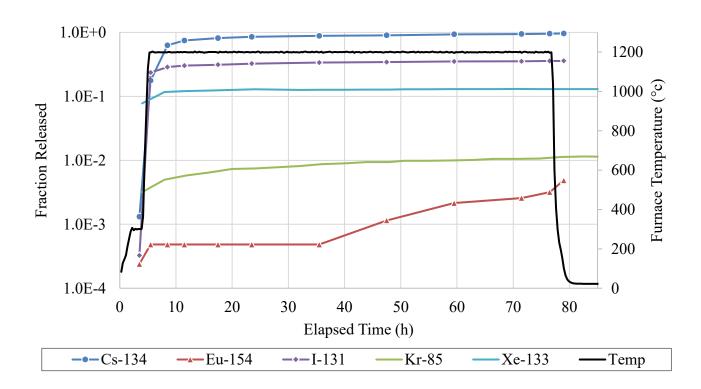


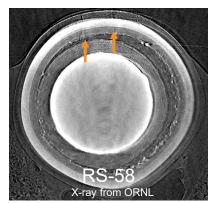

Isotope	Total Fraction Released
Cs-134	0.994
Eu-154	0.982
I-131	0.975
Kr-85	0.884
Xe-133	0.793

- Fractions based on measured/calculated ratio.
- Cs-134 and I-131 "old" used original FACS 1600°C efficiencies. Others used efficiencies calculated for this particular test.

1000°C Test of Four Reirradiated Cracked 2-2-1 Particles (Preliminary)

• Releases 3 to 1000 times less than at 1400°C with 5-4-2 particles

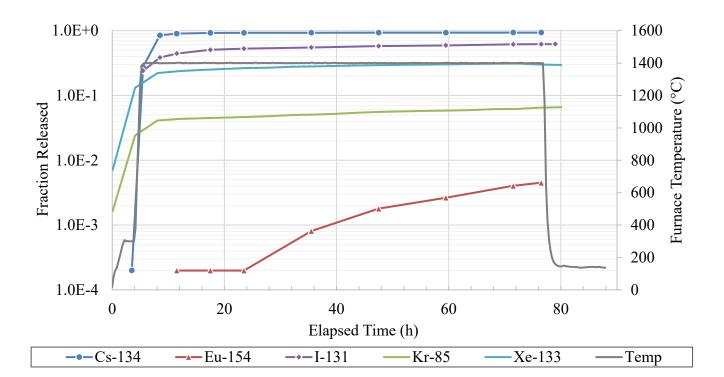




Isotope	Total Fraction Released
Cs-134	0.401
Eu-154	0.009
Sr-90	0.007
I-131	0.302
Kr-85	0.049
Xe-133	0.185

1200°C Test of Four Reirradiated Cracked 2-2-1 Particles (Preliminary)

- Cs release ~ 3 times higher than at 1000°C
- I-131 release ~20% higher than at 1000°C
- Other releases are similar to those seen at 1000°C, but new efficiencies still need to be applied

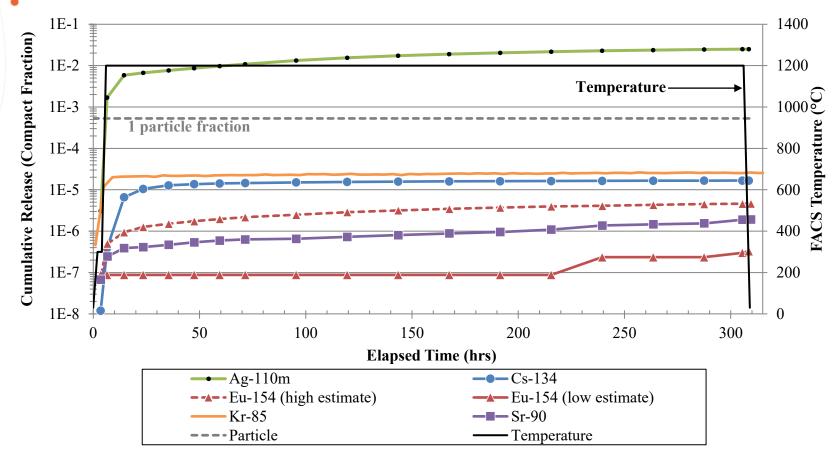

Isotope	Total Fraction Released
Cs-134	0.963
Eu-154	0.005
I-131	0.359
Kr-85	0.012
Xe-133	0.130


1400°C Test of Four Reirradiated Cracked 2-2-1 Particles (Preliminary)

- Releases of Cs and Eu similar to 1200 and 1000°C
- Releases of other nuclides are noticeably higher than at 1000 and 1200°C

Some new 1400°C collection efficiencies exist, but the results from 1000 and 1200°C still need

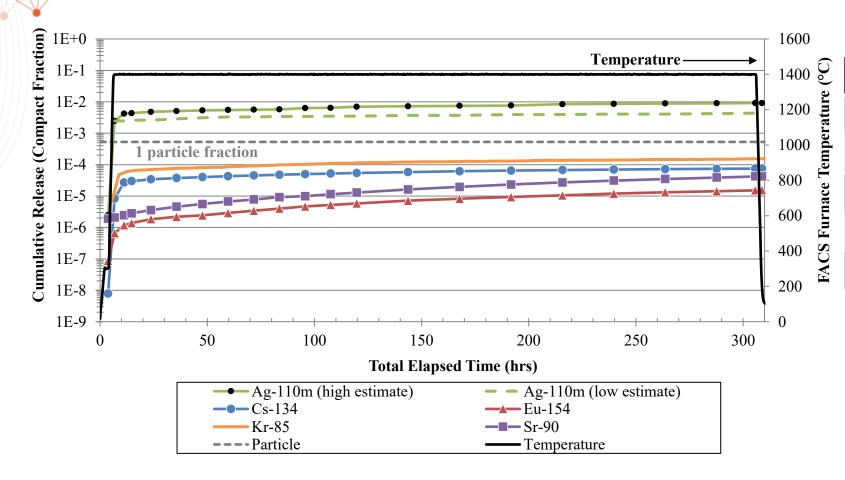
correction from new FACS plate collection efficiencies



Isotope	Total Fraction Released
Cs-134	0.933
Eu-154	0.0045
I-131	0.619
Kr-85	0.066
Xe-133	0.297

All AGR-3/4 Compact Inert Heating Tests Have Been Completed

As-irradiated Compact 10-2: 1200°C Test

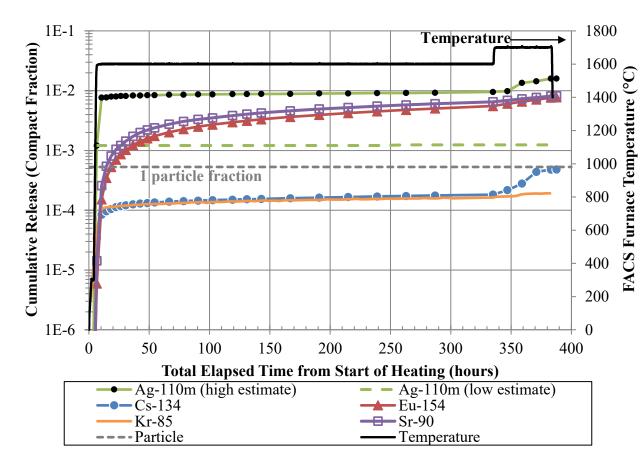


	DTF Inventory Released (%)
Ag-110m	240.7
Cs-134	0.160
Eu-154	0.003
Kr-85	0.244
Sr-90	0.18

Notes:

- 1 particle equates to a compact fraction of 5.29E-4
- "high estimate" includes values determined from minimum detectable activities (MDA)
- "low estimate" takes MDAs to be zero

As-irradiated Compact 10-4: 1400°C Test

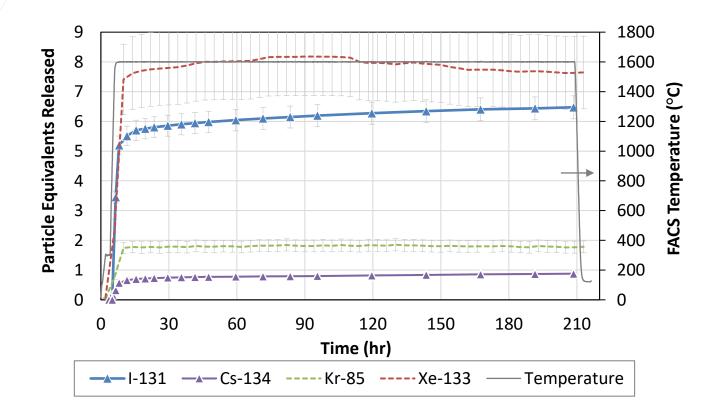


	DTF Inventory Released (%)
Ag-110m (low)	42.2
Cs-134	0.720
Eu-154	0.148
Kr-85	1.48
Sr-90	0.405

Notes:

- 1 particle equates to a compact fraction of 5.29E-4
- "high estimate" includes values determined from minimum detectable activities (MDA)
- "low estimate" takes MDAs to be zero

As-irradiated Compact 3-2: 1600/1700°C Test

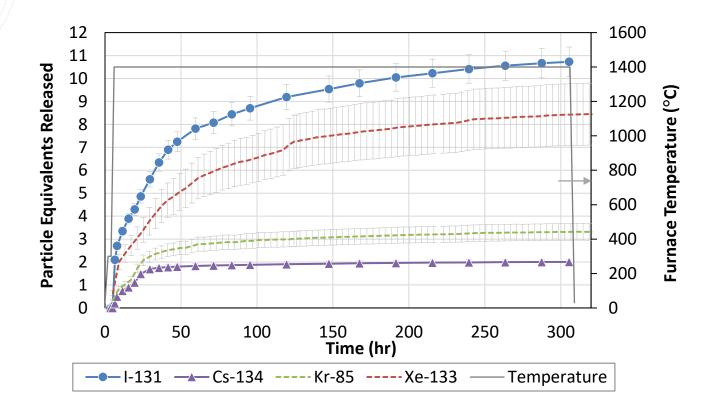

Particle Equivalents Released		
1600°C	1700°C	Total
2.3	0.0	2.3
18.0	12.2	30.3
0.3	0.6	0.9
10.5	4.2	14.7
0.3	0.1	0.4
12.3	3.2	15.5
	1600°C 2.3 18.0 0.3 10.5 0.3	1600°C 1700°C 2.3 0.0 18.0 12.2 0.3 0.6 10.5 4.2 0.3 0.1

Notes:

- 1 particle equates to a compact fraction of 5.29E-4
- "high estimate" includes values determined from minimum detectable activities (MDA)
- "low estimate" takes MDAs to be zero

Reirradiated Compact 3-1 1600°C Test Summary

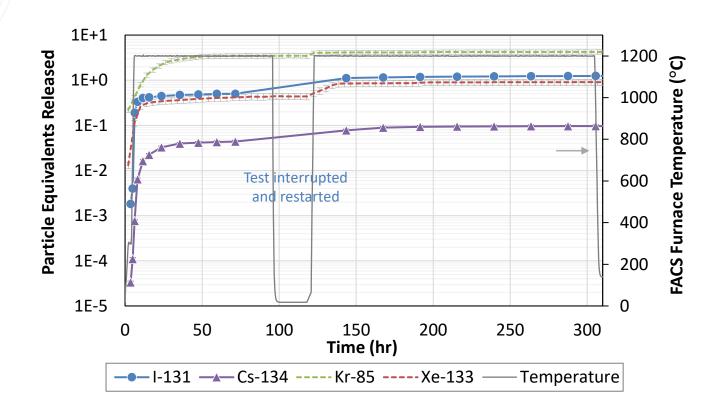
- Fission gases and iodine released fastest. I-131 and Xe-133 releases are similar
- Kernels may retain some iodine and xenon
- Compact retained Cs-134 after irradiation that was released in heating test. Based on DLBL and measured releases, up
 to several particles' worth may remain in compact even after heating.



Reirradiation: ~114 hr Heating test: 1600°C for 202 hr

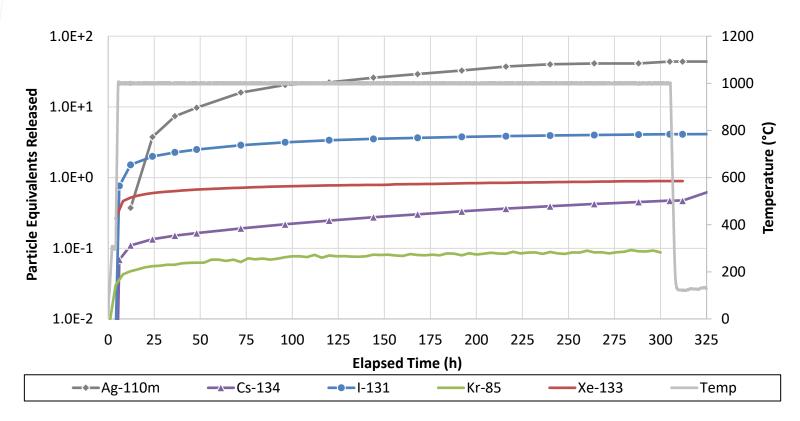
	DTF Inventory Released (%)
Cs-134	4.4
I-131	32
Kr-85	9.3
Xe-133	41

Reirradiated Compact 10-1 1400°C Test Summary


- Fission gases and iodine released fastest: I-131 and Xe-133 releases are similar
- Kernels seem to retain some iodine and xenon

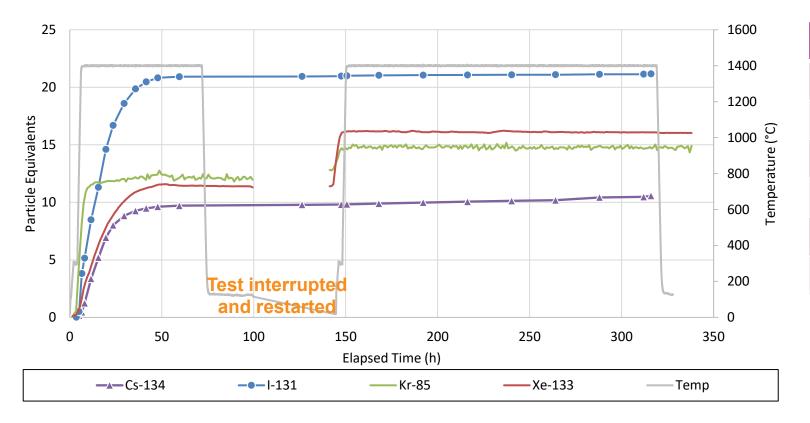
	DTF Inventory Released (%)
Cs-134	10
I-131	54
Kr-85	17
Xe-133	43

Reirradiated Compact 8-1 1200°C Test Summary


- After about 200 hr, 9x less Xe-133 and 5x less I-131 released at 1200°C than at 1600°C
- Temperature cycle from test interruption may have caused a little more release upon reheat phase

	DTF Inventory Released (%)	
Cs-134	0.49	
I-131	6.2	
Kr-85	21	
Xe-133	4.6	

Reirradiated Compact 4-3 1000°C Test Summary (Completed late FY21)


- Compact reirradiated in NRAD for 120 h
- Heated in FACS for 300 h at 1000°C

Releases after 210 h at temp (plate removed at 216.05 h)					
	Particle Equivalents	Percentage of DTF			
Cs-134	0.363	1.8%			
Eu-154	2.00E-04	0.001%			
Kr-85	0.084	0.4%			
I-131	3.853	19.3%			
Xe-133	0.844	4.2%			

Reirradiated Compact 1-2 1400°C Test Summary (Completed Late FY21)

- Test interruption and restart caused additional fission gas release, a seemingly typical response
- Considerably more condensable and gaseous fission products released from this low-burnup compact that had a low irradiation temperature prior to testing

Releases after 204 h at temp (plate removed at 288 h)				
	Particle Equivalents	Percentage of DTF		
Cs-134	10.4	52%		
Eu-154	4.5E-02	0.22%		
Kr-85	14.9	74%		
I-131	21.2	106%		
Xe-133	16.1	81%		

Value > 100% possibly due to underestimate of collection efficiency

Conclusions

- All AGR-3/4 compact and particle reirradiation heating tests have been completed
- Prior irradiation history (e.g., temperature and burnup) affects releases in heating tests.
- Kernels may retain some I-131 and Xe-133: 9x less Xe-133 and 5x less I-131 are released at 1200°C than at 1400°C and 1600°C. Retention of condensable fission products is even greater at 1000°C.
- Short-lived fission product retention in exposed kernels in compacts seems to be better than in deconsolidated exposed kernels.
- Several DTF particles worth of Cs-134 may remain in compacts outside of SiC layers even after heating.
- There may be be a calculational bias that overpredicts Xe-133, thus making its release fraction appear to be smaller than I-131.

Future Work

- Compare fuel performance predictions to these experiments
- Consider applications of the data in empirically based source term analyses
- Some post-test sample analyses from R-DLBL of tested compacts are still in progress
- · May be possible to determine effective diffusion coefficients from the release data
- Tests at temperatures of 1400, 1200, and 1000°C still need to be adjusted with new collection efficiencies determined from tests completed in FY22.

