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Abstract: The electrochemical analysis of theophylline (THP) was investigated by fabricating a
carbon paste electrode (CPE) modified with graphene oxide (GO) along with copper oxide (CuO)
nanoparticles (CuO-GO/CPE). The impact of electro-kinetic parameters such as the heterogeneous
rate constant, the scan rate, the accumulation time, the pH, the transfer coefficient, and the number
of electrons and protons transferred into the electro-oxidation mechanism of THP has been studied
utilizing electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltam-
metry (DPV). The differential pulse voltammetry technique was employed to investigate THP in
pharmaceutical and biological samples, confirming the limit of detection (LOD) and quantification
(LOQ) of the THP. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were
performed to characterize the CuO nanoparticles. The CuO-GO/CPE was more sensitive in THP
detection because its electrocatalytic characteristics displayed an enhanced peak current in the 0.2 M
supporting electrolyte of pH 6.0, proving the excellent sensing functioning of the modified electrode.

Keywords: theophylline; graphene oxide; CuO nanoparticles; voltammetry techniques; limit of detection

1. Introduction

Theophylline (THP) is a product of xanthine and is chemically known as 1,3-dimethylxanthine.
THP is mainly recommended for breathing problems and various asthmatic problems. THP
has been commonly used as a breathing stimulant for chronic difficulty with breathing,
moderate asthma in children, bronchiectasis, chronic obstructive pulmonary disorders,
and adult emphysema [1,2]. When the level of THP rises above the concentration range
of 20 µg/mL in plasma, it causes side effects including nausea, tachycardia, diarrhea, and
disturbance in the central nervous system. It is an antagonist of adenosine receptors and
phosphodiesterase inhibitors [3]. To avoid undesirable effects, it is necessary to set up an
effective method for tracking THP from the lowest levels of plasma concentrations.

The electrochemical techniques used in pharmaceutical, textile, and food-related in-
dustries; ecological examinations; agriculture; and health care services have been successful
in recent decades [4–8]. These methods retain advantages such as having greater sensi-
tivity and selectivity, being user-friendly, being easy to use, being relatively cheap, being
faster, and being applicable for different uses [9–11]. There are also several complications
associated with using bare electrodes, such as slow electron transfer, the fouling of elec-
trodes, etc. Given solving these problems, modifications are necessary. Modifiers, mainly
nanomaterials, nanocrystals, and dyes, can decrease the excess potential required for the
transmission of electrons and enhance the sensitivity and selectivity, thereby making them
excellent contributors to electrochemical reactions [12–14].
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The surface of the working electrode can be effectively modified by utilizing different
modifiers such as surfactants, inorganic complexes, polymer conductors, metal-based
nanoparticles, and clay particles [15–17]. This modified electrode involves an easy and
less expensive preparation method, provides less background current in a wide range of
potential windows and is very easy to adapt [18]. Hence, in the present study, we used a
carbon paste electrode modified with modifiers such as CuO and GO to investigate the
THP molecules.

Graphene is a two-dimensional honeycomb structure made of one-atom-thick hexago-
nal arrays of sp2-bonded carbon atoms. Due to its unique nanostructure and remarkable
qualities, such as excellent conductivity, a vast surface area, and lower manufacturing
costs, graphene has received much attention in many science and technology sectors [19,20].
Graphene has applications in the field of corrosion [21], nanodevices [22], biology [23], and
energy materials [24]. It has also been extensively employed in fabricating electrochemical
electrodes to identify organic molecules, biomolecules, and pharmaceutical compounds.
Graphene is a vital component in electrochemistry-related applications because it has the
characteristics of a single planar structure [25,26]. Graphene oxide (GO) is a graphene
derivative containing varying oxygen, carbon, and hydrogen ratios. The oxidation degree
of graphene oxide is affected by functional groups such as epoxy, hydroxy, and carboxyl on
the GO’s surface. In water, GO has a high level of hydrophilicity and dispersibility. Elec-
troactive biomolecules can be attracted or repelled by the negatively-charged GO through
electrostatic interactions.

The CuO nanoparticles comprise a monoclinic structure and are a p-type semiconduc-
tor with a narrow band gap. These can exhibit a wide potential window, excellent catalytic
properties, effective surface areas, super thermal conductivity, antimicrobial activity, and
photovoltaic properties. Due to these properties, CuO nanoparticles are used in gas elec-
trodes [27], as catalysts [28], as photo-electric chemical materials [29], in magnetic recording
media, as supercapacitors [30], as high-efficiency thermal conducting material [31], as
field emission emitters [32], etc. The CuO nanoparticles have been utilized mainly in
working electrodes as electrocatalysts because of their vast surface area. The graphene
oxide tolerance resulting from the collection and restacking through a van der Waals in-
teraction decreased the electrode surface area. However, combining graphene oxide with
CuO nanoparticles exhibited a higher capacitance than the individual materials. The com-
posite of GO and CuO showed an outstanding rate capability compared with the other
electrodes [33].

Different techniques have been applied to determine the presence of THP [34–43].
These approaches involve using other electrodes to examine THP. In the present study, the
GO and CuO nanoparticles were utilized as modifier materials to fabricate an electrode that
would determine the presence of THP and check its applicability in pharmaceutical and
biological samples. As per the literature, no work has been reported on the investigation of
THP using CuO-GO/CPE. The developed electrode under examination showed excellent
reproducibility, sensitivity, and selectivity with a low detection limit in the analysis of THP.

2. Experimental Setup
2.1. Reagents and Chemicals

GO, CuO, and THP were procured from Sigma-Aldrich. The THP (0.1 mM) standard
stock solution was prepared utilizing 99% pure ethanol. The analytical-grade KH2PO4,
H3PO4, and Na2HPO4 were used to prepare the 0.2 M ionic strength of a phosphate buffer
solution (PBS) in the pH between 3.0 and 9.2 as per the earlier reports. For all experimental
investigations, double-distilled water was used.

2.2. Instrumentation

The electrochemical examination was executed using the electrochemical workstation
model CHI-1112C (USA), which consisted of a three-electrode system; an Ag/AgCl (3.0 M)
electrode as the reference electrode; a platinum wire as a counter electrode; and CuO-GO as
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modified working electrodes immersed in a 10 mL electrochemical cell. The pH meter (EQ-
611, Equiptronics, Mumbai, India) was used to test the prepared pH value of the PBS, and
for scanning electron microscopy analysis, a Model JEOL (SEM Model- jeol JSM-IT500LA,
Tokyo, Japan) was utilized.

2.3. Preparation of the Working Sensor

The bare CPE was prepared with the help of graphite powder and paraffin oil with a
ratio of 7:3. These were blended using a mortar and pestle. The prepared paste was kept for
roughly 24 h to attain homogeneity. The paste was packed into a polytetrafluoroethylene
tube (PTFE), and its surface layer was smoothed with some filter paper to obtain a shining
and smooth electrode surface. Similarly, the modified electrode paste was prepared using
graphite powder, paraffin oil, graphene oxide (0.05 mg), and copper oxide (0.05 mg). The
modified paste was packed into a PTFE tube to obtain a CuO-GO modified CPE. Using
cyclic voltammetry at a 0.05 s−1 scan rate, the voltammograms were recorded with a
potential between 0.8 V and 1.5 V in the 0.2 M supporting electrolytes at a pH of 6.0. All
experimental measurements were recorded at room temperature. After each measure, the
carbon paste was carefully removed from the working electrode, and fresh, homogeneous
paste was packed into the PTFE tube.

2.4. Preparation of the Excipients Solution

The different excipient test solutions were prepared to analyze the effect of the excipi-
ent interference on the electrochemical performance of THP. A standard stock solution was
produced by dissolving a required quantity of the excipients in 100 mL of double-distilled
water. This was followed by sonication for 10 min to obtain a perfectly dissolved solution.
The prepared test solution was transferred to an electrochemical cell, and the investigations
were carried out to analyze the excipients’ interference. Similarly, metal ion solutions
were prepared.

2.5. Pharmaceutical Sample Preparation

The THP tablets were placed in a mortar and pulverized into a fine powder. A small
amount of the fine powder weighing 0.1 mM was dissolved in the THP stock solution using
ethanol. For the complete dissolution of the tablet, sonication was carried out for 10 min,
followed by dilution in 100 mL of double-distilled water. An appropriate concentration of
the tablet solution was examined, employing the DPV technique. The quantity of THP in
the tablet was determined utilizing a calibration plot.

2.6. Urine Sample Preparation

In this study, urine samples were collected from volunteers. At the optimal temper-
ature (25 ± 0.1 ◦C), the samples were centrifuged for 5 min. Further, the samples were
diluted using an electrolyte solution. Then, a known concentration of the THP solution was
added to the urine samples to prepare spiked urine samples. Based on the DPV approach,
the recovery of THP in urine samples was estimated.

3. Results and Discussion
3.1. The Surface Area of the Electrode

In the electrochemical analysis, the surface of the electrode plays a significant role as
the electrochemical signals derive from the analyte molecule and the electrode interaction
depends on the active area of the electrode. The surface area can affect the sensitivity of the
electrode material. Hence, the surface area of the electrode was measured by utilizing a
CV approach for the K3[Fe(CN)6] (1.0 mM) test solution in a KCl (0.1 M) electrolyte. The
cyclic voltammograms were obtained by varying the scan rate values. The Randles–Sevcik
Equation (1) was employed to evaluate the active surface area using the slope value from
the plot of Ip vs.

√
ν [44]. A cyclic voltammogram obtained by varying the scan rate and the

slope value from the plot of Ip vs.
√
ν and by employing the Randles–Sevcik Equation (1)
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was used to evaluate the active surface area [44]. The linear regression equations are
Ip = 33.56

√
ν − 1.157; R2 = 0.999 and Ip = 71.61

√
ν − 2.319; R2 = 0.986 for the bare CPE and

CuO-GO/CPE, respectively (Figure 1). The surface areas of the electrode were found to
be 0.045 cm2 for the bare CPE and 0.096 cm2 for the CuO-GO/CPE. The obtained value
shows a nearly two-fold enhancement of the surface, providing the effective modification
of the electrode by including the CuO and the GO. The geometrical surface area of the
utilized electrode was 0.09 cm2, comparable with the obtained active surface area of the
modified electrode.

Ip =
(

2.69× 105
)

n3/2ADo 3/2C1/2 (1)
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(A) At bare CPE. (B) At CuO-GO/CPE.

3.2. Characterization of the Modifier

The XRD pattern of the CuO nanoparticles, displayed in Figure 2A, shows a monoclinic
single-phase structure. The diffraction peaks of the CuO nanoparticles are at 2θ = 35.53◦ and
38.67◦. The peak intensity and positions of the peaks are very close to the earlier reported
values. The diffraction peaks are broad due to the nanostructure of the CuO nanoparticles.
The AFM analysis of the modified electrode revealed in Figure 2B, exhibited an improved
surface roughness of the modified electrode. As shown in the SEM image (Figure 2C),
the CuO nanoparticles formed an irregular planar structure. The test sample possessed a
platter-like shape, which was neither amorphous nor a crystal structure, as depicted in the
SEM image of the GO in Figure 2D. By its flaky texture, the surface morphology of the GO
was characterized. The SEM image displays the edges of the GO that are thinner and more
prominent in the interspace.

3.3. Electrochemical Behavior of THP

The cyclic voltammetry approach was used to monitor the electrochemical behavior
of the THP in the working electrodes using a PB solution with a pH of 6.0. The cyclic
voltammograms were recorded at a 0.05 Vs−1 scan rate for the 0.1 mM THP and the bare
and modified CPE. From a comparative study (Figure 3A), we observed a considerable
conversion in the cyclic voltammogram of the 0.1 mM THP. The electro-oxidation peak with
a current value of 2.73 µA was noticed in the CPE, 8.91 µA in the GO/CPE, 7.29 µA in the
CuO/CPE, and 16.40 µA in the CuO-GO/CPE. Nanoparticles of the CuO were doped with
the GO using its functional groups as adsorptive sites. Further, the hydrophilic properties
of the GO are caused by their polar oxygen functional groups. According to reports, the
oxygen elements of the GO can stabilize the adsorbed CuO nanoparticles, which act as a
nucleation center for the metal nanoparticles. Including CuO nanoparticles and the GO
in preparing the electrodes showed the maximum peak intensity compared to the bare
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CPE, GO/CPE, and the CuO/CPE due to the large surface of the CuO and the GO. A
well-oriented enhanced peak was detected in the CuO-GO/CPE (Figure 3B), which proves
the successful modification of the CPE. The area of the modified CPE was important for
enhancing selectivity and sensitivity. Thus, the modified CuO-GO/CPE was utilized for
further investigation. Further, a reduction peak was not observed in the reverse scan,
suggesting that the process was irreversible in the electrode.
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3.4. Effect of the Accumulation Time

The electrochemical oxidation of the 0.1 mM THP on the electrode’s surface depended
on the accumulation time between the THP and the surface of the electrode, which indicated
that the concentration of the THP molecule may have affected the electrochemical activity
in the vicinity of the electrode. The cyclic voltammetry technique was employed to study
the accumulation time, and we observed that the voltammograms for the 0.1 mM THP
concentration were from 0 s to 60 s. The detailed studies of the impact of the accumulation
time on the oxidation peak current are shown in Figure 4. We observed a well-oriented and
intensified peak at 10 s, due to the high concentration of analyte molecules aggregating
near the surface of the electrode, causing the peak current to increase, directly affecting
the electrode’s sensitivity. Further, after 10 s of accumulation time, the saturation limit
was reached, and the peak current decreased. However, a maximum peak intensity was
observed for 10 s of the accumulation time; hence, the same was used as the optimum for
further parameter examinations.
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3.5. Variation in the PH

In the electrochemical examination, the supporting electrolytic solutions of various pH
values play a vital role. The peak current and potential values depend on the supporting
electrolytes of different pHs. Thus, it was essential to investigate the impact of the pH of
the supporting electrolytes on THP to conclude the optimal pH. In this electrochemical
investigation, the CV technique was utilized, and cyclic voltammograms were recorded
with a potential window between 0.8 V and1.5 V. Figure 5A displays the impact of a PB
solution of 0.2 M for pH ranges varying from 3.0 to 9.2 in a 0.1 mM THP solution. Figure 5B
shows that with the increasing pH value, the potential values of the THP shifted to less po-
tential, pointing to the participation of protons in the electrochemical oxidation process [45].
From the plot pH vs. Epa, we attained the regression equation: Epa (V) = −0.044 pH + 1.449;
R2 = 0.993. In this investigation, the slope value −0.044 V/pH is closer to the standard
Nernstian value of 0.059 V/pH, indicating the same number of proton and electron par-
ticipation in the electro-oxidation process [46]. At pH 6.0, we obtained the highest peak
current (Figure 5C). Hence, pH 6.0 was optimized for further investigation.
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3.6. Influence of the Scan Rate

Physicochemical parameters such as electron participation, electron transfer coefficient,
and rate constant can be calculated with the help of scan rate studies. The electrochemical
examination was performed utilizing the CV technique by changing the scan rate from
0.01 Vs−1 to 0.3 Vs−1, as shown in Figure 6A. The linear relationship between the peak
current (Ipa) and the square root of the scan rate (

√
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; R2 = 0.961.
The Laviron Equation (3) [49] was utilized in the irreversible electrochemical oxidation

process to calculate the heterogeneous rate constant value. As the scan rate increases, the
potential of the peak shifts towards a positive value, confirming that the electro-oxidation
process was irreversible. Using the Bard–Faulkner Equation (2) for the irreversible process,
the charge transfer coefficient (α) was calculated to be 0.55.

Ep − Ep/2 =

(
47.7
α

)
mV (2)

Ep = E0 +

(
2.303RT
(1− α)nF

)
log

(
(1− α)nF

RTk0

)
+

(
2.303RT
(1− α)nF

)
log υ (3)

where E is the formal redox potential, k0 is the heterogeneous rate constant, n is the number
of electrons involved in the electrochemical reaction, and other symbols represent standard
descriptions. The value of n and k0 were calculated using the plot of Epa vs. log
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heterogeneous rate constant was determined to be 4.49 s−1, and the number of electrons
participating in the electrochemical oxidation of the THP in the modified electrode was
computed to be 1.92 ≈ 2.0.
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3.7. Plausible Reaction Mechanism of the THP

From the studies on the scan rate, it was noticed that the THP experiences an electro-
chemical oxidation reaction controlled by a diffusion process. This examination reveals that
the number of participating electrons in the electrochemical reaction was two, according to
the linear equation of Epa vs. pH, involving an equal number of protons and electrons in
the electrochemical mechanism [50]. The possible electro-oxidation mechanism of the THP
is shown in Scheme 1.
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4. Analytical Applications 
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4. Analytical Applications
4.1. Influence of Concentration Variation

The concentration of THP was analyzed using the DPV technique. The DPV inves-
tigations were performed by changing the THP concentration range from 0.1 to 3.5 µM.
From Figure 7A, it can be visualized that the peak current increases with an increase in the
concentration of the THP. The linear relationship between Ipa and the concentration from
the calibration plot, as shown in Figure 7B, is Ipa = 1.627C (THP) + 0.475; R2 = 0.987. The
detection limit and quantification were evaluated utilizing the following equations [51].

LOD = 3s/m (4)

LOQ = 10s/m (5)

where m is the slope value from the calibration plot and s is the intercept of the standard
deviation. The values for the limit of detection (LOD) and limit of quantification (LOQ)
were evaluated to be 8.33× 10−9 and 27.79× 10−9, respectively. Table 1 gives a comparative
investigation with the relative reported work.
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Table 1. Comparison of detection limits.

Sl. No. Electrodes Linearity Range Detection Limit Reference

1 MWNTs/Au/poly-L-lysine/SPE 10–200 µM 2.0 × 10−6 M [34]

2 CdSe/GCE 1.0–700 µM 4.0 × 10−7 M [35]

3 poly(H-A)/GCE 0.4–17 µM 3.2 × 10−7 M [36]

4 P(L-Asp)/f-MWCNTs/GCE 0.1–50 µM 2.0 × 10−7 M [37]

5 GQDs/SPE 1.0–700.0 µM 2.0 × 10−7 M [38]

6 Poly(CTAB)/GCE 0.5–1000 µM 1.1 × 10−7 M [39]

7 MnO2 nanosheets/IL-graphene/GCE 1–220 µM 1.0 × 10−7 M [40]

8 AuNPs/aptaelectrode 0.1–80 µM 7.0 × 10−8 M [41]

9 MWCNTs/GCE 0.3–10 µM 5.0 × 10−8 M [42]

10 PLCY/N-CNT/GCE 0.10–70.0 µM 3.8 × 10−8 M [43]

11 CuO-GO/CPE 0.1–3.5 µM 8.33 × 10−9 M Present method



Micromachines 2022, 13, 1166 10 of 14

4.2. Impact of the Excipients

To investigate the interaction between THP and the excipients used in medical formu-
lations, the most commonly used excipients were selected. A known concentration of THP
and a hundred-fold excess concentration of excipients were prepared for this examination.
The DPV technique was used to measure the shift in the potential values for the THP, and
the absence and presence of excipients between the potential values of 0.8 and 1.5 V. Based
on Figure 8, the excipients did not interfere with the THP oxidation signal as the change in
peak potential was less than 5%.
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4.3. Impact of Metal Ions

We also examined the influence of metal ions in the electroanalysis of THP. Table 2
shows the results of the complete investigation, and it was noticed that (NH4)2SO4, CuSO4,
Cu(CH3COO)2, KNO3, etc., did not interfere with the peak signals of THP even at a
hundred-fold excess concentration. The interference was within a tolerance limit of less
than 5%, as shown in Table 2. As a result, the electrode was selective to the THP in the
presence of metal ions.

Table 2. Metal ion study on THP.

Metal Ions Potential Observed (V) Potential Difference (V) Signal Change (%)

(NH4)2SO4 1.128 0.006 0.53

CuSO4 1.130 0.008 0.71

Cu(CH3COO)2 1.125 0.003 0.26

KNO3 1.119 −0.003 −0.26

NH4Cl 1.127 0.005 0.44

BaCl2 1.129 0.007 0.62

KCl 1.120 −0.002 −0.17

NaCl 1.128 0.006 0.53

4.4. Analysis of the Pharmaceutical Sample

The capability of the developed electrode was tested by a tablet sample examination.
The tablet solution preparation method was provided in Section 2.5. The samples were
examined by utilizing the DPV technique. The known quantity of the standard THP tablet
samples was investigated and correlated with the results acquired from the concentration
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variation studies of known concentrations. The recovery value obtained was 98%, along
with an RSD value of 2.21%. Table 3 summarizes the findings of the tablet analysis.

Table 3. Analysis of the tablet sample.

THP Observations

Labeled claim (mg) 300
Obtained amount(mg) a 294

RSD% 2.21
Added (mg) a 1.0
Obtained (mg) 0.98

Recovery% 98
a (Average of three determinations).

4.5. Analysis of the Urine Sample

The reliability of the CuO-GO/CPE electrodes was examined through a urine sample
analysis. Urine sample solutions were prepared and mentioned in Section 2.6. A DPV
method was utilized to calculate the recovery of THP in the human urine samples. The
calibration plot was used to evaluate the unknown concentration of the analyte; the recovery
values ranged from 95 to 98.75%. The recovery values show the efficiency of the developed
electrode in determining the spiked THP in the urine sample. The obtained results are
shown in Table 4.

Table 4. Urine sample analysis.

Urine Samples Added (10−6 M) Obtained (10−6 M) Recovery (%)

1 2.0 1.90 95.00
2 1.8 1.77 98.75
3 1.6 1.56 97.50

(Average of three determinations).

4.6. Stability of the Developed Electrode

The repeatability measurements were performed to verify the stability of the devel-
oped electrode. The CuO-GO/CPE was stored in an airtight vessel for 6 days before
analysis. The constructed electrode retained 91.91–99.26% of its initial response after 6 days
of storage, providing excellent stability and capacity. The reproducibility was also one of the
important factors in determining the efficacy of the developed sensor. The investigations
were carried out to check the stability of the modified electrodes for more than one analysis.
The CV measurements were taken for THP with the same paste as for the three respective
trials, and it was noticed that the peak current declined gradually after the second and third
measurements. Hence, washing the electrode and using fresh paste for each measurement
was recommended to obtain reproducible results. The sensor reproducibility was examined
by taking five consecutive measurements (using a new paste and after pretreatment for
every measurement). The results showed 1.17% of the RSD, proving the extraordinary
reproducibility nature of the proposed sensor material. Furthermore, the CuO-GO/CPE
shows higher stability and reproducibility, suggesting that the sensor can be applied in
analytical applications.

5. Conclusions

The cyclic voltammetry and differential pulse voltammetry techniques have success-
fully identified THP in the fabricated CuO-GO/CPE. Compared to the bare CPE, the
CuO-GO/CPE has greater sensitivity and a faster electron transfer rate. From the influence
of the pH study, it was noticed that pH 6.0 was optimal for further investigations. The
THP experienced an irreversible electrochemical process involving the transfer of two
protons and two electrons on the electrode surface and controlled via a diffusion process.
The physicochemical parameter was evaluated by examining the scan rate variation. The
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CuO-GO/CPE electrode shows a lower detection limit (8.33 × 10−9 M), superior sensitivity,
and greater selectivity. THP may also be detected in pharmaceutical and urine samples
using the modified electrode. An interference examination indicated that the excipients
and metal ions do not affect the oxidation signal of the THP, thus revealing the excellent
selectivity of the electrode.
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