Ligand-Assisted Separation of Rare Earth Elements via Capillary Electrophoresis

July 2022

Chloe Leighanna Tolbert
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Ligand-Assisted Separation of Rare Earth Elements via Capillary Electrophoresis

Chloe Leighanna Tolbert

July 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Abstract

Rare earth elements (REEs) are a class of critical materials vital in applications such as EVs, batteries, and defense weapons systems. These elements are found primarily in ores, and due to their similar chemical behavior, the challenge remains to find an effective means of separation. The addition of ligands of varying charge, size, denticity, etc. can help to increase separation, yet the mechanistic behavior and factors influencing separation are still poorly understood. Here, iminodiacetic acid (IDA) is used to exploit and maximize differences in electrophoretic mobilities between adjacent REEs. Mobilities and diffusion coefficients of REEs in aqueous media are measured via CE and are compared to MD and FEM simulations.

Key Questions

- How do ligand properties such as charge, denticity, and size affect REE transport?
- What, if any, influence does the counterion have on REE diffusion and mobility?
- Fundamentally, what makes a ligand suitable for effective REE separation?
- How can ligands be selected to favorably improve separation?

Results and Discussion

Conclusions and Future Work

- IDA can serve as a favorable ligand for REE separation, likely due to its partially complexing properties and speciation at the pH used.
- The counterion seems to have a negligible effect on separation even when used in conjunction with a ligand.
- Different ligand systems will be evaluated both experimentally and computationally to understand properties that influence REE transport.

Acknowledgements

This work is supported through the INL Laboratory Directed Research & Development Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. This research made use of the resources of the High-Performance Computing Center at INL, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517.