
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/JOU-22-68388-Revision-0

SoK: A Framework for and
Analysis of Software Bill of
Materials Tools

April 2022

Arushi Arora

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/JOU-22-68388-Revision-0

SoK: A Framework for and Analysis of Software Bill of
Materials Tools

Arushi Arora

April 2022

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

SoK: A Framework for and Analysis of Software Bill of
Materials Tools

Arushi Arora, Virginia L. Wright, Christina Garman
ABSTRACT
Modern software development has gradually become more
complex, leveraging available open-source software and third-
party components. This practice has raised questions about
the provenance, licensing, versioning and compliance of
reused code and its dependencies. Furthermore, it is par-
ticularly important to review such code fragments and third-
party components for known-vulnerabilities before they are
included in a software product. A Software Bill of Materials
(SBoM) is a mechanism to achieve such an analysis, provid-
ing transparency and visibility into a software product to
both the software developer and its respective consumer. An
SBoM lists information and details about all the elements
constituting a piece of software and can, therefore, be used
to evaluate associated security risk. While the concept of
SBoMs is growing in popularity, it is still fairly new to many
organizations, causing them to potentially struggle with pro-
ducing and processing SBoMs and limiting their widespread
adoption.

In this work, we delve into the area of SBoMs and present
the state-of-the-art SBoM tools, creating a framework for
analysis and categorizing them based on a diverse set of
features and functionalities. We are the first to provide a
detailed analysis of 83 open-source SBoM tools along with a
perspective on how a potential SBoM user can select a tool
based on their specific requirements. Our work aims to help
promote understanding of this domain, thereby encouraging
and furthering its overall adoption. We additionally seek
to pave a path for future work in this area by providing
recommendations to tool developers and users, researchers,
and standardizing organizations.

KEYWORDS
Software Bill of Materials (SBoMs), Software supply chain
security, SoK, SBoM tools

1 INTRODUCTION
Software supply chains have become increasingly complex
and dynamic over the years. A large portion of the code that
constitutes today’s modern software has been reused and de-
rived from miscellaneous open-source locations, for example
in the form of libraries. This diverse nature of contemporary
software products raises the need for an inventory of its
subcomponents.

A Software Bill of Material (SBoM), which aims to pro-
vide this information, is therefore becoming a significant
part of modern software. The concept of an SBoM became
much more prevalent after the release of US Executive Or-
der 14028 [30], which emphasizes safety and integrity of
the software supply chain and directed the use of SBoMs to
enhance US cybersecurity. This Executive Order and moti-
vation partially came in response to the SolarWinds supply
chain hack [102], where one of SolarWinds’ software prod-
ucts (Orion) was injected with hidden malicious code that
allowed hackers to gain unauthorized access to the software’s
ecosystem. This attack impacted about 18,000 of the com-
pany’s customers, along with several contractors who were
indirectly affected through third parties. Even more recently,
the Apache Log4j (a logging library for Java) remote code
execution vulnerability [34] allowed attackers to control the
affected target system in addition to stealing the stored data,
affecting both open-source and proprietary software across
the software supply chain. Many organizations (and some
even unaware) utilize this library as a subcomponent in their
various Java-based software, again demonstrating the need
for better awareness of the subcomponents of a software
system.
Access to SBoMs is even more important when the cor-

responding software handles sensitive information or is in-
volved in critical infrastructure. It is therefore important for
the user of a piece of software to have a transparent view of
the product it is using (or wishes to use). SBoMs can thus aid
in verifying software components’ compliance (i.e., that the
components meet its user’s software standards) and moni-
toring them for vulnerabilities (if not already present). They
may also help in reviewing and backtracking the presence
of an affected software subcomponent in case of a newly
discovered vulnerability or a cyberattack.
In order to reap the various benefits that SBoMs can pro-

vide, it is essential to have tools that can accomplish their
generation, exchange, and consumption. As the nature of
contemporary software continues to become convoluted and
elaborate, it is also important to automate these techniques.
We believe that one of the large barriers to the widespread
adoption of SBoMs is the unavailability of a unified frame-
work and documentation that can aid software developers
and their purchasers in both the usage of SBoMs as well as
understanding the different features and trade-offs offered

by different tools. In other words, there still exists a wide
gap between the availability and the usage of SBoM tools.
Our Contributions. In this work, we aim to provide an
in-depth analysis of the state-of-the-art SBoM open-source
tools, building a framework and categorizing them based
on the SBoM tool taxonomy. We believe this framework
will also be helpful as this relatively new space continues
to evolve and new tools are developed, allowing for easier
and more consistent comparison between them. In addition,
based on our analysis, we provide insights and recommenda-
tions about what tools might best fit different use cases and
needs. We hope to both provide a discussion of current SBoM
tools in detail, but also to pave a path for future work by pro-
viding recommendations to tool developers, software users,
researchers and standardizing organizations. This work is a
step forwards to ease and automate SBoM production and
management, hopefully leading towards its more widespread
adoption and capturing the knowledge that can steer SBoM
users to practice vulnerability management and software
compliance.
Roadmap. Section 2 presents background and related work.
Section 3 provides an in-depth discussion on state-of-the-
art SBoM tools, and discusses our framework to categorize
them based on various functionalities (Table 2). Section 4 pro-
vides a perspective on how to choose a tool for potential tool
users. Section 5 provides general insights along with recom-
mendations to tool developers, software users, researchers,
and standardizing organizations for future work. Section 6
concludes this work.

2 SBOM BACKGROUND AND RELATED
WORK

An SBoM provides a list of underlying components, along
with their relationships, dependencies, and additional rele-
vant information for a piece of software. The main objective
of an SBoM is to uniquely identify a software product, and
it therefore includes baseline attributes such as the SBoM’s
author and supplier’s name, its timestamp, underlying com-
ponents, and their respective relationships, versions, unique
identifiers, and cryptographic hashes [56]. This information
can additionally help to indentify components that are ap-
proaching (or have approached) their end-of-life along with
their compliance or technologies they may support.
In this section, we provide a brief overview of existing

SBoM formats [49] followed by an SBoM tool taxonomy [48],
which we utilize later on in Table 2 for a functionality-based
categorization of SBoM tools.

2.1 SBoM Formats
Software Package Data Exchange (SPDX) [91], an open-
source project and an open standard for delivering SBoM

information, provides a common format for organizations
and constitutes provenance, license, security, and other as-
sociated data. The standard aims to reduce redundancy and
improve compliance, security, and dependability. SPDX has
been accepted as the international open standard for secu-
rity, license compliance, and other software supply chain
artifacts as it can represent all the elements found in tra-
ditional software development and deployment. The spec-
ification provides this information in various file formats
including Resource Description Framework in Attributes
(RDFa), Microsoft Excel Open XML Spreadsheet (XLSX), Ex-
tensible Markup Language (XML), YAML Ain’t a Markup
Language (YAML), and JavaScript Object Notation (JSON),
thereby efficiently collecting and sharing data and improv-
ing accuracy. An SPDX document can be created for any
software component (or set of components), an individual
file, or even a snippet of code that can be exchanged as part
of an SBoM. Table 4, in the Appendix, gives an overview of
SPDX Version 2.2.1.

The SPDX Lite [87] format supports a subset of the SPDX
specification and provides a software’s basic information
including the mandatory fields from the document creation
and package information segments.
Software Identification (SWID) [52] tags provide de-

scriptive information about a particular release of a software
product in XML format, thereby allowing organizations to
trace the software installed on their machines. The tag lists
and provides cryptographic hashes for the elements that con-
stitute the software and reports the author of the software
as well as the tag. The SWID tag is generated during the soft-
ware’s installation process and deleted when the software is
uninstalled. A corpus tag is created during a pre-installation
stage of an installable software that identifies and defines
the product. After the software product is installed on a com-
puting device, a primary tag is created which describes the
installed product. Further, a patch tag is created every time
incremental changes or updates are made to a software prod-
uct. Supplemental tags are used to provide any additional
information about the software product and to maintain the
integrity of primary and patch tags. Table 3 (in the Appendix)
provides an overview of an SWID tag.
The Concise SWID (CoSWID) [35] tag uses concise bi-

nary object representation to reduce the size of a SWID by a
notable measure and support domains such as the internet
of things (IoT) which utilizes constrained devices.
CycloneDX [23] is another widely accepted SBoM stan-

dard specifically intended for use in supply chain component
analysis and application security settings. It provides infor-
mation related to operating systems, containers, firmware,
libraries, frameworks, files, services, and optionally, hard-
ware, describing the entire software stack. The format can
be represented as XML, JSON, and Protocol Buffers. Table 5

SoK: A Framework for and Analysis of Software Bill of Materials Tools

(in the Appendix) provides an overview of CycloneDX spec-
ifications. A package URL is a way to uniquely identify and
locate a software package using a URL string. This is an ef-
fort to standardize and reliably associate a software package
utilizing a simplistic and expressive syntax.

Common platform enumeration (CPE) [101] is a data
format that identifies applications, operating systems, and
hardware devices present among an organization’s comput-
ing assets, though it does not independently recognize sub-
components.

It is worth noting that SBoM formats allow scope for a soft-
ware component’s modification thus providing more room
for customization and backporting. This could be achieved
using a link in SWID, pedigree in CycloneDX, or annotation
in SPDX. Additionally, it is essential to achieve interoper-
ability of SBoMs across diverse organizations, that may opt
to utilize different SBoM standards, to investigate potential
vulnerabilities and associated risks and for sharing and ex-
changing SBoMs.

2.2 SBoM Tool Taxonomy
We now describe a taxonomy for the existing diverse set of
SBoM tools as identified by NTIA [48]. This categorization is
critical for any agent involved in dealing with (generating or
managing) SBoMs or is otherwise interested in developing
and designing SBoM tools. Table 1 defines these categories
as (1) produce which defines tools that can generate SBoMs;
(2) consume which recognizes tools that can aid in under-
standing, comparing and assessing SBoMs; and (3) transform
which places tools that can combine SBoMs or convert their
format type. This taxonomy and framework is used in Table
2 in Section 3 to categorize SBoM tools.

2.3 Related Work
The National Telecommunications and Information Adminis-
tration (NTIA) has made impressive progress in the domain
by releasing introductory guidance on the use of SBoMs[47].
The working group has additionally released documentation
on relevant concepts and terminologies [46], use cases [45],
tool taxonomy [48] and a survey on standardizations [49].
To ascertain the exploitability of a vulnerability, a separate
concept of the Vulnerability Exploitability eXchange (VEX)
document has been presented [50]. This provides a user with
information on whether a specific vulnerability (or a vulner-
able component) even affects the corresponding software
product. SBoMs may prove to be of great benefit, especially
in the case of critical infrastructure wherein a single vulner-
ability can be catastrophic [9]. One piece of related work
examines the use of SBoMs specifically in medical technolo-
gies and how it can benefit the healthcare supply chain [5].
We argue that this domain is still developing as well and also

Table 1: Taxonomy of a BoM tool [48]

Category Type Description

Produce
Build Automatic BoM creation as part of

building a software artifact contain-
ing information about the build

Analyze Analysis of source or binary files
generating the BoM by inspection
of the artifacts & associated sources

Edit Assists manual entry or allows BoM
data editing

Consume
Diff Enables comparison of multiple

BoMs
View Allows understanding of the con-

tents in human readable form, sup-
porting decision making

Import Supports discovering, retrieving,
and importing a BoM into the sys-
tem for further processing and anal-
ysis

Transform
Translate Permits file type conversion while

preserving the same information
Merge Allows combining multiple sources

of BoMs and other data together for
analysis and audit purposes

Support Support use in other tools by APIs,
object models, libraries, transport,
or other reference sources

lacks work that fills the existing gap between the concept
of SBoMs and their adoption, and that our work can be con-
sidered domain-agnostic and hence more broadly applicable.
Therefore, we aim to help software developers and vendors
embrace this idea and broaden the understanding of available
means, which we now discuss in the following section.

3 STATE-OF-THE-ART SBOM TOOLS
This section provides a detailed categorization of existing
SBoM tools which can assist software designers, develop-
ers, and vendors in understanding the tools available and
deciding which one may best suit their needs. Table 2 com-
pares numerous SBoM tools based on their features, such
as interface type; repository (storage-type), platform, API
support, BoM format, and NTIA formats and tooling cate-
gorization [48]. We also provide a more detailed discussion,
summary, and comparison of a subset of these SBoM open-
source tools below based on the taxonomy and categories
presented in Section 2.2: produce accommodates tools that
allow the creation of an SBoM as part of building a software
artifact; consume supports tools that aid in understanding,
comparing, discovering, retrieving, and importing SBoMs;

transform supports translating SBoMs from one file type to
another, merging multiple SBoMs, and assisting use in other
tools through APIs.

3.1 Produce
Augur [8], a part of Community Health Analytics for Open
Source Software (CHAOSS), is a software suite that presents
metrics on open source software development focusing on
health and sustainability in an interconnected world. Augur
facilitates Slack notifications and provides API support, a
web interface, and an instance for demonstration. Golang
programs kernel-spdx-ids [95] and npm-spdx [96] can scan
a Linux kernel generating a license summary report in JSON
along with a corresponding tag-value SPDX document only
if SPDX-license-identifier tag is present. These tools only
provide the functionality to inspect and analyze SPDX doc-
uments and support only Linux platforms. Other tools that
provide a similar audit functionality include Tern [97], Scan-
Code toolkit [51], and Longclaw [40] which identify and
analyze licenses, copyrights, package manifests direct depen-
dencies, and third-party libraries. Another free and open-
source command-line tool, Quartermaster [64], generates
reports about the examined product as a component of a
software build process, thereby achieving license compli-
ance management. Another open-source framework, in-toto
[36, 99], aims to defend the integrity of the software supply
chain by providing authorization rights, thereby preventing
any tampering that may occur during the software’s transit
during its development and distribution cycle.

Reuse [66] is an auditing tool delivering all features of the
produce functionality in contrast to in-toto and Quartermas-
ter, which only allow SBoM creation. Further, community
build tools like SPDX Maven Plugin [88] and SPDX Build
Tool [82] support integrations and extensions to automate
the production of an SPDX document. In addition, there are
several tools supporting the CycloneDX format that aims to
generate SBoMs and audit known vulnerabilities in software
that use a specific language (as shown in Table 2). While
these tools are targeted for a specific language, BoM gen-
eration tool CycloneDX Generator [13] is more versatile
as it supports Node.js, PHP, Python, Ruby, Rust, Java, .Net,
and Go projects. There are also several multi-purpose Cy-
cloneDX audit tools to support a wider use case [77]. Some
cross-platform SWID tag builds include Swidgen [94] which
assists in the manual creation of a tag online, Labs64 [39]
maven plugin, and National Institute of Standards and Tech-
nology (NIST) SWID for GNU Autotools which utilizes the
GNU Autoconf and Automake to create the tag [44].
Out of these tools, ScanCode is a better choice for users

preferring cross-platform support. The tool also has API
support along with a web interface. On the other hand, Tern

might be a better choice if the user is looking for both SPDX
and CycloneDX format compatibility.

3.2 Consume
These tools promote understanding and analysis of SBoMs.
SParts[79], uses an immutable ledger, Hyperledger Sawtooth
in this instance, enabling users to trace open source com-
ponents, including BoMs, cryptographic data, source code,
legal notices, and other compliance artifacts used in a soft-
ware supply chain [2]. This auditing tool is helpful to users
wanting to achieve a decentralized storage architecture. Md-
BOM [41] is another Python tool that supports CycloneDX
(JSON) and creates a markdown of the inventory from the
SBoM making the BoM more human-readable. Open Web
Application Security Project (OWASP) Defect Dojo [60] pro-
vides the ability to import scan reports from several security
tools and export findings. The tool also provides security fea-
tures like user authentication, rate limiting, and notifications
regarding modifications on different channels.

3.3 Produce-Consume
Tools that fall into this category are advantageous to users
who aim to generate and audit SBoMs. The Open Source
Software Review Toolkit (ORT) [59] provides programmatic
and command-line usage and strives to support license com-
pliance checks, especially for free and open-source software
dependencies. OWASP’s Dependency-Track [61] provides
component and known vulnerability analysis, license evalu-
ation, and component identification platform. The tool pro-
vides support for applications, libraries, frameworks, operat-
ing systems, containers, firmware, files, and hardware. It also
provides an API client for a secure continuous integration
and delivery (CI/CD) pipeline [62]. It is worth noting that
dependency-track has support for multiple repositories in-
cluding PostgreSQL, MySQL, and MS SQL in contrast to ORT.
SCANOSS [70] provides similar features but uses a linked-
list database (LDB) [69] which is read-only and structures
data in the form of linked lists. ORT, dependency-track, and
SCANOSS support both CycloneDX and SPDX formats.

3.4 Consume-Transform
SW360 [80] is an open-source software project intended to
work with FOSSology [31], providing both a web interface
and CouchDB to collect, organize, track, and deliver infor-
mation about software components, maintain license obliga-
tions, and enforce policies. The tool is cross-platform and is
advantageous for auditing andmerging SBoMs. SPDXOnline
Tool [89], an online utility tool, is beneficial for users aiming
to upload, parse, verify, convert, and compare SPDX docu-
ments without worrying about downloading or installing a
tool.

SoK: A Framework for and Analysis of Software Bill of Materials Tools

Table 2: A detailed comparison of open-source SBoM Tools.

Tools Features Produce Consume Transform

Re
po
sit
or
y

Fo
rm

at

In
te
rfa

ce

Pl
at
fo
rm

O
th
er
s

Bu
ild

An
al
yz
e

Ed
it

Vi
ew D
iff

Im
po
rt

Tr
an
s

M
er
ge

Su
pp
or
t

Augur [32] ⋆ Ⓢ 𝜔♦ 𝑙𝑚 𝛼Δ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

FOSSology [31] ⋆ Ⓢ 𝜔♦ 𝑙𝑚 𝛼Δ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

in-toto [99] ▲ Ⓢ ♦ 𝑙 𝛼 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Kernel-spdx-ids [95] ▲ Ⓢ ♦ 𝑙 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Longclaw [40] # Ⓢ 𝜔 𝑢𝐶𝑂𝑆 𝛼 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

npm-spdx [96] ▲ Ⓢ ♦ 𝑙𝑚𝑊 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ORT [59] ▲ Ⓢ∁ ♦𝜔 𝑙𝑚𝑊 𝛼Δ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

OWASP’s DT [61] ⋆℧# Ⓢ∁ ♦ 𝑙𝑚𝑊 𝛼ℏΔ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

QMSTR [64] 𝛿 Ⓢ ♦ 𝑙 𝛼Δ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

REUSE [66] ▲ Ⓢ ♦ 𝑙 𝛼Δ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

SwiftBOM [7] ▲ Ⓢ∁§ 𝜔 𝑙𝑚𝑊 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗

TERN [97] ⋆ Ⓢ∁ ♦♦ 𝑙 Δ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

ScanCode [51] ⋆ Ⓢ 𝜔♦ 𝑙𝑚𝑊 𝛼Δ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

SCANOSS [70] 𝐿 Ⓢ∁ ♦♦ 𝑙𝑚𝑊 𝛼 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

SPARTS [80] 𝛽 Ⓢ ♦ 𝑙𝑊 𝛼Δ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

SW360 [79] 𝑐⋆ Ⓢ 𝜔 𝑙𝑚𝑊 𝛼Δ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Yocto [98] ⋆ Ⓢ 𝜔 𝑙𝑚𝑊 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SPDX OT [89] 𝑅 Ⓢ 𝜔 𝑙𝑚𝑊 𝛼Δ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

SPDX Java
Lib.[84] ▲ Ⓢ ♦ 𝐽 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

SPDX Python
Lib. [90] ▲ Ⓢ ♦ 𝑃𝑦 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

SPDX Golang
Lib.[83] ▲ Ⓢ ♦ 𝑔 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

SPDX JS Lib.[85] ▲ Ⓢ ♦ 𝐽𝑆 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

SPDX Maven[88] ▲ Ⓢ 𝑃 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SPDX Build
Tool[82] ▲ Ⓢ 𝑃 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

AuditJS [55] ▲ ∁ ♦ 𝑙𝑚𝑊 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bach [72] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

BOM Repository
Server[10] ▲ ∁ 𝜔 𝑙𝑚𝑊 𝛼Δ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Chelsea [73] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bower [6] ▲ ∁ ♦ 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CocoaPods [14] ▲ ∁ ♦ 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CycloneDX
community
Build tools
[16, 18, 22, 27, 28]
[11, 20, 29, 67]
[19, 21, 33]

▲ ∁ ♦ 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CycloneDX Generator [13] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Jake [74] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Retire.js [65] ▲ ∁ ♦𝑃 𝑙𝑚𝑊 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CycloneDX Core
for Java [15] ▲ ∁ 𝑃 𝐽 𝛼 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

CycloneDX
Maven [17] ▲ ∁ 𝑃 𝑙𝑚𝑊 ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

CycloneDX Web
Tool [24] ▲ ∁ 𝜔 𝑙𝑚𝑊 ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

CycloneDX CLI [12] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗

CycloneDX
community
Transform tools
[25, 26]

▲ ∁ Lib 𝑙𝑚𝑊 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

dtrack-audit [62] ▲ ∁ ♦ 𝑙𝑚𝑊 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DevAudit [77] #⋆ ∁ ♦ 𝑙𝑚𝑊 Δ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Go Sonatypes [78] ▲ ∁ Lib 𝑙𝑚𝑊 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Grype [3] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ittosai [37] ▲ ∁ ♦ 𝑙𝑚𝑊 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MdBOM [41] ▲ ∁ ♦ 𝑙𝑚𝑊 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

OpenRewrite [57] ▲ ∁ 𝑃 𝑙𝑚𝑊 𝛼 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Defect Dojo [60] ⋆# ∁ ♦ 𝑙𝑚𝑊 𝛼Δ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

ShiftLeft Scan [71] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Syft [4] ▲ Ⓢ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Nancy [75] ▲ ∁ ♦ 𝑙𝑚𝑊 Δ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

VS Code Plugin
for Nexus IQ [76] ▲ ∁ 𝑃 𝑙𝑚𝑊 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Swidgen [94] ▲ § 𝜔 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

StrongSwan [92] ▲ § ♦ 𝑙 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Labs64 SWID
Maven Plugin [38] ▲ § 𝑃 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RPM 2
SWID Tag [93] ▲ § ♦ 𝑙 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

NIST SWID for
GNU Autotools [44] ▲ § ♦ 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

NIST SWID
Builder [42] ▲ § ♦ 𝐽 𝛼 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

NIST SWID
Maven Plugin [43] ▲ § 𝑃 𝑙𝑚𝑊 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

NIST SWID
Tag Validator [54] ▲ § ♦ 𝑙𝑚𝑊 𝛼 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

NIST SWID
Repo Client [53] ▲ § ♦ 𝐽 𝛼 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

libswid [58] ▲ § Lib 𝐶++ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Repository: ⋆ PostgreSQL | ▲ File system | 𝛿 Dgraph | 𝐿 LDB | 𝛽 Blockchain | 𝑐 CouchDB | # MySQL | ℧MS SQL | 𝑅 Redis
Format:Ⓢ SPDX | ∁ CycloneDX | § SWID
Interface: ♦ GUI | 𝑃 Plugin |♦ CLI | 𝜔 Web service | Lib Library
Platform: 𝑙 Linux Distribution |𝑚 MacOS |𝑊 Windows |𝐶𝑜𝑠 CentOS | 𝑢 Ubuntu | 𝐽 Java | 𝑃𝑦 Python | 𝑔 Golang | 𝐽 𝑆 JavaScript | C++
Others: ℏ Hardware support | 𝛼 API support | Δ Docker support

SoK: A Framework for and Analysis of Software Bill of Materials Tools

CycloneDX Web Tool [24] is a browser-based tool that
supports the conversion of SBoM versions and formats, their
validation, and merging into a single BoM. Verification and
conversion of SBoM versions, as provided by SPDX Online
Tool and CycloneDX Web Tool are significant in promoting
interoperability between different tools. In addition, there
are also language-specific libraries endowing SPDX format,
for developers that intend to build software that facilitates
consuming and transforming SBoMs [83–85, 90].

3.5 Produce-Consume-Transform
FOSSology toolkit [31], one of the most versatile open-source
tools available, is a license compliance software that was re-
leased in 2007 under the Linux Foundation that lets a user
generate an SPDX file and copyrights notices. This facili-
tates the analysis, storage, and distribution of open-source
software and its metadata. Yocto Project [98], which pro-
vides tools for embedded developers worldwide to share
technologies, software stacks, configurations, and best prac-
tices using FOSSology API to generate SPDX documentation
during a software build. Similarly, Augur-SPDX [8] uses FOS-
Sology for its license scanning. CERT’s SwiftBOM tool [7]
has an edge over FOSSology, as the former generates SBoMs
in SPDX, CycloneDX, and SWID formats, but it provides
limited import capability.

3.6 Sharing & Exchanging SBoMs
A last set of tools facilitates the sharing and exchange of
SBoMs. The CycloneDX BoM Repository Server [10] is a
service for publishing, managing, distributing SBoMs, and
promoting basic authentication and authorization features.
The tool converts all BoMs to Protocol Buffer format before
storage which might lead to loss of information. Another
such tool, Digital BoM (DBoM) [100], aims to streamline shar-
ing attestations through a set of relational, non-relational,
and blockchain-based repositories. Unfortunately, the tool
lacks security and privacy properties such as encryption at
rest and in transit, authentication, and authorization.

4 CHOOSING AN SBOM TOOL
Table 2 provides an extensive view of the state-of-the-art
tools and categorizes them based on various properties which
can help a prospective tool user to make a choice. For in-
stance, one of the most diverse SBoM tools includes FOSSol-
ogy [31] which supports all three functionalities. However,
for a potential tool user that aims to only generate SBoMs
(produce), a simpler tool such as REUSE [66] would be mean-
ingful. It is worth noting that this tool only supports gener-
ation in SPDX format, therefore a more sophisticated tool
such as SCANOSS [70] would be helpful if the user desires
SBoM generation in both SPDX and CycloneDX formats.

This would enable the user (say a software developer) to
share SBoMs based on the format needed by the vendor.
Other criteria that a tool user (say a software developer

or consumer) may consider before choosing a tool includes
platform (i.e., the operating system and language) support,
which should be compatible with the chosen tool. Addition-
ally, SBoM tools support a diverse set of storage or database
types such as CouchDB, MySQL, and Redis which can pro-
vide more flexibility to a potential tool user. A user can also
make a decision based on the interface type they prefer,
which can either be a GUI (Graphical User Interface), a plu-
gin, CLI (Command Line Interface), or a Web service. On
the other hand, a tool user, say a vendor, who only wishes
to read and understand an SBoM may only opt for consume
functionality tools. If the vendor desires more features such
as file-type conversion and auditing, then they may opt for
both consume-transform functionalities as provided by Cy-
cloneDX Web Tool and CLI [12, 24].

Case study. To demonstrate how our framework and tax-
onomy can help an SBoM find the right tool for their use
case, we now walk through a brief example.

Alice, a software developer, hopes to choose a tool to gen-
erate SBoMs, as mandated by Bob, who wishes to purchase
her software product. It is worth noting that Alice reuses
open-source code (just like many other software develop-
ers) and therefore requires a tool that can not only generate
SBoMs but can also process SBoMs belonging to the reused
code. Such a tool will help her to understand the code she
intends to reuse. For instance, the tool may aid her in check-
ing the code for any known vulnerability, versions, and if
the code meets Bob’s software compliance needs. She, there-
fore, needs a tool that supports both produce and consume
functionality for her to generate SBoMs and provide her
with an understanding of them. Additionally, Alice requires
that the tool should be able to support both SPDX and Cy-
cloneDX standards since she might have to process existing
SBoMs from multiple vendors for the code she reuses. She
further checks her storage and platform compatibility and
finds herself comfortable using CLI-based tools since she is
a developer. In such a scenario, a tool like ORT [59] seems a
fit for her needs since it supports all her requirements and
is cross-platform. Alice can easily determine this using our
framework by simply breaking down her needs in each cat-
egory as described and then easily identifying which tools
meet her requirements.
In addition, if Alice needs a tool that also supports the

transform functionality, since she is outsourcing SBoMs from
multiple sources for the reused code and may, therefore, have
to perform file type conversion or combine two or more
SBoMs. Cyclonedx CLI cy-cli may meet Alice’s requirements

in such a situation. It is worth noting that, as per our knowl-
edge, there still does not exist a tool that is broad enough to
support all the functionalities, hence, users may have to opt
for multiple tools as per their requirements.
On the other hand, Bob, who only wishes to understand

SBoMs, may choose a tool that supports the consume func-
tionality. For example, if Bob instructed Alice to provide
her SBoM in SPDX format and desired a GUI, he may opt
for OWASP’s Dependency-Track [61] which is also cross-
platform and supports Postgres, MySQL and MS SQL SBoM
storage type. SPDX Online Tool [89] may also be a great
option that supports Redis for SBoM storage and is cross-
platform and web-based.

5 FUTUREWORK AND DIRECTIONS
We believe this work is one of the first to provide a detailed
analysis of state-of-the-art SBoM tools, and we hope to help
broaden the understanding of available means for software
developers and vendors. Despite the wide range of tools that
currently exist, this domain still demands attention from a
research and development outlook as it is still in an early
phase.

Recommendations to Researchers and Tool Developers.
One of the barriers that may hamper widespread adoption of
SBoMs is interoperability across organizations. This area still
requires an elegant tool that can aid parties opting for dif-
ferent SBoM formats and standards to perform conversions
without loss of information. Additionally, there still does
not exist a sophisticated tool that is diverse enough, thereby
providing all the functionalities in one package (produce, con-
sume and transform). Furthermore, the existing tools do not
take into account that SBoMs may contain confidential and
sensitive information. This issue may restrict a vendor to
share an SBoM for a software product that, say, uses propri-
etary code. Therefore, there is a need for sophisticated tools
that implemented sharing and exchanging of SBoMs keep-
ing the confidentiality of subcomponents and the privacy of
their respective owners into consideration.

Additionally, there is a requirement for tools that can attest
to or verify the authenticity of SBoMs as well as automati-
cally identify a software subcomponent (through a unique
ID [56]). It is worth noting that the domain still struggles
with a lack of a universally accepted source for SBoM com-
ponent identification. Also, there is still not a global access
point or a platform available for attested or accepted SBoMs
(although SPDX provides a list of accepted licenses [86]). A
publish/subscribe system that informs software consumers
about reported vulnerabilities, updates, or any modifications
would ascertain to be valuable.

Recommendations to Standardization Bodies. There
are a number of SBoM formats available such as SPDX, Cy-
cloneDX, SWID, SPDX Lite, CoSWID and CPE [23, 35, 52, 87,
91, 101]. We believe it is therefore important for standard-
ization bodies to provide advice and guidance on a specific
SBoM format (or set of formats with interoperable APIs)
which can aid in streamlining the process of producing and
consuming SBoMs. Since the hardware and software sec-
tors have gradually converged, it would be helpful if the
SBoM formats additionally include a way to uniquely iden-
tify the hardware utilized in the concerned product. This
can be achieved by specifying the hardware’s barcode for-
mats, MAC (Media Access Control) address, a timestamp,
stock-keeping unit (SKU) number, Global Individual Asset
Identifier and Global Model Number and so on [1].

Recommendations to Tool Users. We recommend that
tool users first identify the functionalities (produce, consume,
transform) they need in an SBoM tool, along with other de-
sired features such as user interface, storage type, SBoM
format and platform support as specified in Table 2. The
case study provided in Section 4 is an instance of how users
should proceed when choosing a tool. Users should also
keep in mind that most of these tools do not support data
encryption, therefore, they should handle SBoMs containing
sensitive data appropriately.

6 CONCLUSION
Modern software is acquiring a more involved and intricate
architecture, thereby making its components less perceptible.
This poses a concern when it comes to assessing a software’s
security from underlying potential vulnerabilities and its
(and subcomponents’) compliance. SBoMs provide a way to
combat with this problem, allowing software users to gain
more transparency into the product. While an SBoM is not
a silver bullet that can prevent all cyberattacks, it can help
strengthen an organization from known-vulnerabilities and
may later aid in identifying affected (or vulnerable) software
components. It is worth noting that their widespread adop-
tion is only achievable if software developers and users have
access to tools that can aid in generation and management
SBoMs, thereby automating the process, propelling them to
make better security decisions. In this work, we presented
and categorized the state-of-the-art SBoM tools, helping dif-
ferent agents involved in dealing with SBoMs identify tools
that would best suit their need. We believe this work is an
important step that can contribute towards wide adoption,
growth and further expansion of SBoMs, by delivering a
coordinated knowledge about how to produce and manage
them efficiently.

SoK: A Framework for and Analysis of Software Bill of Materials Tools

REFERENCES
[1] Haris Aftab, Komal Gilani, JiEun Lee, Lewis Nkenyereye, Se-

ungMyeong Jeong, and JaeSeung Song. 2020. Analysis of identifiers
in IoT platforms. Digital Communications and Networks 6, 3 (2020),
333–340.

[2] Benjamin Ampel, Mark Patton, and Hsinchun Chen. 2019. Perfor-
mance modeling of hyperledger sawtooth blockchain. In 2019 IEEE
International Conference on Intelligence and Security Informatics (ISI).
IEEE, 59–61.

[3] Anchore. n.d. Grype. https://github.com/anchore/grype.
[4] Anchore. n.d. Syft. https://github.com/anchore/syft.
[5] Seth Carmody, Andrea Coravos, Ginny Fahs, Audra Hatch, Janine

Medina, Beau Woods, and Joshua Corman. 2021. Building resilient
medical technology supply chains with a software bill of materials.
NPJ Digital Medicine 4, 1 (2021), 1–6.

[6] CDX Bower. n.d. CycloneDX Bower managed dependencies genera-
tor. https://github.com/hanstdam/cdx-bower-bom.

[7] CERT. n.d. SwiftBOM Demo. https://democert.org/sbom/.
[8] CHAOSS. n.d. Augur License. https://github.com/chaoss/augur-

license.
[9] Cybersecurity and Infrastructure Security Agency (CISA). n.d.

Healthcare and Public Health Sector. https://www.cisa.gov/
stopransomware/healthcare-and-public-health-sector.

[10] CycloneDX. n.d. BOM Repository Server. https://github.com/
CycloneDX/cyclonedx-bom-repo-server.

[11] CycloneDX. n.d. CycloneDX-Buildroot. https://github.com/
alvinchchen/cyclonedx-buildroot.

[12] CycloneDX. n.d. CycloneDX CLI. https://github.com/CycloneDX/
cyclonedx-cli.

[13] CycloneDX. n.d. CycloneDX CocoaPods. https://github.com/
AppThreat/cdxgen.

[14] CycloneDX. n.d. CycloneDX CocoaPods. https://github.com/
CycloneDX/cyclonedx-cocoapods.

[15] CycloneDX. n.d. CycloneDX Core for Java. https://github.com/
CycloneDX/cyclonedx-core-java.

[16] CycloneDX. n.d. CycloneDX for Go. https://github.com/ozonru/
cyclonedx-go.

[17] CycloneDX. n.d. CycloneDX for Maven. https://github.com/
CycloneDX/cyclonedx-maven-plugin.

[18] CycloneDX. n.d. CycloneDX for Node.js. https://github.com/
CycloneDX/gh-node-module-generatebom.

[19] CycloneDX. n.d. CycloneDX for NPM. https://github.com/
CycloneDX/cyclonedx-node-module.

[20] CycloneDX. n.d. CycloneDX for PHP Composer. https://packagist.
org/packages/cyclonedx/cyclonedx-php-composer.

[21] CycloneDX. n.d. CycloneDX for Rust. https://crates.io/crates/
cyclonedx-bom.

[22] CycloneDX. n.d. CycloneDX module for .NET. https://www.nuget.
org/packages/CycloneDX/.

[23] CycloneDX. n.d. CycloneDX Specifications. https://cyclonedx.org/
specification/overview/.

[24] CycloneDX. n.d. CycloneDX Web Tool. https://cyclonedx.github.io/
cyclonedx-web-tool.

[25] CycloneDX. n.d. Go Library for CycloneDX to Encode and Decode
BoMs. https://github.com/CycloneDX/cyclonedx-node-module.

[26] CycloneDX. n.d. Rust Library for CycloneDX to Encode and Decode
BoMs. https://github.com/CycloneDX/cyclonedx-node-module.

[27] CycloneDX. n.d. SBT BOM. https://github.com/siculo/sbt-bom.
[28] CycloneDX for Erlang. n.d. Elixir Mix. https://github.com/voltone/

sbom.

[29] CycloneDX for Python. n.d. CycloneDX Python SBOM Generation
Tool. https://pypi.org/project/cyclonedx-bom/.

[30] Executive Office of the President. 2021. Improving the Nation’s
Cybersecurity. https://www.federalregister.gov/documents/2021/05/
17/2021-10460/improving-the-nations-cybersecurity.

[31] Robert Gobeille. 2008. The fossology project. In Proceedings of the
2008 international working conference on Mining software repositories.
47–50.

[32] Sean P Goggins, Matt Germonprez, and Kevin Lumbard. 2021. Making
Open Source Project Health Transparent. Computer 54, 08 (2021),
104–111.

[33] Gradle. n.d. CycloneDX for Gradle. https://plugins.gradle.org/
plugin/org.cyclonedx.bom.

[34] Raphael Hiesgen, Marcin Nawrocki, Thomas C Schmidt, andMatthias
Wählisch. 2022. The Race to the Vulnerable: Measuring the Log4j
Shell Incident. arXiv preprint arXiv:2205.02544 (2022).

[35] IETF. 2021. Concise Software Identification Tags. https://www.ietf.
org/id/draft-ietf-sacm-coswid-19.html.

[36] in-toto. n.d. in-toto Command Line Tools. https://in-toto.readthedocs.
io/en/latest/command-line-tools/index.html.

[37] ittosai. n.d. ittosai. https://github.com/devops-kung-fu/ittosai.
[38] Labs64. n.d. SoftWare IDentification (SWID) Tags Generator (Java

Library). https://github.com/Labs64/swid-generator.
[39] Labs64. n.d. SWID Generator. https://github.com/Labs64/swid-

generator.
[40] LLNL. n.d. Longclaw. http://rosecompiler.org/.
[41] MdBOM. n.d. Markdown SBOM. https://github.com/HaRo87/

mdbom.
[42] National Institute of Standards and Technology (NIST).. n.d. NIST

SWID Builder. https://pages.nist.gov/swid-tools/swidval/.
[43] National Institute of Standards and Technology (NIST). n.d. NIST

SWID for Maven Plugin. https://pages.nist.gov/swid-tools/swid-
maven-plugin/.

[44] National Institute of Standards and Technology (NIST). n.d. SWID
Autotools. https://github.com/usnistgov/swid-autotools#swid-for-
gnu-autotools.

[45] National Telecommunications and Information Administration
(NTIA). 2019. Roles and Benefits for SBOM Across the Supply
Chain. https://www.ntia.gov/files/ntia/publications/ntia_sbom_
use_cases_roles_benefits-nov2019.pdf.

[46] National Telecommunications and Information Administration
(NTIA). 2021. Framing Software Component Transparency: Es-
tablishing a Common Software Bill of Material (SBOM). https:
//www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf.

[47] National Telecommunications and Information Administration
(NTIA). 2021. NTIA SBoM Summary. https://www.ntia.gov/files/
ntia/publications/sbom_overview_20200818.pdf.

[48] National Telecommunications and Information Administra-
tion (NTIA). 2021. SBoM Tool Classification Taxonomy.
https://www.ntia.gov/files/ntia/publications/\ntia_sbom_tooling_
taxonomy-2021mar30.pdf.

[49] National Telecommunications and Information Administration
(NTIA). 2021. Survey of Existing SBOM Formats and Stan-
dards. https://www.ntia.gov/files/ntia/publications/ntia_sbom_
formats_and_standards_whitepaper_-_version_20191025.pdf.

[50] National Telecommunications and Information Administration
(NTIA). 2021. Vulnerability-Exploitability eXchange (VEX) – An
Overview. https://www.ntia.gov/files/ntia/publications/vex_one-
page_summary.pdf.

[51] nexB. n.d. ScanCode Toolkit. https://github.com/nexB/scancode-
toolkit.

https://github.com/anchore/grype
https://github.com/anchore/syft
https://github.com/hanstdam/cdx-bower-bom
https://democert.org/sbom/
https://github.com/chaoss/augur-license
https://github.com/chaoss/augur-license
https://www.cisa.gov/stopransomware/healthcare-and-public-health-sector
https://www.cisa.gov/stopransomware/healthcare-and-public-health-sector
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://github.com/CycloneDX/cyclonedx-bom-repo-server
https://github.com/alvinchchen/cyclonedx-buildroot
https://github.com/alvinchchen/cyclonedx-buildroot
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/AppThreat/cdxgen
https://github.com/AppThreat/cdxgen
https://github.com/CycloneDX/cyclonedx-cocoapods
https://github.com/CycloneDX/cyclonedx-cocoapods
https://github.com/CycloneDX/cyclonedx-core-java
https://github.com/CycloneDX/cyclonedx-core-java
https://github.com/ozonru/cyclonedx-go
https://github.com/ozonru/cyclonedx-go
https://github.com/CycloneDX/cyclonedx-maven-plugin
https://github.com/CycloneDX/cyclonedx-maven-plugin
https://github.com/CycloneDX/gh-node-module-generatebom
https://github.com/CycloneDX/gh-node-module-generatebom
https://github.com/CycloneDX/cyclonedx-node-module
https://github.com/CycloneDX/cyclonedx-node-module
https://packagist.org/packages/cyclonedx/cyclonedx-php-composer
https://packagist.org/packages/cyclonedx/cyclonedx-php-composer
https://crates.io/crates/cyclonedx-bom
https://crates.io/crates/cyclonedx-bom
https://www.nuget.org/packages/CycloneDX/
https://www.nuget.org/packages/CycloneDX/
https://cyclonedx.org/specification/overview/
https://cyclonedx.org/specification/overview/
https://cyclonedx.github.io/cyclonedx-web-tool
https://cyclonedx.github.io/cyclonedx-web-tool
https://github.com/CycloneDX/cyclonedx-node-module
https://github.com/CycloneDX/cyclonedx-node-module
https://github.com/siculo/sbt-bom
https://github.com/voltone/sbom
https://github.com/voltone/sbom
https://pypi.org/project/cyclonedx-bom/
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://plugins.gradle.org/plugin/org.cyclonedx.bom
https://plugins.gradle.org/plugin/org.cyclonedx.bom
https://www.ietf.org/id/draft-ietf-sacm-coswid-19.html
https://www.ietf.org/id/draft-ietf-sacm-coswid-19.html
https://in-toto.readthedocs.io/en/latest/command-line-tools/index.html
https://in-toto.readthedocs.io/en/latest/command-line-tools/index.html
https://github.com/devops-kung-fu/ittosai
https://github.com/Labs64/swid-generator
https://github.com/Labs64/swid-generator
https://github.com/Labs64/swid-generator
http://rosecompiler.org/
https://github.com/HaRo87/mdbom
https://github.com/HaRo87/mdbom
https://pages.nist.gov/swid-tools/swidval/
https://pages.nist.gov/swid-tools/swid-maven-plugin/
https://pages.nist.gov/swid-tools/swid-maven-plugin/
https://github.com/usnistgov/swid-autotools#swid-for-gnu-autotools
https://github.com/usnistgov/swid-autotools#swid-for-gnu-autotools
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf
https://www.ntia.gov/files/ntia/publications/\ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/\ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_-_version_20191025.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_-_version_20191025.pdf
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-toolkit

[52] NIST. n.d. Guidelines for the Creation of Interoperable Software
Identification (SWID) Tags. https://nvlpubs.nist.gov/nistpubs/ir/
2016/NIST.IR.8060.pdf.

[53] NIST. n.d. NIST SWID Tag Repo Client. https://pages.nist.gov/swid-
tools/swid-repo-client/.

[54] NIST. n.d. NIST SWID Tag Validator. https://pages.nist.gov/swid-
tools/swidval/.

[55] NPMJS. n.d. AuditJS. https://www.npmjs.com/package/auditjs.
[56] NTIA. 2021. Software Identification Challenges and Guid-

ance. https://www.ntia.gov/files/ntia/publications/ntia_sbom_
software_identity-2021mar30.pdf.

[57] OpenRewrite. n.d. Rewrite. https://github.com/openrewrite/rewrite.
[58] OpenSCAP. n.d. libswid. https://github.com/OpenSCAP/libswid.
[59] OSS Rewiew Toolkit. n.d. ORT. https://github.com/oss-review-

toolkit.
[60] OWASP. n.d. Defect Dojo. https://github.com/DefectDojo/django-

DefectDojo.
[61] OWASP. n.d. OWASP’s Dependency-Track. https://docs.

dependencytrack.org.
[62] Ozonru. n.d. dtrack-audit. https://github.com/ozonru/dtrack-audit.
[63] Package URL. n.d. Package URL Specifications. https://github.com/

package-url/purl-spec.
[64] Quartermaster. n.d. QMSTR. https://qmstr.org.
[65] Retire.js. n.d. Retire.js. https://retirejs.github.io/retire.js/.
[66] REUSE. n.d. REUSE Specifications. https://reuse.software/spec/.
[67] Ruby Gems. n.d. CycloneDX for Ruby Gems. https://rubygems.org/

gems/cyclonedx-ruby.
[68] Luis Alberto Benthin Sanguino and Rafael Uetz. 2017. Soft-

ware vulnerability analysis using CPE and CVE. arXiv preprint
arXiv:1705.05347 (2017).

[69] SCANOSS. n.d. ScanCode LDB. https://github.com/scanoss/ldb.
[70] SCANOSS. n.d. SCANOSS. https://scanoss.com.
[71] Shiftleft. n.d. Shiftleft Scan. https://www.shiftleft.io/scan/.
[72] Sonatype Nexus Community. n.d. Bach. https://github.com/sonatype-

nexus-community/bach.
[73] Sonatype Nexus Community. n.d. Chelsea. https://github.com/

sonatype-nexus-community/chelsea.
[74] Sonatype Nexus Community. n.d. Jake. https://github.com/sonatype-

nexus-community/jake.
[75] Sonatype Nexus Community. n.d. Nancy. https://github.com/

sonatype-nexus-community/nancy.
[76] Sonatype Nexus Community. n.d. Sonatype Nexus IQ Plugin for VS

Code. https://github.com/sonatype-nexus-community/vscode-iq-
plugin.

[77] Sonatypes Nexus Community. n.d. DevAudit. https://github.com/
sonatype-nexus-community/DevAudit.

[78] Sonatypes Nexus Community. n.d. Go Sonatypes. https://github.
com/sonatype-nexus-community/go-sona-types.

[79] SPARTS. n.d. SW360. https://sparts.readthedocs.io/en/latest/web/
intro.html.

[80] SPARTS. n.d. SW360. https://www.eclipse.org/sw360/.
[81] SPDX. n.d. Composition of an SPDX Document. https://spdx.github.

io/spdx-spec/composition-of-an-SPDX-document/.
[82] SPDX. n.d. SPDX Build Tool. https://github.com/spdx/spdx-build-

tool.
[83] SPDX n.d. SPDX Golang Library. https://github.com/spdx/tools-

golang.
[84] SPDX. n.d. SPDX Java Libraries & Tools. https://github.com/spdx/

tools-java.
[85] SPDX. n.d. SPDX JavaScript Library. https://github.com/spdx/spdx-

tools-js.
[86] SPDX. n.d. SPDX-Licenses. https://spdx.org/licenses/.

[87] SPDX. n.d. SPDX LITE Specification. https://spdx.github.io/spdx-
spec/SPDX-Lite/.

[88] SPDX. n.d. SPDX Maven Plugin. https://github.com/spdx/spdx-
maven-plugin.

[89] SPDX. n.d. SPDX Online Tool. https://tools.spdx.org/app/.
[90] SPDX. n.d. SPDX Python Library. https://github.com/spdx/tools-

python.
[91] SPDX Dev. n.d. SPDX Specification. https://spdx.dev/specifications/.
[92] StrongSwan. n.d. SWID Generator. https://github.com/strongswan/

swidGenerator.
[93] SWID Tags. n.d. RPM 2 SWID Tag. https://github.com/swidtags/

rpm2swidtag.
[94] Swidgen. n.d. Swidgen. https://pgodowski.github.io.
[95] Swinslow. n.d. Kernel SPDX IDs. https://github.com/swinslow/

kernel-spdx-ids.
[96] Swinslow. n.d. NPM SPDX. https://github.com/swinslow/npm-spdx.
[97] Tern Tools. n.d. Tern. https://github.com/tern-tools/tern.
[98] The Yocto Project. n.d. Yocto. https://www.yoctoproject.org/.
[99] Santiago Torres-Arias. 2020. In-toto: Practical Software Supply Chain

Security. Ph. D. Dissertation. New York University Tandon School of
Engineering.

[100] Unisys. n.d. Digital Bill of Materials. https://dbom-project.
readthedocs.io/en/latest/what-dbom.html.

[101] DavidWaltermire and Brant Cheikes. 2015. Forming common platform
enumeration (CPE) names from software identification (SWID) tags.
Technical Report. National Institute of Standards and Technology.

[102] Evan D Wolff, KM Growley, MG Gruden, et al. 2021. Navigating
the solarwinds supply chain attack. The Procurement Lawyer 56, 2
(2021).

7 APPENDIX
This section provides an insight into various SBoM format
(SWID, SPDX and CycloneDX) specifications.

https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf
https://pages.nist.gov/swid-tools/swid-repo-client/
https://pages.nist.gov/swid-tools/swid-repo-client/
https://pages.nist.gov/swid-tools/swidval/
https://pages.nist.gov/swid-tools/swidval/
https://www.npmjs.com/package/auditjs
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://github.com/openrewrite/rewrite
https://github.com/OpenSCAP/libswid
https://github.com/oss-review-toolkit
https://github.com/oss-review-toolkit
https://github.com/DefectDojo/django-DefectDojo
https://github.com/DefectDojo/django-DefectDojo
https://docs.dependencytrack.org
https://docs.dependencytrack.org
https://github.com/ozonru/dtrack-audit
https://github.com/package-url/purl-spec
https://github.com/package-url/purl-spec
https://qmstr.org
https://retirejs.github.io/retire.js/
https://reuse.software/spec/
https://rubygems.org/gems/cyclonedx-ruby
https://rubygems.org/gems/cyclonedx-ruby
https://github.com/scanoss/ldb
https://scanoss.com
https://www.shiftleft.io/scan/
https://github.com/sonatype-nexus-community/bach
https://github.com/sonatype-nexus-community/bach
https://github.com/sonatype-nexus-community/chelsea
https://github.com/sonatype-nexus-community/chelsea
https://github.com/sonatype-nexus-community/jake
https://github.com/sonatype-nexus-community/jake
https://github.com/sonatype-nexus-community/nancy
https://github.com/sonatype-nexus-community/nancy
https://github.com/sonatype-nexus-community/vscode-iq-plugin
https://github.com/sonatype-nexus-community/vscode-iq-plugin
https://github.com/sonatype-nexus-community/DevAudit
https://github.com/sonatype-nexus-community/DevAudit
https://github.com/sonatype-nexus-community/go-sona-types
https://github.com/sonatype-nexus-community/go-sona-types
https://sparts.readthedocs.io/en/latest/web/intro.html
https://sparts.readthedocs.io/en/latest/web/intro.html
https://www.eclipse.org/sw360/
https://spdx.github.io/spdx-spec/composition-of-an-SPDX-document/
https://spdx.github.io/spdx-spec/composition-of-an-SPDX-document/
https://github.com/spdx/spdx-build-tool
https://github.com/spdx/spdx-build-tool
https://github.com/spdx/tools-golang
https://github.com/spdx/tools-golang
https://github.com/spdx/tools-java
https://github.com/spdx/tools-java
https://github.com/spdx/spdx-tools-js
https://github.com/spdx/spdx-tools-js
https://spdx.org/licenses/
https://spdx.github.io/spdx-spec/SPDX-Lite/
https://spdx.github.io/spdx-spec/SPDX-Lite/
https://github.com/spdx/spdx-maven-plugin
https://github.com/spdx/spdx-maven-plugin
https://tools.spdx.org/app/
https://github.com/spdx/tools-python
https://github.com/spdx/tools-python
https://spdx.dev/specifications/
https://github.com/strongswan/swidGenerator
https://github.com/strongswan/swidGenerator
https://github.com/swidtags/rpm2swidtag
https://github.com/swidtags/rpm2swidtag
https://pgodowski.github.io
https://github.com/swinslow/kernel-spdx-ids
https://github.com/swinslow/kernel-spdx-ids
https://github.com/swinslow/npm-spdx
https://github.com/tern-tools/tern
https://www.yoctoproject.org/
https://dbom-project.readthedocs.io/en/latest/what-dbom.html
https://dbom-project.readthedocs.io/en/latest/what-dbom.html

SoK: A Framework for and Analysis of Software Bill of Materials Tools

Table 3: SWID specification [52]

Field Description Sub-fields
<SoftwareIdentity> It is the root of the tag providing a detailed de-

scription of a software product
@name, @version,
@versionScheme, @tagId,
@tagVersion, @supplemental,
@patch, @corpus

<Entity> This sub-element optionally identifies the creator,
licensor(s), or distributor(s) of the tag

@name, @regid, @role,
@thumbprint

<Evidence> This sub-element is used in situations when a soft-
ware product has a missing tag and a third party
discovers and reuses the respective untagged soft-
ware product. <Evidence> may therefore be used
to store results from the scan after the discovery
tool generates a Primary Tag for the discovered
untagged product

@date, @deviceId,
<Directory>, <File>,
<Process>, <Resource>

<Link> This sub-element is used to connect a Patch Tag or
a Supplemental Tag to a Primary Tag. Additionally,
it may be used to associate any source tag to other
arbitrary information elements

@href, @rel

<Meta> This sub-element may be optionally used to pro-
vide additional metadata attributes

@activationStatus,
@colloquialVersion, @edition,
@product, @revision

<Payload> This optional sub-element aims to provide details
regarding additional elements, for instance, files,
folders, license keys that may be installed on a de-
vice during the installation of a software product

<Directory>, <File>,
<Process> <Resource>

Table 4: SPDX specification v2.2.1 [81]

Field Cardinality Description Sub-fields
Document Cre-
ation Information

Mandatory,
one

It renders essential knowledge
for forward and backward com-
patibility for processing tools

SPDX Version, Data License, SPDX Identifier, Doc-
ument Name, SPDX Document, Namespace, Ex-
ternal Document References, License List Version,
Creator, Created, Creator Comment, Document
Comment

Package Informa-
tion

Optional, one
or many

In case SPDX information is be-
ing used to describe packages,
then one instance of the Pack-
age Information exists per pack-
age, providing important infor-
mation about it

Package Name, Package SPDX Identifier, Pack-
age Version, Package File Name, Package Supplier,
Package Originator, Package Download Location,
Files Analyzed, Package Verification Code, Pack-
age Checksum, Package Home Page, Source Infor-
mation, Concluded License, All Licenses Informa-
tion from Files, Declared License, Comments on
License, Copyright Text, Package Summary De-
scription, Package Detailed Description, Package
Comment, External Reference, External Reference
Comment, Package Attribution Text

File Information Optional, one
or many

For each file in the software
package, an instance of the File
Information is required which
provides knowledge about a
given file including licenses and
copyright

File Name, File SPDX Identifier, File Type, File
Checksum, Concluded License, License Informa-
tion in File, Comments on License, Copyright Text,
File Comment, File Notice, File Contributor, File
Attribution Text.

Snippet Informa-
tion

Optional, one
or many

When a file reuses content from
another primary source, snip-
pets can be used to provide
added information, by indicat-
ing the component of a file that
was originally created under an-
other license.

Snippet SPDX Identifier, Snippet from File SPDX
Identifier, Snippet Byte Range, Snippet Line Range,
Snippet Concluded License, License Information
in Snippet, Snippet Comments on License, Snippet
Copyright Text, Snippet Comment, Snippet Name,
Snippet Attribution Text

Other Licensing
Information

Optional, one
or many

This section lists any identified,
declared, or concluded licenses
that do not appear on the SPDX
License List

License Identifier, Extracted Text, License Name,
License Cross Reference, License Comment

Relationships Optional, one
or many

This section renders informa-
tion about the relationship
between two SPDX elements
which could be files, packages,
or SPDX Documents

Relationship, Relationship Comment

Annotations Optional, one
or many

This field provides information
regarding comments on a file,
package, or the entire document
to validate and clarify obscure
SPDX elements

Annotator, Annotation Date, Annotation Type,
SPDX Identifier Reference, Annotation Comment

Table 5: CycloneDX specification [23]

Field Description
BOM Metadata This field incorporates the essential information related to the BoM including the corre-

sponding software component along with its supplier, manufacturer, and license information
and the tool used to create the BOM

Components Components provide the complete inventory list of the first and third party components
and can be represented as coordinates (group, name, version), Package URL [63], Common
Platform Enumeration (CPE) [68], SWID [52], or cryptographic hash functions

Services This field provides information about the external APIs that the software may request along
with the flow of data

Dependencies This section describes the components and their dependencies, both direct and transitive
relationships, on other components, which can be expressed in the dependency graph

Compositions This field describes the constituent parts of the software, and its entirety can be termed as
complete, incomplete, incomplete first-party only, incomplete third-party only, or unknown

Extensions This field enables agile prototyping of new abilities for future specialized and industry-
specific use cases, promoting community support and development

