

# INL Contributions to Draft HTTF Benchmark Specifications

August 2022

Robert Kile

**Aaron Epiney** 



#### DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

# INL Contributions to Draft HTTF Benchmark Specifications

**Robert Kile** 

**Aaron Epiney** 

September 2022

Idaho National Laboratory Advanced Reactor Technologies Idaho Falls, Idaho 83415

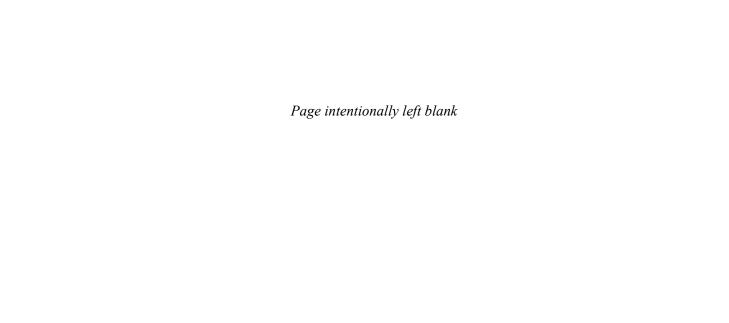
http://www.art.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



## INL ART Program

## INL Contributions to Draft HTTF Benchmark Specifications


INL/RPT-22-68830 Revision 0

## August 2022

| Technical Reviewer: (Confirmation of mathematical accuracy | y, and correctness of data and |
|------------------------------------------------------------|--------------------------------|
| appropriateness of assumptions.)                           |                                |
| das                                                        | 08/29/2022                     |
| Mauricio Tano Retamales                                    | Date                           |
|                                                            |                                |
| Approved by:                                               |                                |
| M. Davenport                                               | 8/30/2022                      |
| Michael E. Davenport                                       | Date                           |
| ART Project Manager                                        |                                |
| Jerhard Strydom                                            | 08/29/2022                     |
| Gerhard Strydom                                            | Date                           |
| ART Co-NTD                                                 |                                |
| Michollo Sharp                                             | 8/29/2022                      |
| Michelle T. Sharp                                          | Date                           |
| INL Quality Assurance                                      |                                |

#### **ABSTRACT**

The High-Temperature Test Facility (HTTF) is an integral-effects thermal hydraulics test facility at Oregon State University designed as a ¼-length-scale model of the modular high-temperature gas-cooled reactor 350-MW core (mHTGR-350). In the spring and summer of 2019, several experiments were conducted at HTTF providing a valuable source of gas-cooled reactor thermal hydraulics data. Idaho National Laboratory (INL), Oregon State University, Argonne National Laboratory, and Canadian Nuclear Laboratories have partnered to use this experimental data to develop a gas-cooled reactor thermal hydraulics benchmark led by INL under the auspices of the Advanced Reactor Technologies program. This report provides some context on the benchmark, HTTF, and previous Reactor Excursions and Leak Analysis Program 5 3D HTTF modeling. It also provides a draft of the benchmark specifications for the depressurized conduction cooldown problem, which is the INL-led benchmark problem.



## **CONTENTS**

| ABS   | TRAC    | ZT                                                                                 | 1V |
|-------|---------|------------------------------------------------------------------------------------|----|
| ACR   | ONY     | MS                                                                                 | ix |
| 1.    | Intro   | duction                                                                            | 1  |
|       | 1.1     | HTTF Description                                                                   | 1  |
|       | 1.2     | Proposed Benchmark Overview                                                        | 3  |
| 2.    | REL     | AP5-3D Modeling of the HTTF                                                        | 4  |
| 3.    | Benc    | chmark Specifications for Problem Two                                              | 4  |
|       | 3.1     | Exercise One: Fixed Boundary Conditions (Code-to-Code Comparison)                  | 4  |
|       |         | 3.1.1 Exercise 1A: Full-Power Steady State                                         | 5  |
|       |         | 3.1.2 Exercise 1B: DCC from Full-Power Steady-State                                | 5  |
|       |         | 3.1.3 Exercise 1C: DCC with PG-29-like Boundary Conditions                         |    |
|       | 3.2     | Open Boundary Conditions (Best-Estimate Modeling and Validation)                   | 16 |
|       | 3.3     | Error Scaling (Validation Extrapolation)                                           | 16 |
| 4.    | Conc    | clusions                                                                           | 19 |
| 5.    | Refe    | rences                                                                             | 19 |
| Figu  | re 1. R | FIGURES  Lendition of HTTF vessel and RCST                                         | 2  |
| Figu  | re 2. H | ITTF core layout.                                                                  | 2  |
|       |         |                                                                                    |    |
|       |         | TABLES                                                                             |    |
| Table |         | enchmark problems, where "coupled" refers to coupled systems-code-to-CFD modeling. | 3  |
| Table |         | evised emissivities                                                                |    |
| Table | e 3. Fu | ıll-power steady state boundary conditions                                         | 5  |
| Table | e 4: Po | ower versus time for Exercise 1B.                                                  | 6  |
| Table | e 5: H  | elium initial conditions.                                                          | 7  |
| Table | e 6: So | olid structure initial temperatures.                                               | 8  |
| Table | e 7: H  | eater rod initial temperatures                                                     | 9  |
| Table | e 8: C  | oolant inlet temperature boundary condition                                        | 10 |
| Table | e 9: O  | utlet pressure boundary condition.                                                 | 11 |
| Table | e 10: I | Heater 104 power boundary condition                                                | 12 |
| Table | e 11: 7 | Thermal conductivity data for PG-29 Exercise 1C                                    | 13 |

| Table 12: RCCS inlet temperature boundary conditions.          | 14 |
|----------------------------------------------------------------|----|
| Table 13: RCCS flow rate boundary conditions.                  | 13 |
| Table 14: mHTGR-350 sensitivity study parameter distributions. | 17 |
| Table 15: DCC sensitivity coefficients.                        | 18 |



viii

#### **ACRONYMS**

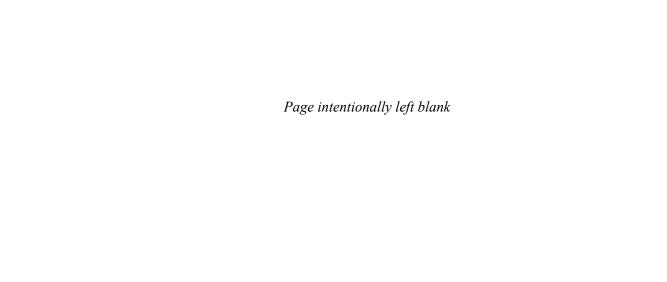
ANL Argonne National Laboratory
CFD Computational Fluid Dynamics
CNL Canadian Nuclear Laboratories

DCC Depressurized Conduction Cooldown

HTGR High-Temperature Gas-Cooled Reactors

HTTF High-Temperature Test Facility

INL Idaho National Laboratory


mHTGR Modular High-Temperature Gas-Cooled Reactor

OSU Oregon State University

PCC Pressurized Conduction Cooldown

RCCS reactor cavity cooling system
RCST Reactor Cavity Storage Tank

RELAP Reactor Excursions and Leak Analysis Program



# INL Contributions to Draft High-Temperature Test Facility (HTTF) Benchmark Specifications

#### 1. Introduction

The last several years have seen significant interest in the design and deployment of high-temperature gas-cooled reactors (HTGRs). The design and deployment of HTGRs requires modeling and simulation tools capable of predicting HTGR performance during steady state and transients. To assess the capabilities of existing codes for steady-state and transient modeling in HTGRs, experimental data are needed. Additionally, when existing codes provide different answers for the same problem, it is necessary to understand the factors that drive these differences. To that end, it is essential to develop a comprehensive benchmark that includes both code-to-code and code-to-data comparisons for HTGR conditions. Previous HTGR benchmarks have been primarily computational in nature, with little to no validation component.

The HTTF is an electrically heated integral-effects thermal hydraulics test facility at Oregon State University (OSU) designed to provide code validation data for HTGR-relevant conditions. In the spring and summer of 2019, several experiments were performed at HTTF that produced high-quality measured data applicable for an HTGR benchmark. Over the last few years, loose collaborations formed between organizations using the HTTF data for their own modeling and simulation purposes. These organizations include Idaho National Laboratory (INL), OSU, Argonne National Laboratory (ANL), and Canadian Nuclear Laboratories (CNL). This group of collaborators, under INL leadership, got together early in Fiscal Year 2022 and put together a proposal to formalize the collaboration through the development of an HTGR thermal hydraulics benchmark based on HTTF data. In February of 2022, the proposal for an HTTF benchmark was submitted to the Organization for Economic Cooperation and Development – Nuclear Energy Agency (OECD-NEA or OECD) for their consideration and ultimately accepted. In that time, INL—through the Advanced Reactor Technology (ART) program—has led the development of draft benchmark specifications. This milestone report contains a description the HTTF, an overview of the proposed benchmark, and a detailed description of the INL-led contributions to the benchmark specifications.

## 1.1 HTTF Description

The HTTF is an electrically heated, helium-cooled integral-effects facility designed as a ¼-length-scale model for a block-type gas-cooled reactor design known as the modular high-temperature gas-cooled reactor 350 MW (mHTGR-350). The mHTGR-350 itself is an OECD benchmark for HTGR neutronics and thermal hydraulics [1], but the mHTGR-350 benchmark is both multiphysics and entirely computational in nature. The facility includes a reactor vessel, reactor cavity cooling system (RCCS), a full primary loop, and a secondary loop that includes a steam generator, and a volume known as the reactor cavity storage tank (RCST), which is a volume of helium at atmospheric pressure that serves as a pressure boundary for depressurized conduction cooldown (DCC) experiments [2]. A mock-up of the vessel and RCST is in Figure 1.

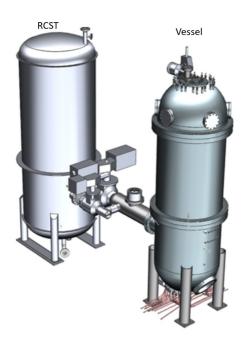



Figure 1. Rendition of HTTF vessel and RCST.

The core of the HTTF is composed of hexagonal blocks of an aluminum-oxide based ceramic. The blocks have holes in them, allowing for primary coolant flow, bypass flow, and room for the 210 graphite resistive heater rods. The heater rods are capable of providing a combined power up to 2.2 MW. The core is an annular configuration, with an inner reflector, rings of heated blocks, and an outer reflector. The core layout can be seen in Figure 2. Coolant flows downward through the core, primarily through the core coolant channels, but a small fraction of coolant flows through the bypass channels.

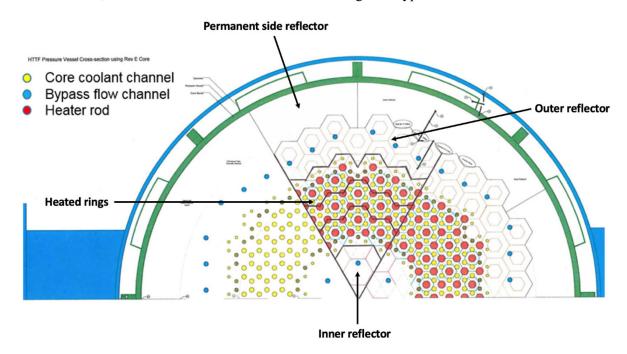



Figure 2. HTTF core layout.

The HTTF operates at a pressure of 0.7 MPa, lower than the 6.39 MPa for the mHTGR-350. Consequently, the blowdown phase of a DCC will not be accurately captured, but the long-term heatup and conduction cooldown will. During the conduction cooldown phase, heat is removed by the RCCS. The HTTF RCCS consists of a set of square panels surrounding the vessel with water flowing from bottom-to-top.

The HTTF contains over 500 instruments, over 400 of which are thermocouples. The high amounts of measured data make the facility an excellent candidate for developing a benchmark. Redundancies were built into the instrumentation plan so that even in the event of instrumentation failure, a similar measurement is still available. The biggest challenge with using HTTF data to define a benchmark is that the HTTF does not include any measurements of the primary coolant flow rate.

## 1.2 Proposed Benchmark Overview

The mHTGR-350 benchmark is both multiphysics and entirely computational. Consequently, differences in solutions to that benchmark may arise due to differences in neutronics solution, the thermal hydraulics solution, or both. A single-physics benchmark like the HTTF thermal hydraulics benchmark, eliminates the propagation of neutronics errors into thermal hydraulics solutions. A benchmark with experimental data also provides an opportunity to perform validation rather than just code-to-code verification. The proposed HTTF benchmark will be composed of three problems, with each problem having three exercises. Each problem represents different thermal hydraulic conditions from an HTTF experiment, allowing for comparison against measured data. Problems are intended to be solved with systems codes, computational fluid dynamics (CFD) codes, or systems codes coupled to CFD codes. The list of problems, the physical phenomena they are intended to model, and the relevant experiments can be seen in Table 1. Each problem is also divided into three exercises: fixed boundary conditions (code-to-code comparison), open boundary conditions (best-estimate modeling and validation), and error scaling (validation extrapolation).

Table 1. Benchmark problems, where "coupled" refers to coupled systems-code-to-CFD modeling.

| Problem | Physical<br>Phenomena                                    | Type of<br>Modeling  | HTTF Experiment | Lead<br>Organization |
|---------|----------------------------------------------------------|----------------------|-----------------|----------------------|
| 1       | Lower plenum mixing                                      | CFD                  | PG-28           | OSU                  |
| 2       | DCC transient                                            | Systems code/coupled | PG-29           | INL                  |
| 3       | Pressurized<br>conduction<br>cooldown (PCC)<br>transient | Systems code/coupled | PG-27           | ANL                  |

The ART program is spearheading the benchmark development and leading the work for problem two. Current benchmark participants include INL, using Reactor Excursions and Leak Analysis Program (RELAP)5-3D for systems-code modeling, ANL using the Systems Analysis Module for systems-code modeling, OSU focusing on CFD modeling with systems-code conditions provided by INL, and CNL with RELAP5-3D and their own in-house tool called ARIANT.

## 2. RELAP5-3D Modeling of the HTTF

The RELAP5-3D modeling for this benchmark descends from a RELAP5-3D model developed at INL that meets Nuclear Quality Assurance standards [3]. The Nuclear Quality Assurance model was modified with relevant time-dependent boundary conditions to re-create HTTF experiments using techniques developed for RELAP5-3D modeling of the HTTF test PG-26 during Fiscal Year 2020 [4]. For Exercise 1 (fixed boundary conditions, code-to-code comparison) of problems one and two, a simplified model that included only the core, vessel, and RCCS is used. The emissivities of some of the materials were modified from those in the Bayless model [3]. These revised values can be seen in Table 2. The RELAP5-3D model includes a cavity between the core vessel and the RCCS. This cavity is thermally coupled to both the outside of the reactor vessel and the inside of the RCCS cavity.

Table 2: Revised emissivities.

| Material                                               | Emissivity (-) |
|--------------------------------------------------------|----------------|
| Graphite heater rods                                   | 0.9            |
| Core ceramic blocks                                    | 0.581          |
| Shot Tech SiC 80 (permanent side reflector)            | 0.581          |
| Stainless steel for reactor pressure vessel and barrel | 0.25           |
| RCCS panel stainless steel                             | 0.074          |

## 3. Benchmark Specifications for Problem Two

Problem two models a DCC transient. In an HTGR, this occurs when the coolant pressure boundary is ruptured and helium escapes to containment. In HTTF, this occurs when valves connecting the vessel to the RCST are opened. The DCC portion of the benchmark is based on the PG-29 experiment conducted from July 24–26, 2019. The experiment started on July 24, 2019 at 9:15:42 pm following the completion of HTTF experiment PG-28 [5]. The initial conditions selected to define the benchmark were taken from the measured data on July 24 at 3:42:20 pm because this time provides an opportunity to model the entire heatup and a period of approximately four hours prior to heatup, during which time the pump speed (and correspondingly the coolant flow rate) was relatively constant. Starting the modeling at the time the PG-29 experiment began would mean a much larger fraction of the heatup period used a variable pump speed.

## 3.1 Exercise One: Fixed Boundary Conditions (Code-to-Code Comparison)

The code-to-code comparison is composed of three sub-exercises. The first is a full-power steady state. The second sub-exercise is a DCC from the full-power steady state. This allows for relatively simply boundary conditions and uses the Exercise 1A (full-power steady-state) solution as the initial conditions. The third sub-exercise uses PG-29-like conditions. Initial conditions for this sub-exercise are based on measured HTTF values from July 24, 2019 at 3:42:20 pm. The boundary conditions for this sub-exercise are the most complex but are derived directly from the measured data.

In all cases, the axial power distribution in HTTF is uniform due to the use of resistive heating rather than fission heating

### 3.1.1 Exercise 1A: Full-Power Steady State

HTTF was never run at full-power steady state, but this simple case provides an opportunity to assess steady-state solution techniques between systems codes and provides a set of initial conditions for Exercise 1B without the need to rigorously define temperatures at many locations throughout the core. The relevant boundary conditions can be seen in Table 3. The measured thermophysical properties of the core ceramic, as reported in the HTTF design description should be used for this problem [2]. If temperatures should exceed the highest measured temperature, the value of thermal conductivity or volumetric heat capacity at the highest temperature should be used. If temperatures should fall below the lowest measured temperature, the thermal conductivity or volumetric heat capacity from the lowest temperature should be used. The 2.2 MW is distributed evenly among the 10 heater rods, and as stated earlier, the axial power distribution is uniform. This problem should be solved using steady-state solution techniques if available.

Table 3. Full-power steady state boundary conditions.

| Parameter                             | Value |
|---------------------------------------|-------|
| Power (MW)                            | 2.2   |
| Helium Inlet Temperature (K)          | 500.0 |
| Helium Flow Rate (kg/s)               | 1.0   |
| Helium Pressure (MPa)                 | 0.7   |
| RCCS Water Inlet Temperature (K)      | 313.2 |
| RCCS Water Flow Rate (K)              | 1.0   |
| RCCS Water Pressure (MPa)             | 0.1   |
| RCCS cavity air inlet temperature (K) | 300.0 |
| RCCS cavity air flow rate (kg/s)      | 0.025 |

### 3.1.2 Exercise 1B: DCC from Full-Power Steady-State

Exercise 1B uses the results of Exercise 1A as initial conditions and allows for comparison with just a few simple boundary conditions. The coolant flow rate coasts down linearly from 1.0 to 0.0 kg/s over 1 second. The system depressurizes from 0.7 to 0.1 MPa linearly over 20 seconds. Flow rates in the cavity and the RCCS do not change. The power versus time curve here is based on the 1994 American Nuclear Society decay heat standard. The specific values of power versus time are seen in Table 4. If participants have the option to do so, they should interpolate power linearly between time steps. This problem should be solved with transient solution techniques.

Table 4: Power versus time for Exercise 1B.

| Time (s) | Power (W) |
|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| 0        | 2200000   | 150      | 61160     | 4000     | 26576     | 4000000  | 3058      |
| 0.01     | 124256    | 200      | 57882     | 6000     | 23364     | 5000000  | 2838      |
| 1.5      | 120868    | 400      | 50644     | 8000     | 21450     |          |           |
| 2        | 118030    | 600      | 46486     | 10000    | 20152     |          |           |
| 4        | 109934    | 800      | 43428     | 15000    | 17886     |          |           |
| 6        | 104566    | 1000     | 41030     | 20000    | 16104     |          |           |
| 8        | 100584    | 1500     | 36564     | 40000    | 12958     |          |           |
| 10       | 97460     | 2000     | 33418     | 60000    | 11418     |          |           |
| 15       | 91784     | 4000     | 26576     | 80000    | 10428     |          |           |
| 20       | 87802     | 6000     | 23364     | 100000   | 9724      |          |           |
| 40       | 78342     | 8000     | 21450     | 500000   | 5852      |          |           |
| 60       | 72864     | 10000    | 20152     | 1000000  | 4708      |          |           |
| 80       | 69036     | 15000    | 17886     | 2000000  | 3784      |          |           |
| 100      | 66132     | 20000    | 16104     | 3000000  | 3344      |          |           |

#### 3.1.3 Exercise 1C: DCC with PG-29-like Boundary Conditions

The boundary conditions for this sub-exercise are very detailed. Prior to providing the boundary conditions, a common geometry must be established. Participants may set up their geometry as they wish, but for the sake of initial conditions in Exercise 1, the geometry in is used. For example, from r = 0 to r = 0.075 at a given axial location, the temperature is the same everywhere.

The initial conditions for the helium coolant temperatures can be seen as Table 5. Empty locations in the table indicated regions that should have no primary coolant in them. The initial flow rate everywhere is 0.0 kg/s, and the initial pressure everywhere is 2.076 kPa.

Table 5: Helium initial conditions.

| Bottom          | lar condi |       |       |       |       |       |       |       |       |       |         |
|-----------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| Elevation/Outer |           |       |       |       |       |       |       |       |       |       |         |
| Radius (m)      | 0.075     | 0.165 | 0.177 | 0.288 | 0.37  | 0.473 | 0.508 | 0.576 | 0.604 | 0.762 | 0.83185 |
| 5.39682         |           |       |       |       |       |       |       |       |       |       |         |
| 3.69697         |           |       |       |       |       |       |       |       |       |       |         |
| 2.86512         |           | 376.3 |       | 376.3 | 376.3 | 376.3 |       | 376.3 |       |       | 376.3   |
| 2.48412         |           | 376.3 |       | 373   | 373   | 372.8 |       | 376.3 |       |       | 362.1   |
| 2.286           |           | 376.3 |       | 415.3 | 408.7 | 386.6 |       | 376.3 |       |       | 362.1   |
| 2.08788         |           | 376.3 |       | 415.3 | 408.7 | 386.6 |       | 376.3 |       |       | 362.1   |
| 1.88976         |           | 376.3 |       | 510.5 | 608   | 525.1 |       | 376.3 |       |       | 362.1   |
| 1.69164         |           | 376.3 |       | 510.5 | 608   | 525.1 |       | 376.3 |       |       | 362.1   |
| 1.49352         |           | 376.3 |       | 611.2 | 568   | 510.5 |       | 376.3 |       |       | 362.1   |
| 1.2954          |           | 376.3 |       | 611.2 | 568   | 510.5 |       | 376.3 |       |       | 362.1   |
| 1.09728         |           | 376.3 |       | 505.1 | 642.1 | 585.1 |       | 376.3 |       |       | 362.1   |
| 0.89916         |           | 376.3 |       | 505.1 | 642.1 | 585.1 |       | 376.3 |       |       | 362.1   |
| 0.70104         |           | 376.3 |       | 730   | 589.7 | 579.3 |       | 376.3 |       |       | 362.1   |
| 0.50292         |           | 376.3 |       | 730   | 589.7 | 579.3 |       | 376.3 |       |       | 362.1   |
| 0               | 376.3     | 376.3 | 376.3 | 730   | 623   | 503.9 | 376.3 | 376.3 | 376.3 |       | 362.1   |
| -0.2225         | 522.3     | 522.3 | 522.3 | 522.3 | 522.3 | 522.3 | 522.3 | 522.3 | 522.3 |       | 357.2   |
| -0.55007        | 357.2     | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 |       | 357.2   |
| -1.90237        | 357.2     | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 | 357.2 |       | 357.2   |

The temperatures of the solid structures are defined similarly to the initial helium temperatures. Those initial conditions can be seen in Table 6. Heater rod initial temperatures are defined in Table 7. The heating in PG-29 was azimuthally asymmetric. Consequently, the temperatures in HTTF on July 24, 2019 at 3:15:20 p.m. were azimuthally asymmetric too, but for the sake of the code-to-code comparison, the initial temperatures are defined as azimuthally identical. These values are the average of the values around the core.

Table 6: Solid structure initial temperatures.

| Table 6: Solid struct | Ture mina | ii temper | atures. | 1      |       |       | 1     |       |       |       | ,     |
|-----------------------|-----------|-----------|---------|--------|-------|-------|-------|-------|-------|-------|-------|
| Bottom                |           |           |         |        |       |       |       |       |       |       |       |
| Elevation/Outer       |           |           |         |        |       |       |       |       |       |       |       |
| Radius (m)            | 0.075     | 0.165     | 0.177   | 0.288  | 0.37  | 0.473 | 0.508 | 0.576 | 0.604 | 0.751 | 0.762 |
| 5.39682               |           |           |         |        |       |       |       |       |       |       |       |
| 3.69697               | 346.1     | 346.1     | 346.1   | 346.1  | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 |
| 2.86512               | 346.1     | 346.1     | 346.1   | 346.1  | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 | 346.1 |
| 2.48412               | 376.7     | 314.6     | 371.3   | 373.1  | 371.3 | 372.3 | 373.8 | 373.8 | 373.8 | 378.5 | 423.2 |
| 2.286                 | 388.5     | 314.6     | 396.1   | 426.3  | 404.8 | 387.1 | 373.8 | 373.8 | 373.8 | 386.8 | 423.2 |
| 2.08788               | 412       | 314.6     | 396.1   | 426.3  | 404.8 | 387.1 | 385.7 | 373.8 | 373.8 | 412.2 | 423.2 |
| 1.88976               | 461.5     | 314.6     | 483.3   | 507.4  | 502.7 | 544.7 | 385.7 | 373.8 | 373.8 | 412.2 | 423.2 |
| 1.69164               | 461.5     | 314.6     | 483.3   | 507.4  | 502.7 | 544.7 | 438.8 | 373.8 | 373.8 | 433.5 | 423.2 |
| 1.49352               | 461.5     | 314.6     | 314.5   | 507.4  | 562.6 | 557.2 | 438.8 | 373.8 | 373.8 | 433.5 | 423.2 |
| 1.2954                | 505       | 314.6     | 314.5   | 507.4  | 562.6 | 557.2 | 488.9 | 373.8 | 373.8 | 445.1 | 423.2 |
| 1.09728               | 505       | 311.3     | 313.5   | 789.6  | 628.3 | 557.2 | 488.9 | 373.8 | 373.8 | 445.1 | 423.2 |
| 0.89916               | 505       | 311.3     | 313.5   | 789.6  | 628.3 | 557.2 | 505.8 | 373.8 | 373.8 | 392   | 423.2 |
| 0.70104               | 692.4     | 311.3     | 789.3   | 1004.4 | 589   | 601.8 | 505.8 | 373.8 | 373.8 | 392   | 423.2 |
| 0.50292               | 692.4     | 311.3     | 789.3   | 1004.4 | 589   | 601.8 | 410   | 373.8 | 373.8 | 392   | 423.2 |
| 0                     | 655.2     | 311.3     | 789.3   | 1004.4 | 589   | 601.8 | 410   | 373.8 | 373.8 | 392   | 357.1 |
| -0.2225               | 460       | 460       | 460     | 460    | 460   | 460   | 460   | 460   | 460   | 460   | 357.1 |
| -0.55007              | 327.4     | 327.4     | 327.4   | 327.4  | 327.4 | 327.4 | 327.4 | 327.4 | 327.4 | 327.4 | 327.4 |
| -1.90237              | 477.2     | 477.2     | 477.2   | 477.2  | 477.2 | 477.2 | 477.2 | 477.2 | 477.2 | 477.2 | 477.2 |

Table 7: Heater rod initial temperatures

| Bottom          |       | прегации | es    |       |       |       |       |       |       |       |       |
|-----------------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Elevation/Outer |       |          |       |       |       |       |       |       |       |       |       |
| Radius (m)      | 0.075 | 0.165    | 0.177 | 0.288 | 0.37  | 0.473 | 0.508 | 0.576 | 0.604 | 0.751 | 0.762 |
| 5.39682         |       |          |       |       |       |       |       |       |       |       |       |
| 3.69697         |       |          |       |       |       |       |       |       |       |       |       |
| 2.86512         |       |          |       |       |       |       |       |       |       |       |       |
| 2.48412         |       |          |       |       |       |       |       |       |       |       |       |
| 2.286           |       |          |       | 379.7 | 667.3 | 378.8 |       |       |       |       |       |
| 2.08788         |       |          |       | 379.7 | 667.3 | 378.8 |       |       |       |       |       |
| 1.88976         |       |          |       | 515.1 | 667.3 | 460.5 |       |       |       |       |       |
| 1.69164         |       |          |       | 515.1 | 667.3 | 460.5 |       |       |       |       |       |
| 1.49352         |       |          |       | 410.8 | 544.3 | 475.6 |       |       |       |       |       |
| 1.2954          |       |          |       | 410.8 | 544.3 | 475.6 |       |       |       |       |       |
| 1.09728         |       |          |       | 776.1 | 314.5 | 503.2 |       |       |       |       |       |
| 0.89916         |       |          |       | 776.1 | 314.5 | 503.2 |       |       |       |       |       |
| 0.70104         |       |          |       | 537.5 | 314.5 | 570.7 |       |       |       |       |       |
| 0.50292         |       |          |       | 537.5 | 314.5 | 570.7 |       |       |       |       |       |
| 0               |       |          |       |       |       |       |       |       |       |       |       |
| -0.2225         |       |          |       |       |       |       |       |       |       |       |       |
| -0.55007        |       |          |       |       |       |       |       |       |       |       |       |
| -1.90237        |       |          |       |       |       |       |       |       |       |       |       |

All water in the RCCS is initialized at 300 K and a pressure of 0.1 MPa, and RCCS solid components should be initialized at 298.2 K.

This exercise uses measured data from PG-29 to inform the boundary conditions. The measured values were smoothed using a procedure described in Reference [4]. The primary coolant mass flow rate was set at 15 grams per second from 0.0 seconds until 28,800 seconds. At 28,800.5 seconds, the coolant flow rate was set to zero. Coolant flow should be linearly interpolated between 28,800 and 28,800.5 seconds. The helium inlet temperature boundary conditions can be seen in Table 8. The outlet pressure boundary condition can be seen in Table 9.

Table 8: Coolant inlet temperature boundary condition.

|         | Inlet  | ure bounda | Inlet  | 711.    | Inlet  |         | Inlet  |
|---------|--------|------------|--------|---------|--------|---------|--------|
| Time    | Temp.  | Time       | Temp.  | Time    | Temp.  | Time    | Temp.  |
| (s)     | (K)    | (s)        | (K)    | (s)     | (K)    | (s)     | (K)    |
| 0       | 360.30 | 32065.5    | 354.18 | 59855.5 | 328.48 | 91179   | 317.20 |
| 900.5   | 360.30 | 33949.5    | 351.36 | 61134.5 | 327.82 | 91921   | 317.04 |
| 2137.5  | 360.36 | 34203      | 351.00 | 61993   | 327.36 | 94059   | 316.64 |
| 2840.5  | 358.43 | 34849.5    | 350.13 | 64131   | 326.31 | 94169   | 316.62 |
| 4275    | 356.42 | 35974.5    | 348.66 | 66268.5 | 325.30 | 96196.5 | 316.22 |
| 6413    | 360.36 | 36341      | 348.19 | 66893.5 | 324.99 | 96844.5 | 316.10 |
| 8216    | 361.34 | 38478.5    | 345.56 | 68406.5 | 324.31 | 97575.5 | 315.97 |
| 8216.5  | 361.34 | 38826      | 345.17 | 69670.5 | 323.78 | 97753.5 | 315.94 |
| 8550.5  | 361.45 | 40335.5    | 343.55 | 70544   | 323.41 | 98334.5 | 315.83 |
| 9116    | 361.62 | 40567      | 343.32 | 70960.5 | 323.24 | 91179   | 317.20 |
| 10633   | 362.10 | 40567.5    | 343.32 | 72682   | 322.56 | 91921   | 317.04 |
| 10688.5 | 362.12 | 40616      | 343.27 | 72814   | 322.51 | 94059   | 316.64 |
| 12826   | 362.73 | 42403      | 341.51 | 74093.5 | 322.06 | 94169   | 316.62 |
| 13644.5 | 362.80 | 42403.5    | 341.51 | 74467   | 321.91 | 96196.5 | 316.22 |
| 14963.5 | 362.03 | 42754      | 341.18 | 74509.5 | 321.89 | 96844.5 | 316.10 |
| 15603.5 | 360.85 | 42870.5    | 341.07 | 74819.5 | 321.78 | 97575.5 | 315.97 |
| 17101.5 | 362.24 | 44891.5    | 339.16 | 76957   | 321.06 | 97753.5 | 315.94 |
| 17688   | 363.27 | 46899      | 337.19 | 79095   | 320.36 | 98334.5 | 315.83 |
| 19239   | 364.75 | 47029.5    | 337.09 | 81232.5 | 319.71 |         |        |
| 19358.5 | 364.81 | 47691      | 336.57 | 83370.5 | 319.12 |         |        |
| 19405.5 | 364.83 | 49167      | 335.38 | 84740.5 | 318.76 |         |        |
| 20949.5 | 366.03 | 50203      | 334.61 | 84969   | 318.70 |         |        |
| 21377   | 366.39 | 51304.5    | 333.79 | 85508   | 318.55 |         |        |
| 22434   | 366.90 | 53442.5    | 332.34 | 85964   | 318.43 |         |        |
| 23514.5 | 367.15 | 55580      | 330.97 | 86414   | 318.30 |         |        |
| 25652   | 366.32 | 56539      | 330.39 | 87645.5 | 318.02 |         |        |
| 27373.5 | 367.15 | 57718      | 329.71 | 87889.5 | 317.95 |         |        |
| 27790   | 367.49 | 58323      | 329.36 | 88789   | 317.73 |         |        |
| 29927.5 | 358.84 | 59816.5    | 328.50 | 89783.5 | 317.50 |         |        |

Table 9: Outlet pressure boundary condition.

|         | <u> </u> | indary condi |          |          | Desagrana |          | Риодания      |
|---------|----------|--------------|----------|----------|-----------|----------|---------------|
| Time    | Pressure | Time (a)     | Pressure | Time (a) | Pressure  | Time (a) | Pressure (Pa) |
| (s)     | (Pa)     | Time (s)     | (Pa)     | Time (s) | (Pa)      | Time (s) |               |
| 0       | 2.08E+05 | 21062.5      | 2.10E+05 | 42529.5  | 9.93E+04  | 66293.5  | 1.08E+05      |
| 300.5   | 2.08E+05 | 21377        | 2.10E+05 | 42754    | 9.98E+04  | 66480.5  | 1.08E+05      |
| 1136    | 2.08E+05 | 23514.5      | 2.10E+05 | 42849.5  | 9.97E+04  | 68406.5  | 1.08E+05      |
| 1727    | 2.07E+05 | 25390.5      | 2.11E+05 | 43137.5  | 1.00E+05  | 70544    | 1.08E+05      |
| 1727.5  | 2.08E+05 | 25469.5      | 2.11E+05 | 44891.5  | 9.99E+04  | 72682    | 1.08E+05      |
| 2064    | 2.08E+05 | 25652        | 2.11E+05 | 47029.5  | 1.00E+05  | 74007.5  | 1.07E+05      |
| 2077    | 2.08E+05 | 25700.5      | 2.11E+05 | 49167    | 1.01E+05  | 74819.5  | 1.08E+05      |
| 2137.5  | 2.07E+05 | 27790        | 2.11E+05 | 51304.5  | 1.02E+05  | 76957    | 1.07E+05      |
| 2774    | 2.08E+05 | 29419        | 1.08E+05 | 51709.5  | 1.03E+05  | 77250    | 1.08E+05      |
| 4275    | 2.08E+05 | 29927.5      | 1.06E+05 | 52407    | 1.03E+05  | 79095    | 1.07E+05      |
| 4957.5  | 2.08E+05 | 31994.5      | 1.02E+05 | 53442.5  | 1.04E+05  | 81232.5  | 1.07E+05      |
| 6413    | 2.08E+05 | 32015        | 1.02E+05 | 54470    | 1.04E+05  | 81612.5  | 1.07E+05      |
| 8550.5  | 2.08E+05 | 32038        | 1.03E+05 | 55580    | 1.05E+05  | 83370.5  | 1.07E+05      |
| 9340.5  | 2.08E+05 | 32038.5      | 1.02E+05 | 56694    | 1.06E+05  | 85508    | 1.07E+05      |
| 10688.5 | 2.08E+05 | 32065.5      | 1.02E+05 | 57290    | 1.06E+05  | 87645.5  | 1.06E+05      |
| 11694   | 2.08E+05 | 32363        | 1.01E+05 | 57718    | 1.06E+05  | 88139.5  | 1.07E+05      |
| 12826   | 2.08E+05 | 32363.5      | 1.02E+05 | 58323    | 1.07E+05  | 89783.5  | 1.06E+05      |
| 14963.5 | 2.08E+05 | 34203        | 1.01E+05 | 59855.5  | 1.08E+05  | 91921    | 1.07E+05      |
| 15714   | 2.09E+05 | 34661        | 1.01E+05 | 60147.5  | 1.08E+05  | 94059    | 1.06E+05      |
| 16482.5 | 2.09E+05 | 34835        | 9.98E+04 | 60738.5  | 1.08E+05  | 96196.5  | 1.06E+05      |
| 17101.5 | 2.09E+05 | 34835.5      | 1.01E+05 | 61032.5  | 1.08E+05  | 98334.5  | 1.06E+05      |
| 17222   | 2.09E+05 | 35646        | 1.00E+05 | 61033    | 1.08E+05  |          |               |
| 19239   | 2.09E+05 | 36341        | 1.00E+05 | 61993    | 1.09E+05  |          |               |
| 19440   | 2.09E+05 | 38478.5      | 1.00E+05 | 64131    | 1.08E+05  |          |               |
| 19440.5 | 2.10E+05 | 40616        | 9.98E+04 | 66268.5  | 1.09E+05  | -        |               |

As stated previously, heat generation in PG-29 is azimuthally asymmetric. The power is all generated in heater bank 104. The HTTF is divided into primary, secondary, and tertiary sectors. In PG-29, only the primary and tertiary sectors were heated. For the sake of this exercise, the heat is assumed to be generated equally in each of those sectors. Thus, the power boundary condition provided in Table 10 should be divided by two for each of the heat generating sectors.

Table 10: Heater 104 power boundary condition.

| Time    | 16ater 104 pov | wer boundary | Condition. |          |           |          |           |
|---------|----------------|--------------|------------|----------|-----------|----------|-----------|
| (s)     | Power (W)      | Time (s)     | Power (W)  | Time (s) | Power (W) | Time (s) | Power (W) |
| 0       | 3.802E+04      | 30025        | 4.869E+04  | 30230.5  | 4.877E+04 | 79896.5  | 4.486E+01 |
| 1799.5  | 3.802E+04      | 30037.5      | 4.863E+04  | 30729.5  | 4.896E+04 | 81945    | 4.710E+01 |
| 1800    | 3.802E+04      | 30038        | 4.874E+04  | 30819    | 4.865E+04 | 83994    | 4.693E+00 |
| 2048.5  | 3.841E+04      | 30038.5      | 4.862E+04  | 30819.5  | 4.865E+04 | 86042.5  | 0.000E+00 |
| 4097    | 3.989E+04      | 30040        | 4.845E+04  | 32778    | 4.907E+04 | 88091    | 0.000E+00 |
| 6145.5  | 4.120E+04      | 30040.5      | 4.860E+04  | 34826.5  | 4.887E+04 | 90139.5  | 0.000E+00 |
| 8194.5  | 4.071E+04      | 30042.5      | 4.860E+04  | 36875    | 4.870E+04 | 92188.5  | 0.000E+00 |
| 10243   | 4.262E+04      | 30043.5      | 4.854E+04  | 38924    | 4.839E+04 | 94237    | 0.000E+00 |
| 12291.5 | 4.339E+04      | 30049        | 4.837E+04  | 40972.5  | 4.809E+04 | 96285.5  | 0.000E+00 |
| 14340   | 4.518E+04      | 30050        | 4.851E+04  | 43021    | 4.800E+04 | 98334.5  | 0.000E+00 |
| 16389   | 4.570E+04      | 30062        | 4.819E+04  | 45069.5  | 4.748E+04 | 79896.5  | 4.486E+01 |
| 18437.5 | 4.531E+04      | 30068.5      | 4.838E+04  | 47118.5  | 4.725E+04 | 81945    | 4.710E+01 |
| 20486   | 4.525E+04      | 30069        | 4.834E+04  | 49167    | 4.714E+04 | 83994    | 4.693E+00 |
| 22534.5 | 4.434E+04      | 30072.5      | 4.838E+04  | 51215.5  | 4.669E+04 | 86042.5  | 0.000E+00 |
| 24583.5 | 4.418E+04      | 30081        | 4.876E+04  | 53264.5  | 4.662E+04 | 88091    | 0.000E+00 |
| 26632   | 4.403E+04      | 30112.5      | 4.854E+04  | 55313    | 4.623E+04 | 90139.5  | 0.000E+00 |
| 28680.5 | 4.389E+04      | 30113.5      | 4.849E+04  | 57361.5  | 4.622E+04 | 92188.5  | 0.000E+00 |
| 28819   | 4.437E+04      | 30115.5      | 4.838E+04  | 59410    | 4.613E+04 | 94237    | 0.000E+00 |
| 28819.5 | 4.438E+04      | 30116        | 4.851E+04  | 61459    | 4.558E+04 | 96285.5  | 0.000E+00 |
| 28874   | 4.493E+04      | 30117        | 4.860E+04  | 63507.5  | 2.142E+01 | 98334.5  | 0.000E+00 |
| 28874.5 | 4.531E+04      | 30118        | 4.850E+04  | 65556    | 3.310E+01 |          |           |
| 28875.5 | 4.677E+04      | 30119        | 4.857E+04  | 67604.5  | 4.087E+01 |          |           |
| 28876   | 4.709E+04      | 30119.5      | 4.845E+04  | 69653.5  | 4.975E+01 |          |           |
| 28876.5 | 4.694E+04      | 30120        | 4.857E+04  | 71702    | 5.115E+01 |          |           |
| 28903.5 | 4.782E+04      | 30121        | 4.837E+04  | 73750.5  | 4.482E+01 |          |           |
| 28904.5 | 4.813E+04      | 30121.5      | 4.836E+04  | 75799.5  | 4.870E+01 |          |           |
| 28959   | 4.808E+04      | 30123.5      | 4.857E+04  | 77848    | 4.757E+01 |          |           |

The presence of coolant channels in the HTTF blocks degrades their thermal conductivity. Some codes may be able to account for this effect inherently, but others cannot. In this sub-exercise, participants should use the thermal conductivity data in Table 11 for the aluminum-oxide core ceramic block (inner reflector, heated regions, and outer reflector).

Table 11: Thermal conductivity data for PG-29 Exercise 1C.

| of TG-27 Excicise TC. |              |  |  |  |
|-----------------------|--------------|--|--|--|
|                       | Block        |  |  |  |
|                       | thermal      |  |  |  |
| Temperature           | conductivity |  |  |  |
| (K)                   | (W/m-K)      |  |  |  |
| 300                   | 4.2122       |  |  |  |
| 400                   | 3.9917       |  |  |  |
| 500                   | 1.7037       |  |  |  |
| 600                   | 0.5768       |  |  |  |
| 700                   | 0.2502       |  |  |  |
| 800                   | 0.1569       |  |  |  |
| 900                   | 2.78         |  |  |  |
| 1000                  | 2.58         |  |  |  |
| 1100                  | 2.46         |  |  |  |
| 1200                  | 2.40         |  |  |  |
| 1300                  | 2.37         |  |  |  |
| 1400                  | 2.33         |  |  |  |
| 1500                  | 2.27         |  |  |  |
| 1600                  | 2.15         |  |  |  |
| 1700                  | 1.95         |  |  |  |
| 1800                  | 1.63         |  |  |  |
| 1900                  | 1.17         |  |  |  |
| 2000                  | 0.54         |  |  |  |

The RCCS is defined by inlet temperature and coolant flow rate boundary conditions that can be found in Table 12 and Table 13, respectively.

Table 12: RCCS inlet temperature boundary conditions.

|         | RCCS   | ry conditio | RCCS   |         | RCCS   |
|---------|--------|-------------|--------|---------|--------|
|         | Inlet  |             | Inlet  |         | Inlet  |
| Time    | Temp   | Time        | Temp   | Time    | Temp   |
| (s)     | (K)    | (s)         | (K)    | (s)     | (K)    |
| 0       | 313.53 | 31724.5     | 316.17 | 66268.5 | 317.27 |
| 1873    | 313.77 | 32065.5     | 316.23 | 68406.5 | 317.40 |
| 1873.5  | 313.77 | 34203       | 316.51 | 68860   | 317.44 |
| 1874    | 313.76 | 36341       | 316.67 | 70544   | 317.54 |
| 1874.5  | 313.76 | 38461.5     | 316.76 | 71490   | 317.58 |
| 1875    | 313.75 | 38478.5     | 316.76 | 72682   | 317.66 |
| 1875.5  | 313.75 | 39273.5     | 316.78 | 74819.5 | 317.83 |
| 1876    | 313.75 | 39593       | 316.79 | 76490.5 | 317.98 |
| 2137.5  | 313.82 | 40493       | 316.80 | 76957   | 318.03 |
| 2773    | 309.30 | 40616       | 316.80 | 79095   | 318.20 |
| 2773.5  | 309.30 | 41121       | 316.80 | 79877.5 | 318.29 |
| 2774    | 309.30 | 42259       | 316.81 | 80552.5 | 318.33 |
| 2774.5  | 309.30 | 42754       | 316.81 | 81232.5 | 318.41 |
| 2775    | 309.30 | 44891.5     | 316.79 | 81647.5 | 318.46 |
| 2775.5  | 309.29 | 45344.5     | 316.78 | 81703.5 | 318.46 |
| 2776    | 309.29 | 47029.5     | 316.76 | 83370.5 | 318.66 |
| 3040    | 306.71 | 47275.5     | 316.75 | 85368.5 | 318.18 |
| 4275    | 308.43 | 49167       | 316.74 | 85508   | 318.10 |
| 4851    | 309.09 | 50145.5     | 316.74 | 86955.5 | 317.82 |
| 6413    | 310.49 | 50176       | 316.74 | 87645.5 | 317.78 |
| 8550.5  | 311.98 | 50588.5     | 316.74 | 88031   | 317.75 |
| 10688.5 | 313.11 | 51304.5     | 316.74 | 89783.5 | 317.63 |
| 11968.5 | 313.66 | 53442.5     | 316.77 | 91921   | 317.50 |
| 12826   | 313.97 | 55112       | 316.80 | 92879   | 317.45 |
| 14806.5 | 314.47 | 55580       | 316.82 | 94059   | 317.38 |
| 14963.5 | 314.03 | 56304       | 316.84 | 95904   | 317.27 |
| 17101.5 | 313.34 | 57446       | 316.88 | 96196.5 | 317.26 |
| 19239   | 314.22 | 57718       | 316.89 | 98334.5 | 317.13 |
| 21377   | 314.92 | 59855.5     | 316.98 |         |        |
| 23514.5 | 315.51 | 59913       | 316.98 |         |        |
| 25652   | 315.13 | 59913.5     | 316.98 |         |        |
| 27790   | 315.06 | 61993       | 317.10 |         |        |
| 28452   | 315.31 | 64131       | 317.17 |         |        |
| 29927.5 | 315.76 | 66037       | 317.26 |         |        |

Table 13: RCCS flow rate boundary conditions.

| Time    | low rate boundary conc | ittions. | RCCS        |          | RCCS        |
|---------|------------------------|----------|-------------|----------|-------------|
| (s)     | RCCS Flow (kg/s)       | Time (s) | Flow (kg/s) | Time (s) | Flow (kg/s) |
| 0       | 0.385594               | 19239    | 0.384709    | 79095    | 0.389894    |
| 899.5   | 0.385594               | 21377    | 0.385548    | 81232.5  | 0.39033     |
| 900     | 0.385594               | 23514.5  | 0.385874    | 83370.5  | 0.390559    |
| 1783.5  | 0.380901               | 24723.5  | 0.38593     | 84132    | 0.390368    |
| 1867    | 0.374159               | 24825    | 0.379955    | 84132.5  | 0.390322    |
| 1867.5  | 0.374156               | 24825.5  | 0.37994     | 84133    | 0.390249    |
| 1868.5  | 0.374141               | 24838.5  | 0.379514    | 84133.5  | 0.390215    |
| 1869.5  | 0.374101               | 25652    | 0.369759    | 84134    | 0.390189    |
| 1870    | 0.374057               | 25725    | 0.374324    | 84139    | 0.389722    |
| 1870.5  | 0.374026               | 25725.5  | 0.374336    | 84143.5  | 0.388957    |
| 1873    | 0.373931               | 25738.5  | 0.374692    | 84144    | 0.388832    |
| 1873.5  | 0.37397                | 25739    | 0.374701    | 84145    | 0.388549    |
| 1874    | 0.373997               | 27790    | 0.382035    | 84145.5  | 0.388379    |
| 1874.5  | 0.37401                | 29927.5  | 0.385088    | 84146    | 0.388201    |
| 2137.5  | 0.374738               | 32065.5  | 0.385585    | 84146.5  | 0.387983    |
| 2593.5  | 0.369667               | 34203    | 0.385972    | 85030.5  | 0           |
| 2675.5  | 0.373831               | 36341    | 0.386014    | 85031    | 0           |
| 2683.5  | 0.374455               | 38478.5  | 0.386338    |          |             |
| 2767.5  | 0.381574               | 40616    | 0.386785    |          |             |
| 2768.5  | 0.381594               | 42754    | 0.387165    |          |             |
| 2769.5  | 0.381635               | 44891.5  | 0.387162    |          |             |
| 2770    | 0.381682               | 47029.5  | 0.387109    |          |             |
| 2770.5  | 0.381716               | 49167    | 0.387372    |          |             |
| 2773.5  | 0.381787               | 51304.5  | 0.387438    |          |             |
| 2774    | 0.381762               | 53442.5  | 0.387828    |          |             |
| 2774.5  | 0.381751               | 55580    | 0.387533    |          |             |
| 4275    | 0.380357               | 57718    | 0.387889    |          |             |
| 6413    | 0.380904               | 59855.5  | 0.388407    |          |             |
| 8550.5  | 0.38215                | 61993    | 0.389275    |          |             |
| 10688.5 | 0.382987               | 64131    | 0.389386    |          |             |
| 12826   | 0.384229               | 66268.5  | 0.389798    |          |             |
| 14056.5 | 0.384795               | 68406.5  | 0.389694    |          |             |
| 14210.5 | 0.375853               | 70544    | 0.389983    |          |             |
| 14963.5 | 0.364352               | 72682    | 0.390307    |          |             |
| 15110.5 | 0.372643               | 74819.5  | 0.390088    |          |             |
| 17101.5 | 0.381976               | 76957    | 0.390089    |          |             |

Participants should interpolate linearly between boundary conditions. This problem should be solved with transient solution techniques.

## 3.2 Open Boundary Conditions (Best-Estimate Modeling and Validation)

In Exercise 2, participants are encouraged to test the capabilities of their codes and use their best judgement to develop a best-estimate solution. Participants may wish to perform their own thermal conductivity calibrations, develop initial conditions that include azimuthal asymmetry, or estimate their own flow rates. These are only a few parameters that participants may choose to fine-tune to provide best-estimate solutions. The boundary conditions from Exercise 1 were generated with temperature agreement in mind, but little attention was paid to pressures or pressure drops. Participants may wish to model as much of the HTTF as possible during this exercise and demonstrate agreement with measured data in the primary or secondary loops. The following instruments did not function during the test:

- TS-1301
- TS-1401 (backup to TS-1301)
- TS-1302
- TS-1316 (backup to TS-1302)
- TS-1502
- TS-1516 (backup to TS-1502)
- TS-1503
- TS-1517 (backup to TS-1503)
- TS-1531 (backup to TS-1503)
- TS-1115
- TS-1304
- TS-1305
- TS-1511
- TS-1911
- TF-8205.

It should be noted that instruments CT-1062 and VT-1062 indicate current and voltage flowing through them, but heater 106 was not used as part of the experiment. Due to the azimuthally asymmetric nature of this experiment, it is recommended that participants focus their attention on core blocks 3, 5, and 7, which are the only elevations to have thermocouples in all three sectors of the core.

## 3.3 Error Scaling (Validation Extrapolation)

The objective of the error scaling exercise is to identify relationships between error and uncertainty in HTTF and error and uncertainty in the reference mHTGR-350. Exercise 2 provides an opportunity for validating systems codes against the HTTF data, but the question remains: how well can models validated based on a low-power, low-flow system like HTTF be said to represent a high-power, high-flow system like the mHTGR-350. Exercise 3 provides an opportunity to bound that validation extrapolation. In the systems-code exercises, participants can use systems codes models they develop for the mHTGR-350, but we also provide some reference values here so that users may perform error scaling without also needing to solve the mHTGR-350 benchmark. We have taken existing DCC models in the mHTGR-350 and performed sensitivity studies on them to provide sensitivity coefficients for error scaling.

The DCC in the mHTGR-350 occurs from full-power steady state. The coolant flow rate drops linearly from 157.0 kg/s to 0.0 kg/s over 20 seconds, and depressurization (from 6.39 to 0.1 MPa) occurs linearly over the same period. SCRAM occurs at 27 seconds. This is a fixed SCRAM time rather than an actuation of some hypothetical reactor protection system. The decay heat is defined at several axial and radial locations based on an assumed power history. The mHTGR-350 benchmark model has been modified to use the thermal conductivity of unirradiated graphite in the fueled regions of the core.

The sensitivity study perturbs the variables listed in Table 14 according to normal distributions described by the mean and standard deviations listed in the table. Multipliers on thermophysical properties were applied to each value in the temperature-dependent thermal conductivity. Each value was given the same multiplier at the same time. For example, if the thermal conductivity multiplier was 1.5, the thermal conductivity at each temperature was multiplied by 1.5 rather than using a unique multiplier for each temperature. The decay heat multiplier was applied to the decay heat at each location in the core.

Table 14: mHTGR-350 sensitivity study parameter distributions.

| Parameter                                   | Mean  | Standard Deviation |
|---------------------------------------------|-------|--------------------|
| Inlet Temperature (K)                       | 532.0 | 2.142              |
| Coolant Flow Rate (kg/s)                    | 157.0 | 1.127              |
| Block Thermal<br>Conductivity<br>Multiplier | 1.0   | 0.3                |
| Block Heat Capacity<br>Multipliers          | 1.0   | 0.15               |
| Fuel Thermal Conductivity Multiplier        | 1.0   | 0.1                |
| Fuel Heat Capacity<br>Multiplier            | 1.0   | 0.1                |
| Friction Multiplier                         | 1.5   | 0.1667             |
| HTC Multiplier                              | 1.0   | 0.15               |
| Decay Heat<br>Multiplier                    | 1.0   | 0.035              |
| Coast-down Time (s)                         | 25    | 5                  |
| SCRAM Time (s)                              | 42    | 15                 |

The figures of merit for this sensitivity study are instantaneous peak fuel temperature, instantaneous coolant outlet temperature, maximum fuel temperature over the entire transient, and maximum coolant outlet temperature over the transient. We present reference sensitivity coefficients in Table 15. Sensitivity coefficients are computed via linear regression and non-dimensionalized according to the equation below, where S is a sensitivity coefficient, L is the linear regression coefficient, L is the input in question, and L is a figure of merit.

$$S = L \times \frac{\bar{X}}{\bar{Y}}$$

Table 15: DCC sensitivity coefficients.

| Parameter                                   | Maximum Block Temperature Sensitivity Coefficient (-) | Maximum Outlet Temperature Sensitivity Coefficient (-) |
|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Inlet Temperature (K)                       | 0.484                                                 | 0.537                                                  |
| Coolant Flow Rate (kg/s)                    | 0.039                                                 | 0.012                                                  |
| Block Thermal<br>Conductivity<br>Multiplier | -0.011                                                | 0.0                                                    |
| Block Heat Capacity<br>Multipliers          | -0.040                                                | 0.0                                                    |
| Fuel Thermal<br>Conductivity<br>Multiplier  | -0.004                                                | 0.0                                                    |
| Fuel Heat Capacity Multiplier               | -0.009                                                | 0.0                                                    |
| Friction Multiplier                         | -0.005                                                | 0.0                                                    |
| HTC Multiplier                              | -0.005                                                | -0.009                                                 |
| Decay Heat<br>Multiplier                    | 0.008                                                 | -0.002                                                 |
| Coast-down Time (s)                         | -0.018                                                | 0.006                                                  |
| SCRAM Time (s)                              | 0.078                                                 | 0.0                                                    |

Participants are encouraged to use error scaling techniques such as dynamical system scaling, representativity, or others, to conduct their error scaling calculations. We provide the reference mHTGR-350 sensitivity coefficients for participants who do not have access to an mHTGR-350 model. Participants who have access to an mHTGR-350 model are free to conduct their own sensitivity analysis for their error scaling studies.

#### 4. Conclusions

The collaboration is underway between INL, OSU, ANL, and CNL to develop specifications for an HTGR thermal hydraulics benchmark based on HTTF experiments. The HTTF benchmark will be a single-physics benchmark that provides the opportunity for code-to-code and code-to data comparisons. The benchmark consists of problems for lower plenum mixing, DCC, and PCC experiments. Each problem is divided into three phases: fixed boundary conditions, best-estimate boundary conditions, and error scaling. This report has presented a draft of the specifications for the DCC problem, whose development is led by INL. The lower plenum mixing problem is being led by OSU, and the PCC is being led by ANL. The benchmark as a whole is led by INL under the auspices of the ART program. This benchmark will provide an important opportunity for both code-to-code verification studies and validation studies against measured data for HTGR thermal hydraulics modeling tools.

#### 5. References

- [1] Ortensi, J., G. Strydom, S. Sen, V. Seker, K. Ivanov, I. Clifford, J. Hou, H. C. Lee, N. Tak, T. Y. Han, H. J. Shim, U. Rohde, E. Fridman, Bilodid, A. Seubert., "Prismatic coulped netronics/thermal fluids transient benchmark of the MHTGR-350 MW core design: benchmark definition," Organization for Economic Cooperation and Development Nuclear Energy Agence, Paris, 2018.
- [2] Gutowska, I., B. Wood, "OSU High Temperature Test Facility Design Technical Report, Revision 2," Oregon State University, Ocrvallis, OR 2019.
- [3] Bayless, P. "RELAP5-3D Input Model for the High Temperature Test Facility," Idaho National Laboratory, Idaho Falls, ID, 2018.
- [4] Epiney, A, "RELAP5-3D Modeling of High Temperature Test Facility Test PG-26," Idaho National Laboratory, Idaho Falls, ID, 2020
- [5] Naknikian-Weintraub, B., U. Babineau, B. Woods, "OSU High Temperature Test Facility Test Acceptance Report: PG-29 Low Power (<350 kW) Double Ended Inlet-Outlet Crossover Duct Break Hybrid Heater," Oregon State University, 2019.