Baseline Mechanical Testing Characterization

August 2022

Osazee Onaiwu Erhunmwunse
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Baseline Mechanical Testing Characterization

Osazee Onaiwu Erhunmwunse

August 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Baseline Mechanical Testing Characterization
Using ASTM E4 Standard, 5KN Proving Ring and 50KN Proving Ring for the study
Osazee O. Erhunmwunse (Intern)
Idaho State University
Glen C. Papaioannou (Mentor)

Objectives:
• Collect all the previous ASTM E4 verification data for 5KN and 50KN proving ring
• Verify the ASTM Error data calculation if it conforms with ASTM E4 standards
• Trends the full-scale error data to show how the proving rings have performed over time

Method:
• The previous verification data for the indicated force (A) and applied force (B) were obtained for the different proving rings.
• The data obtained was used to calculate the force percent error and its full-scale error.
• Force percent error \((E_p) \) was estimated using the formula below:
 \[
 E_p = \left(\frac{A - B}{B} \right)
 \]
 Where A is the force indicated and B is applied force (ASTM)
• The full-scale error was estimated using the formula:
 \[
 E_{full-scale} = \left(\frac{A - B}{5000} \right)
 \]
 for 5KN proving ring
 \[
 E_{full-scale} = \left(\frac{A - B}{50000} \right)
 \]
 for 50KN proving ring
• The full-scale error is graphed, and the average full-scale error and its standard deviation are estimated to examine the wear of the proving ring over time.

Conclusion:
• The error trend per date of verification for the 5KN proving ring was inconsistent; hence it was difficult to give a definite conclusion if the proving ring is wearing with time, but the average full error shows there is wear in the proving ring.
• The error trend per date of verification in the 50KN proving ring the show wears with time, but the average full-scale error is still below 0.3%; hence it is working fine.

Keyword:
ASTM: American Society for Testing and Materials
www.inl.gov