Radiolytic Studies of Single-Cycle Extraction Systems

July 2022

Gregory P Horne, Corey David Pilgrim, Jacy Kathleen Conrad, Peter R Zalupski, Travis S Grimes, Brian Rotermund, Stephen Mezyk, Andrew Cook
DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.
Radiolytic Studies of Single-Cycle Extraction Systems

Gregory P Horne, Corey David Pilgrim, Jacy Kathleen Conrad, Peter R Zalupski, Travis S Grimes, Brian Rotermund, Stephen Mezyk, Andrew Cook

July 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Radiolytic Studies of Single-Cycle Extraction Systems

INL/CON-22-68159
Single Cycle Processes & Innovative Aqueous Separations Radiation Chemistry

Solvent Extraction Reprocessing
Ligands/organic diluent: \(\text{HNO}_3/\text{H}_2\text{O} \)
(± additives)

Conversion to fuel → Reactor

Plutonium and recovered uranium → Spent fuel → Reprocessing

Waste management and storage

Gaseous Phase
Organic Phase
Aqueous Phase
Precipitation Oxide Layer Structural Materials

Reprocessing radiation chemistry

Water Radiolysis

\[
\text{H}_2\text{O} \rightleftharpoons e^-, \cdot\text{H}, \cdot\text{OH}, \text{H}_2, \text{H}_2\text{O}_2, \text{H}_{\text{aq}}^+
\]

Indirect Radiation Effects

\[
\text{HNO}_3 + \cdot\text{OH} \rightarrow \cdot\text{NO}_3 + \text{H}_2\text{O} \\
\text{NO}_3^- + e^- \rightarrow \text{NO}_3^{2-} \\
\text{NO}_3^{2-} + \text{H}_2\text{O} \rightarrow \cdot\text{NO}_2 + 2\text{OH}^- \\
\text{NO}_3^- + \cdot\text{H} \rightarrow \text{HNO}_3^- \rightarrow \cdot\text{NO}_2 + \text{OH}^- \\
\cdot\text{NO}_2 + \cdot\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4 \\
\text{N}_2\text{O}_4 \rightarrow \text{HNO}_2 + \text{HNO}_3
\]

Direct Radiation Effects

\[
\text{NO}_3^- \rightleftharpoons \text{NO}_3^{*} \rightarrow \text{NO}_2^- + \text{O} \\
\text{HNO}_3 \rightleftharpoons \text{HNO}_3^* \rightarrow \text{HNO}_2 + \text{O} \\
\text{NO}_3^- \rightleftharpoons \cdot\text{NO}_3 + e^- \\
\text{HNO}_3 \rightleftharpoons \cdot\text{NO}_3 + \cdot\text{H}
\]

Alkane Radiolysis

\[
\text{R-CH}_3 \rightleftharpoons e^-, \text{RH}^+, \text{RH}^+, \cdot\text{CH}_3, \cdot\text{H}, \text{H}_2
\]

Reprocessing radiation chemistry

Water Radiolysis

$H_2O \rightarrow e_{aq}^-, H^+, \cdot OH$

Direct Radiation Effects

$NO_3^- + NO_3^- \rightarrow NO_3^- + O_2$

Key Transient Species

$e_{aq}^-, H^+, \cdot OH$ from H_2O

$\cdot NO_3$ from HNO_3

$RH^{\cdot\cdot}$ from n-dodecane

$N_2O_4 \rightarrow HNO_2 + HNO_3$

References:
Reprocessing radiation chemistry

Water Radiolysis

\[\text{H}_2\text{O} \rightarrow e^- + \text{H}^\bullet + \cdot\text{OH}, \text{H}_2, \text{H}_2\text{O}_2, \text{H}_\text{aq}^+ \]

Indirect Radiation Effects

\[\text{HNO}_3 + \cdot\text{OH} \rightarrow \cdot\text{NO}_3 + \text{H}_2\text{O} \]

\[\text{NO}_3^- + \text{e}^- \rightarrow \cdot\text{NO}_3^- + \text{H}_2\text{O} \]

\[\cdot\text{NO}_3^- + \text{H}_2\text{O} \rightarrow \cdot\text{NO}_2 + 2\text{OH}^- \]

\[\cdot\text{NO}_3^- + \text{H}^- \rightarrow \text{HNO}_3^- \rightarrow \cdot\text{NO}_2 + \text{OH}^- \]

\[\cdot\text{NO}_2 + \cdot\text{NO}_2 \leftrightarrow \text{N}_2\text{O}_4 \]

Direct Radiation Effects

\[\text{NO}_3^- \rightarrow \text{NO}_3^* \rightarrow \text{NO}_2^- + \text{O} \]

\[\text{HNO}_3 \rightarrow \cdot\text{NO}_3^- \rightarrow \text{HNO}_2 + \text{HNO}_3 \]

Today’s Research Focus

RH\^+ from \textit{n}-dodecane

R - CH\textsubscript{3} \rightarrow e^- , RH^\bullet + , RH^\bullet , \cdot\textsubscript{CH}_3 , H^\bullet , H_2^\bullet

\[\text{N}_2\text{O}_4 \rightarrow \text{HNO}_2 + \text{HNO}_3 \]

\[\text{H}_2 \]

\[\]

References:

Complexation effects

Fig 1. Results of the Fukui function calculations performed on M-TEDGA complexes. Color scales depict the values of the Fukui function calculated in Å3. (a) [Nd(TEDGA)$_3$]([NO$_3$])$_3$, (b) [Nd(TEDGA)$_3$]Cl$_3$, (c) [Am(TEDGA)$_3$]([NO$_3$])$_3$, and (d) [Am(TEDGA)$_3$]Cl$_3$.

“...in the presence of macroconcentration of lanthanides and actinides, TODGA degradation by radiolysis is minimal and does not generate problematic degradation products.” Kimberlin et al., PCCP, 2022.

- Ilan and Czapski, Biochimica et Biophysica Acta, 1977, 498, 386.
- Kimberlin, Saint-Loius, Guillaumont, Cames, Guilbaid, and Berthon, PCCP, 2022, 24, 9213.
Complexation effects under MRWFD

- Toigawa et al., PCCP, 2021, 23, 1343.
- Celis-Barros et al., PCCP, 2021, 23, 24589.
Transients are detected by optical absorption changes.

Methodology

Psuedo-First-Order Rate Coefficient \((10^8 \text{ s}^{-1}) \)

\[\ln(\text{TODGA})^3 (\text{mM}) \]

\[k(\text{[Yb(TODGA)3] + RH}^+) = (8.58 \pm 1.81) \times 10^9 \text{ M}^{-1} \text{s}^{-1} \]

\[k(\text{[Gd(TODGA)3] + RH}^+) = (2.47 \pm 0.18) \times 10^9 \text{ M}^{-1} \text{s}^{-1} \]

\[A = 7.87 \times 10^9 \text{ s}^{-1} \]

\[E_a = 0.19 \text{ J mol}^{-1} \]

\[k(\text{TODGA} + \text{RH}^+) = (9.72 \pm 1.10) \times 10^9 \text{ M}^{-1} \text{s}^{-1} \]

Lanthanide Complexed CMPO Radiolysis

$k([\text{Nd(CMPO)}_n] + \text{RH}^{++}) = (5.13 \pm 0.85) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$

$k([\text{Gd(CMPO)}_n] + \text{RH}^{++}) = (1.09 \pm 0.03) \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$

$k([\text{Yb(CMPO)}_n] + \text{RH}^{++}) = (1.35 \pm 0.28) \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$

Conclusions

- Complexation has a profound effect on reaction kinetics, from changes in electron distribution to size.
- Understanding the impact of complexation on the radiation-induced degradation mechanisms of reprocessing ligands is essential for accurate estimates of process viability.
- M4 milestone due September 30th, 2022, draft manuscript. On track.

Future Research

- Continued support in evaluating the radiation robustness of next generation ligands.
- Determine the impact of post-VOLOX direct dissolution formulations on metal-loaded ligand radiolysis behavior.

References:
- Horne et al., Does Addition of 1-Octanol as a Phase Modifier Provide Radical Scavenging Radioprotection for N,N,N',N'-tetraoctyldiglycolamide (TODGA)? PCCP, 2020, 22, 24978.
Acknowledgements