

Tensile Test Using Standard Capsule

July 2022

Jason L Schulthess, Klint Stephens Anderson, Cody Hale, Matthew M Arrowood, Thomas L Maddock, Anilas Karimpilakkal, Joseph Newkirk

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Tensile Test Using Standard Capsule

Jason L Schulthess, Klint Stephens Anderson, Cody Hale, Matthew M Arrowood, Thomas L Maddock, Anilas Karimpilakkal, Joseph Newkirk

July 2022

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

INL/MIS-22-68050

Tensile Test Using Standard Capsule

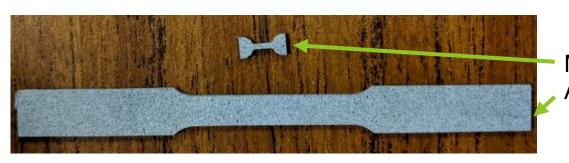
Collaborators: Klint Anderson¹, Cody Hale¹, Matthew Arrowood¹, Tom Maddock¹, Anilas Karimpilakkal², Joe Newkirk²

1- Idaho National Laboratory

2-Missouri University of Science and Technology

Outline

- Motivation
- Challenges and Opportunities
- TTUSC

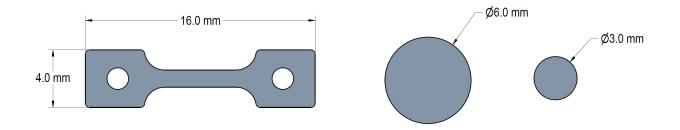

Motivation

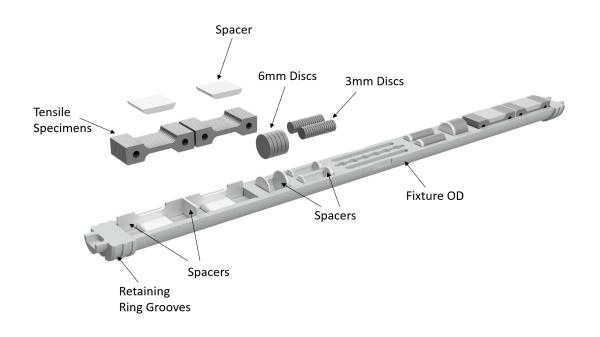
- Need for structural materials for advanced reactor systems^{1, 2, 3}:
 - Higher Energy Neutron Spectrum
 - Higher Temperatures
 - Corrosive Environments
- Research on new materials is being conducted, including on Multi-Principle-Element-Alloys (MPEA's, aka High-Entropy-Alloys, aka Complex-Concentrated-Alloys)
 - In a 2021 review paper⁴, ~4000 papers published on MPEA
 - Of those, only ~100 were focused on nuclear applications and were topical on fabrication, modeling, ion irradiation, and corrosion.
 - Very limited neutron irradiation data on MPEAs
 - Nearly limitless composition space for MPEAs

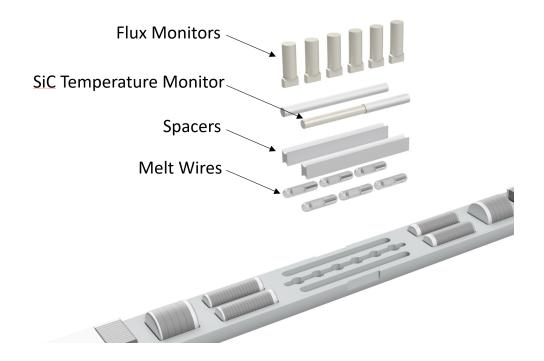
- 1 https://doi.org/10.1016/j.matre.2021.01.002
- 2 https://doi.org/10.1016/j.cossms.2016.10.004
- 3 https://doi.org/10.1038/ncomms13564
- 4 https://doi.org/10.3390/e23010098

Challenges and Opportunities

- How to reduce time and cost to perform neutron irradiation of structural materials?
 - Develop "Standard Capsule" with analysis basis to perform irradiations in ATR "A" positions. Reduces cost and time to get new experiments into ATR using highly available "A" positions.
 - Allows for large numbers of specimens to be irradiated.
- How to deal with large composition space of new materials?
 - Utilize "combinatorial" approach
 - rapid specimen fabrication such as through Spark Plasma Sintering,
 - "fast-to-fail", Computational Materials Engineering Tools
 - reduce specimen size to accommodate greater number of specimens in reactor
 - Validation of smaller specimen size for mechanical testing¹


1 – Karnati, Isanaka, Zhang, Liou, Schulthess, "A Comparative Study on Representativeness and Stochastic Efficacy of Miniature Tensile Specimen Testing", Accepted.


Miniature "MT2" Tensile Specimen ASTM E8 Standard "Sub-sized Specimen"


TTUSC – Tensile Test Using Standard Capsule

- Capsule design driven by three objectives:
 - Capsule should fit into a 15.9 mm diameter or larger position
 - Opens virtually every irradiation position in ATR (availability) and allows selection of test position based on flux values without limitation of the vehicle
 - Capsule should accommodate and maximize the amount of standard specimen sizes used for structural materials irradiation testing
 - Basketless design with interlocking endcaps increases inner diameter (more room for specimens) and makes reconfiguration between cycles possible.
 - Capsule analysis should be enveloping in nature so future tests can leverage the analysis to decrease deployment time
 - Parametric analysis model developed using COMSOL to allow rapid analysis for future tests.

TTUSC - Design

TTUSC - Materials

Composition Code	Composition	Total Specimens Fabricated	Specimen Identification Marking		
B16-Co	Fe33.73Cr32.42Mn33.27Co0.58	20	T001-T020		
A9/B23	Fe21.73Cr20.23Ni22.83Al10.5Cu24.72	23	T021-T043		
B14-Co	Fe25.05Cr23.67Ni26.06Mn24.72Co0.5	24 T044-T067			
B19-Co	Fe27.83Cr26.31Ni28.96Al16.4Co0.5	26 T068-T093			
B18/A6	Fe24.33Cr22.65Ni25.56Mn23.93Al3.53	25 T094-T118			
A7/B20	Fe23.45Cr21.83Ni24.64Al3.4Cu26.68	23	T119-T141		
D4	Cr9.63Al5.0Zr16.89Mo17.77Nb17.2Ta33.51	23	T142-T164		
D5	Cr14.48AI7.51Zr25.41Mo26.72Nb25.88	22	T165-T186		
D6	Cr13.94Al7.23Zr24.45Mo25.72Nb24.90C3.75	20	T187-T206		
D8	Ti12.63Zr24.08V13.44Mo25.32Nb24.52	26	T207-T232		
D19	Cr12.31Ti11.33Zr21.59Mo11.36Nb21.99Ta21.42	23	T233-T255		
D20	Ti20.22Mo40.53Nb39.25	23	T256-T278		
D21	Al10.23Ti18.15Mo36.39Nb35.23	8	T279-T286		
D22	Cr16.47Al8.55Ti15.16Mo30.39Nb29.43	9	T287-T295		
D23	Ti14.60Zr27.82Mo29.26Nb28.33	25	T296-T320		
D18	Cr15.31Ti14.09V15.00Mo28.25Nb27.35	23	T321-T343		
304 L SST, XY Plane	Fe64.9Cr20.0Ni12.0Mn2.0Si1.0P0.045C0.03S0.03	12	T344-T355		
304 L SST, Z Plane	Fe64.9Cr20.0Ni12.0Mn2.0Si1.0P0.045C0.03S0.03	12	T356-T367		

TTUSC – Computational Materials Engineering and Archive Characterization (Ongoing)

Alloy system	CALPHAD	XRD		Optical microscopy	Hardness [kg/mm²]		SEM analysis
	ThermoCalc prediction	As Melt	Annealed	Microstructural features	As melt	Annealed	EDS
D8 - Ti12.63 Zr24.08 V13.44 Mo25.32 Nb24.52	BCC_B2 + C15 Laves + HCP_A3	B2/C15 and HCP A3	Amorphous + B2/C15 and HCP A3	Semi rosettes, dendrites and inter dendritic phases	Dendrite – 688 Inter – 1102 Black – 1587	Dendrite - 586 Inter - 1140 Black - 1545	Dendrite –Mo, Nb, V, Ti, Zr Inter – Mo, Zr, Nb, V, Ti Black – <mark>Zirconia</mark>
D18 - Cr15.31 Ti14.09 V15.00 Mo28.25 Nb27.35	BCC_B2 + BCC_B2	Amorphous	B2	Dendritic phase and porous middle part	767	754	Dendrite – Nb, Mo, Cr, V, Ti Black – Ti oxide
D19 - Cr12.31 Ti11.33 Zr21.59 Mo11.36 Nb21.99 Ta21.42	BCC_B2 + C15 Laves + HCP A3	B2, C15 and HCP A3	B2, C15 and HCP A3	Rosettes, dendrites and inter dendritic phases	Dendrite – 805 Inter – 1313 Black – 1700	Dendrite – 740 Inter – 1144 Black – 1263	Dendrite – Ta, Nb, Mo Inter – Zr, Cr, Ti, Nb, Ta, Mo Black – <mark>Zirconia</mark>
D20 - Ti20.22 Mo40.53 Nb39.25	BCC_B2	B2	B2	Pits in grain interiors and grain boundary phases after annealing	660	527	Matrix –Nb, Mo, Ti, O (3%) Black – Nb, Mo, Ti, O (10%)
D23 - Ti14.6 Zr27.82 Mo29.26 Nb28.33	BCC_B2 + HCP_A3	B2	B2	Dendrites and inter dendritic phases	Dendrite – 738 Inter – 990	Dendrite – 567 Inter – 983	Dendrite – Ta, Nb, Mo Inter – Zr, Ti, Nb, Mo, C, O Black – Zr, Ti, Nb, C, O
B19 - Fe22.12 Cr20.6 Ni23.25 Al10.69 Co23.34	BCC_B2 + SIGMA	B2	Amorphous + B2	Black dendrites and inter dendritic phases	Dendrite – 676 Inter – 729	Dendrite – 617 Inter – 768	Dendrite – Ni, Al, Fe, Cr, C Inter – Cr, Fe, Ni, C Black – Aluminum Nitride

TTUSC - Final Assembly

 Final loading of the capsules and final assembly of the test train (5 capsules containing 240 tensile specimens including temperature sensors and flux wires) was completed and the experiment is ready for insertion in the next ATR cycle.

Figure 1. Capsule with all specimens loaded.

Figure 2. Capsules after final seal welding.

Figure 3. Test train after final assembly. Ready for insertion at ATR.

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.