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ABSTRACT

Semiconductor manufacturing, particularly wafer fabrication, is a highly complex system of processes
and workflows. Fabrication facilities must deal with re-entrant flows to support multiple types of wafers
being produced simultaneously, each with their own deadlines and specifications. The manufacturing
process itself depends upon the ability to control and programmatically adjust a variety of environmental
conditions. In addition, wafer fabrication consumes large amounts of energy, particularly electricity.
Emerging technologies including networked devices may help reduce the energy footprint but can introduce
cybersecurity risks. Therefore, this paper presents its modeling and simulation framework to quantify
tradeoffs between operational measures of performance, energy consumption, and cybersecurity risks. We
augment the Intel Minifab model with an Industrial Control Systems (ICS) reference model based on the
Purdue Enterprise Reference Architecture (PERA) as well as tool-level energy consumption data from a
semiconductor manufacturing testbed.

1 INTRODUCTION

Semiconductor manufacturing is a highly complex process from both theoretical and practical standpoints.
Unlike other types of workflows, semiconductor manufacturing processes have re-entrant flows in which
wafers at varying stages may be processed at the same machine. In addition, wafer fabrication plants have
to deal with multiple types of wafers being produced simultaneously, each with their own deadlines and
specifications. The overall manufacturing process, particularly wafer fabrication, takes several months to
complete and as a result, the same disruption—whether an accidental fault or intentional cyberattack—may
have different impacts in terms of resources lost. The impact and resultant cost of its lost wafers may be
more significant given recent semiconductor supply chain shortages, and this is reflected in recent federal
initiatives to address supply chain issues.

The semiconductor manufacturing process depends upon the ability to control and programmatically
adjust a variety of conditions. For example, Heating, Ventilation, and Air Conditioning (HVAC) systems must
sense and regulate temperature, humidity, and particles in the air to ensure the quality of wafers produced.
Machines within these rooms depend upon advanced automation systems, backed by communications
networks, in order to orchestrate scheduling and routing, and provide Human-Machine Interfaces (HMIs)
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for operators, and access databases by which to configure and operate machines. Furthermore, the Industrial
Internet of Things (IIoT) within the manufacturing environment promises more efficient, safe, and customized
manufacturing workflows by collecting and analyzing data from vast sensor and device networks. Services
such as predictive maintenance, informed by data such as temperature, pressure, and equipment usage
history, promise to prevent unexpected and costly equipment failures. Furthermore, the introduction of IIoT
devices can provide stakeholders with raw energy consumption at the tool level or an energy signature, this
data can be utilized by multi-dimensional anomaly detection methods to highlight deviations from nominal
values.

Although the IIoT promises more efficient use of resources, resulting in increased productivity and
lower manufacturing costs, such technologies also have the potential to introduce risks. Specifically,
increased dependencies of manufacturing workflows on emerging technologies may make fabrication
plants (fabs) more susceptible to cyberattacks, including but not limited to ransomware. For example,
the Taiwan Semiconductor Manufacturing Company (TSMC) suffered $170M in losses after having to
suspend production for approximately 3 days due to the WannaCry ransomware (Dignan 2018; Ting-Fang
and Li 2018). More recently, Tower Semiconductor paid $250,000 in order to retrieve key information
encrypted during a ransomware attack so as to quickly resume production (Orbach 2020). Given the
importance of semiconductor manufacturing globally, nation-state campaigns such as Operation Skeleton
Key (Osborne 2020) against Taiwanese manufacturers underscore the need to quantify the risk of targeted,
cyber-originating disruptions to semiconductor manufacturing. This aligns with recent efforts, including
the SEMI Cybersecurity Standard, Specification for Malware Free Equipment Integration (SEMI 2022), as
well as NIST 800-82, Guide to Operational Technology (OT) Security (Stouffer et al. 2022).

This paper presents a modeling and simulation framework to help stakeholders quantify and explore
tradeoffs among a fab’s operational measures of performance, energy consumption, and security risks.
Specifically, this paper consists of three key contributions. First, there is a need for an approach to augment
existing manufacturing reference models with critical infrastructure dependencies to capture dependency-
based risks within the current semiconductor manufacturing ecosystem. Therefore, we present a reference
framework that integrates the Intel Minifab model (Kempf 1994) with concepts based on the Purdue
Enterprise Reference Architecture (PERA) (Williams 1994; ENISA 2018), capturing dependencies between
the manufacturing and OT environments due to the IIoT. Second, using the reference model, we present a
data analysis and simulation pipeline, that integrates data from actual semiconductor testbeds into the model
to simulate the energy consumption and production of the Minifab model under the baseline and cyberattack-
induced disrupted conditions. The energy baselining considers dependencies between electrical power usage
(kWh) and machine state to estimate energy consumption over a planning horizon with high granularity.
Third, we present a use case, based on a Nearly Orthogonal Latin Hypercube (NOLH) experimental design,
to calibrate tool and fab-level optimization models using production and power consumption response
surfaces computed using our pipeline. As such, this work sets the stage for being able to explore and
optimize tradeoffs between energy consumption, cybersecurity, and production.

This paper is structured as follows: Section 2 surveys the state of the art and practice relative to our
contributions. Section 3 provides background on IIoT for semiconductor manufacturing as well as a threat
catalog given these emerging technologies. In Section 4, we use a multilayered network formalism to
integrate the Intel Minifab model with an IIoT reference architecture based on PERA, enabling a simulation
pipeline to model cyber-originating disruptions to semiconductor manufacturing workflows. Section 5
presents a ransomware-inspired use case, based on our pipeline, to construct response curves to calibrate
optimization models at the tool and fab level as well as compute an energy baseline. Finally, Section 6
suggests future research and Section 7 presents our concluding remarks.

2 RELATED WORK

This section reviews the state of the art in the literature to understand the context and novelty of our
contributions. For each of our contributions, we discuss relevant prior work. First, the analysis pipeline
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described in this paper augments representations of existing semiconductor manufacturing reference models
with critical infrastructure dependencies, such as communications/IT, to enable dependency-based risk
analysis within the emerging semiconductor manufacturing ecosystem. Within the academic literature,
there is an acknowledged need to be able to represent and analyze semiconductor manufacturing control
systems at different hierarchical levels (Shao et al. 2019). Previous work done by Fowler describes a model
for semiconductor manufacturing consisting of four levels of simulation including individual tools, the
manufacturing site, internal supply chain, and the end-to-end supply chain (Fowler, Mönch, and Ponsignon
2015). An overview of reference models for semiconductor manufacturing sites is provided by Kopp
et al. (2020) who compare the scale of different models, including the Intel Minifab, MIMAC, Harris, and
SEMATECH 300 models.

Our work focuses on cyber-originating disruption models for semiconductor manufacturing and as
such, augments the well-known reference model for the Intel Minifab (Kempf 1994) with concepts based
on the Purdue Enterprise Reference Architecture (PERA) for Operational Technology (OT) (Williams 1994;
ENISA 2018; Langill, Hegrat, and Peterson 2019). There are a variety of emerging cybersecurity standards
within the industry including the SEMI Cybersecurity Standard, specification of malware-free equipment
integration (SEMI 2022); the NISTIR 8183A, Cybersecurity Framework Manufacturing Profile (Stouffer
et al. 2019); and more generally the Guide to Operational Technology Security (NIST 800-82r3) (Stouffer
et al. 2022). Texas Instruments recently motivated the need for a Cyber-Physical IT assessment tool
for semiconductor manufacturing companies (Cayetano et al. 2018). Within the digital twin literature,
however, some claim that “less is known or published on the topic of usability of a digital twin for
cybersecurity” (Pokhrel, Katta, and Colomo-Palacios 2020). Our intent is to address this gap by augmenting
a reference model for ICS networks and thereby enabling analysis of upstream infrastructure disruptions
that impact manufacturing site operations and energy consumption.

Second, we provide a use case within the semiconductor manufacturing space that sets the stage
for stakeholders to consider tradeoffs among operational measures of performance, energy consumption,
and cybersecurity. Research on digital twins for manufacturing spans decades and includes the Virtual
Factory (Fisher 1986), work by Jain et al. (2015) on the concept, and an entire panel held on the topic
more recently (Shao et al. 2019). Furthermore, extensive research has also been conducted on digital twins
for smart manufacturing system design (Leng et al. 2021; Haddod and Dingli 2021; Wang et al. 2021). As
mentioned earlier, however, less work has been done on digital twins for cybersecurity (Pokhrel, Katta, and
Colomo-Palacios 2020). Nonetheless, we claim that little research has been done into modeling the risks
introduced by the adoption of these emerging IIoT technologies. The intent of our second contribution is to
provide an approach to consider the impact of cybersecurity controls, such as those described by NISTIR
8183A, and their impact on operational measures of performance and energy consumption.

A variety of disruption modeling approaches have been considered within the simulation literature. In
terms of short-term planning (less than 3 months), researchers have looked at disruptions due to changes
to product mixes and machine breakdowns due to maintenance events (Scholl 2008). In considering
stochastic modeling of machine downtimes and times between failures, Rose demonstrated (Rose 2004) the
importance of the shape of the distribution in addition to the mean and variance of failure data. Moreover,
Rose concluded that using exponential distributions can lead to misleading results. Other work by on
long-term (longer than 6 months) disruptions briefly mentioned the impact of IT problems, but did not
discuss this in detail (Scholl et al. 2012).

One intent of our framework is to start to understand whether properties of cyber-originating disruptions
caused by an intelligent adversary can be represented by existing disruption models in the literature or
whether models based on new assumptions need to be developed. For example, traditional stochastic
disruption models may be well suited to model the timing of accidental infection by ransomware, such as
appears to be the case with the WannaCry incident at TSMC described in Section 3 (Dignan 2018; Ting-Fang
and Li 2018). Given that multiple tools may depend on a given cyber asset, however, other incidents will
likely simultaneously affect more machines than an unexpected machine failure. Alternatively, an intelligent
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adversary targeting a semiconductor manufacturing plant may seek to explicitly time a disruption in order
to maximize losses, motivating the need for other measures of impact beyond yield such as the embedded
energy of products lost. Finally, we should note that traditional disruption models focused on machine
availability may be applicable to some threat models but attacks affecting other security properties such as
data integrity and confidentiality do not align with such an approach.

Finally, as our third contribution, we compute several simulation-driven response curves to be used to
calibrate optimization models which will consider energy consumption, security, and production. In order
to explore the space of disruption parameters, we adopt an NOLH approach to understand how different
types of disruption models impact production as well as energy consumption. Such an approach employs
experimental design principles, as advocated by Sanchez (Sanchez, Sanchez, and Wan 2020), and integrates
data analytics with simulation (data farming). One key analysis resulting from this effort is the ability
to consider energy consumption within a manufacturing site as well as at the level of an individual tool.
Our energy baselining approach builds on work done by Kannaian to predict energy consumption within
semiconductor manufacturing (Kannaian 2018), and others in the literature (Gopalakrishnan, Mardikar, and
Korakakis 2010; Hu and Chuah 2003).

3 BACKGROUND

Industrial Control Systems (ICS) have been used to monitor and control a variety of semiconductor
manufacturing processes, such as HVAC systems, to regulate temperature and filter air particles, as well
as to schedule and route wafer lots through a facility. These processes are supported by Operational
Technology (OT), the computer systems used to manage industrial operations. Traditionally, these include
Programmable Logic Controllers (PLCs), Remote Terminal Units (RTUs), Human-Machine Interfaces
(HMIs), and Supervisory Control and Data Acquisition (SCADA) software systems (McGinley 2021). The
Purdue Enterprise Reference Architecture (PERA), provides a framework to classify IT and OT devices
into five levels and a basis to understand communication paths between them (Williams 1994; Fabrio,
Gorski, Spiers, Diedrich, and Kuipers 2016). The notional layers of PERA also provide a means by which
to implement and secure IT/OT networks through network segmentation (Fabrio et al. 2016).

Emerging Industrial Internet of Things (IIoT) applications include predictive maintenance, optimal
routing of wafer lots, real-time monitoring, and machine-learning enhanced metrology (Technavio 2020).
The integration of sensors and cloud-based analytics within the OT environment has motivated some to
develop new reference models for network architectures that more closely reflect the current and emerging
state of the practice (Langill, Hegrat, and Peterson 2019). For example, the European Union Agency
for Cybersecurity (ENISA) published a high-level reference model for smart manufacturing that extends
PERA to include sensors and cloud-based analytics (ENISA 2018). The ENISA model classifies IT, OT,
and IoT devices into six levels and provides an overview of high-level communication paths that support
manufacturing processes.

Traditional information security focused on the properties of Confidentiality, Integrity, and Availability
(CIA) (Barker 2003). Although these categories are critiqued within the academic literature (Schneider
2011), we employ the CIA security model to categorize general threats within the cybersecurity industry
that impact semiconductor manufacturing. More recently, practitioners have also used the PERA model to
describe cyberattacks on ICS, even developing the ICS kill chain to describe how an adversary gains initial
access, often via enterprise IT systems, and subsequently propagates to OT systems to affect industrial
processes (Assante and Lee 2015).

Confidentiality ensures that data or information is not disclosed in an unauthorized manner (Barker
2003). Loss of confidentiality within semiconductor manufacturing ICS enables several adversarial behaviors
defined within the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) for ICS
taxonomy. Specifically, Theft of Operational Information for Impact (Alexander, Belisle, and Steele 2020)
may result in loss of manufacturer’s trade secrets or IP by exfiltration of sensitive data (e.g., information
stored within a data historian). For example, Operation Chimera conducted during 2018 and 2019 targeted
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Taiwanese semiconductor manufacturers for IP theft and data exfiltration (Osborne 2020). Moreover,
with the adoption of IIoT-based applications, data may be gathered and processed by sensors and sent
directly to the cloud (Langill, Hegrat, and Peterson 2019). Beyond operational information, other sensitive
information such as valid usernames and passwords (e.g., Valid Accounts for Lateral Movement (T0859))
may be harvested and subsequently used for lateral movement through a manufacturing ICS network.

Data integrity prevents improper modification or destruction of data and includes non-repudiation and
authenticity (Barker 2003). Loss of data integrity within a semiconductor manufacturing environment could
result in Damage to Property (T0879) as well as Loss of Productivity and Revenue (T0828) through a mask
tampering attack. Mask tampering attacks can introduce flaws into wafers produced or introduce malicious
logic into a system. For example, in 2018, companies such as Amazon and Apple found a hidden chip
on their server motherboards that could provide remote access to servers with the vulnerability (Singh
and Szczys 2018). In addition, given increased reliance on sensors for more precise control of the
manufacturing environment, the integrity of data generated by such sensors is another aspect of control
systems cybersecurity.

Availability ensures timely and reliable access to information (Barker 2003). Availability of key services
within an ICS environment is critical to manufacturing networks in which downtime of an asset may result
in Loss of Productivity and Revenue (T0828) and Damage to Property (T0879). Over the past several years,
ransomware attacks have affected semiconductor manufacturing plants. In August 2018, the TSMC had to
shut down its plants for approximately 3 days after being infected with a variant of the WannaCry ransomware.
As a result, TSMC had to shut down production at its ‘most advanced’ iPhone chip manufacturing site,
resulting in approximately $170M USD in losses that affected quarterly earnings (Dignan 2018; Ting-Fang
and Li 2018). Other known ransomware victims within the semiconductor manufacturing industry include
MaxLinear, infected by the Maze ransomware in 2020 (Brennan 2020); X-Fab, which had to halt six
production facilities in July 2020 for multiple weeks (Stegall 2020); and Tower Semiconductor, which
suspended operations in some facilities on September 6, 2020 but resumed operations by September 10
after having paid the ransom (Orbach 2020). According to a report by Dragos, the Manufacturing sector
dominated the ICS Sectors most impacted by ransomware in 2021 with 211 known incidents, Food and
Beverage was next with 35 incidents (Dragos 2021).

4 MODEL

Although the adoption of IIoT may result in more efficient semiconductor manufacturing workflows, it also
may increase the attack surface for the manufacturing system due to networked components with potential
exposure to the cyberattacks. As a result, stakeholders need to be able to consider potential disruptions
within a manufacturing workflow, relative to its dependencies on communications and computer networks.
One key consideration for ICS security is to consider the risks of using specific technologies to implement
or improve an operational process (Langill, Hegrat, and Peterson 2019). By augmenting the Intel Minifab
model with a notional reference architecture such as PERA or related model, we hope to provide an
integrated approach to discuss cybersecurity relative to business process (via graph-theory) and associated
measures of performance (via simulation). As a result, stakeholders can consider the impact of adopting
new technologies as well as how newly-discovered vulnerabilities relate to their operational processes.

4.1 Manufacturing Facility Model

Our analysis pipeline validates and parses a graph-based representation of the manufacturing workflow.
In such a representation, vertices correspond to resources (machines, physical routing locations), while
edges define possible routes between these machines. Queueing network parameters, such as service time
and server capacity, are encoded as network attributes. Table 1 provides a more detailed overview of the
manufacturing model parameters and measures of performance.
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Table 1: Model Inputs and Outputs.

Simulation Model Parameters and Outputs
Lot Parameters
Variable Description

wl Lot l wafer type (e.g. Pa,Pb,TW )
S Number of steps in workflow, same for all wafer types

sl ∈ S Last completed step in workflow
Aw Arrival rate for lots of a given type

Resource Parameters
M Workflow resources, including machines and physical routing locations
Rs Adjacency matrix of size |M|× |M| defined for each workflow step S. Routes wafer lots based on

their last completed step
µ

s,w
m Service time at machine m relative to last completed workflow step and wafer type

cm Number of lots that can be simultaneously serviced at machine m
Km Number of lots that can wait to be serviced
Dm Queueing discipline at resource m

Outputs
um Mean utilization of machine m

ŴIP Average work in progress
ĈT Average cycle time

The manufacturing network is used as an intermediate representation to instantiate the simulation
as well as provide a future capability for graph-theoretic analyses on the workflow. To implement the
manufacturing network within our data processing and analysis pipeline, we encode workflow and simulation
model parameters using the Yet Another Workflow Language (YAWL). YAWL is a markup language for
workflows, based on Petri Nets, that was extended to accommodate assumptions of real-world workflow
constructs (Van Der Aalst and Ter Hofstede 2005). The simulation module parses the YAWL manufacturing
workflow into an intermediate graph representation using the NetworkX library (Hagberg, Swart, and S Chult
2008). This intermediate representation is subsequently used to instantiate the simulation via the Ciw library,
a discrete event simulation library for queuing networks (Palmer et al. 2019).

Within our simulation, lots of 25 wafers (Kempf 1994) move through a manufacturing workflow. By
assumption, a lot (l) contains wafers of a single type (wl). For example, the Intel Minifab model has three
wafer types, Pa,Pb and test wafer TW . Depending upon their type, lots arrive at different rates (Aw) to the
start of the workflow network and are routed to various workflow resources according to (Rs) depending
upon their last completed step (sl) and wafer type (wl). Having arrived at a resource m ∈ M, lots wait in
a queue to be serviced according to the FIFO discipline. Operational measures of performance output by
the simulation include average Work in Progress (WIP) (Ŵ IP), average cycle time (ĈT ), and utilization of
machines, (um). These performance measures are averaged over multiple replications of each scenario.

Verification and Validation (V&V) was conducted to ensure correct implementation and accuracy of
the model. Verification of the simulation model ensures that it is properly implemented with respect to
the specification. As part of this effort, development of the simulation and the entire supporting pipeline
included extensive unit testing to ensure proper code behavior. Moreover, model parameter units are
explicitly specified and processed using the pint library. Validation of the simulation model ensures the
accuracy of the model against the specification or real-world system. Validation efforts focused on the
operational measures of performance.

4.2 Multilayered Networks: An ICS Disruption Model

We employ a multilayered network formalism (Boccaletti et al. 2014), as a natural approach to represent
the communication flows represented by PERA-like reference models of ICS systems. At a high level,
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we define a multilayered network whose layers correspond to a subset of Levels as defined by the ENISA
model (ENISA 2018). Cross-layer edges within the multilayered network correspond to known information
flow dependencies within the reference model. For example, the Intel Minifab workflow network, encoded
by YAWL, defines a network layer that corresponds to a Level 0 manufacturing process. Additional Levels
may be explicitly encoded within the multilayered network representation depending upon the scope of
the analysis of business function or threat model. More information about this approach may be found
in (Weaver 2021).

Specific business functions enabled by the Level 0 workflow—such as defect inspection following
lithography—may have different implementations and, as a result, different direct and indirect dependencies
on IT/OT devices and Levels. Emerging deep learning algorithms for wafer metrology and defect detection
depend on real-time sensor readings and in-process signals (Rambo and Sperling 2021). In contrast, manual
inspection, while potentially less efficient as machine learning technologies improve, has fewer dependencies
on real-time sensor data. Sensor data and other in-process signals can be stored in data historians such as
that provided by the Open Automation Software (OAS) platform. In fact, OAS was selected by Intel as the
standard to archive data at an archive rate of 10 million tags per second.

In the case of vulnerability analysis, recently-disclosed vulnerabilities associated with the OAS platform
include the ability to obtain directory listings (CVE-2022-27169), obtain usernames and passwords (CVE-
2022-26077), and craft packets that lead to a denial of service and loss of communication (CVE-2022-
26026) (Vijayan 2022). While the PERA and associated reference models allow stakeholders to put such
vulnerabilities in the context of upstream and downstream data flows at a high level, the intent behind
a machine-actionable representation of such reference models is to model and simulate their potential
impact on operational workflows. In addition, such an ICS representation may help bridge the gap between
complex systems analysis and applied systems security (Weaver, Yardley, and Emmerich 2021).

5 USE CASE

The operational impact of a cyber-originating disruption on a manufacturing workflow depends on different
factors that we want to explicitly model and explore. We consider the impact of varying security investment
on production and energy consumption within a manufacturing fab accidentally infected by ransomware. We
employ a Nearly Orthogonal Latin Hypercube (NOLH) experimental design with 33 design points (Sanchez
2011; Sanchez, Sanchez, and Wan 2020). For each design point, we simulate a model of a fab for 32
months with 6 months of warm-up based on the Intel Minifab model. These simulation results allow us
to develop functional representations that consider the impact of the level of cybersecurity investment and
product arrival rates on measures of production, specifically WIP, as well as energy consumption.

5.1 Experimental Design Factors

Security Investment: The first disruption factor considered is the security investment, which affects the mean
time to repair (MTTR). Within our experimental design, there are three factor levels for security investment
that correspond to three different triangular distributions for MTTR, based on real-world ransomware
incidents. When the level of security investment is low, the MTTR ranges from 3 to 21 days with a
mode of 10, when there is a medium level of investment, the MTTR ranges from 0.5 to 14 days with a
mode of 7, and with a high level of investment, the MTTR ranges from 0.5 to 5 with a mode of 3. This
assumes that investment in security will affect an organization’s ability to quickly respond to and recover
from a cyber-originating disruption, which may not always be the case. Nonetheless, this approach allows
companies to compare the impact of different response times and their overall effect on production and
energy consumption.

Disruption Location: The location of machines indirectly affected by a cyber-originating event is also
an important factor. Cybersecurity controls to mitigate the propagation of ransomware through a victim
network include network segmentation and workload-specific micro-segmentation. The same ransomware
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may propagate at different rates following initial access to a victim network. In this experiment, we control
the disruption location to machine 6 (lithography). We can, however, extend the model to allow security
investments to affect the quantity and type of machine affected based on how different security controls
impact malware propagation.

Disruption Start Time: Another disruption factor within our experimental design is the start time.
The disruption may occur anytime immediately after the warmup period through the end of the 18-month
simulation time. Our design has two factor levels for the disruption start time, both of which correspond
to triangular distributions. The first level has the disruption start in the first half of the year following the
warmup period while the second level occurs in the latter half of the year. Given that the model assumes
a homogeneous arrival rate of product mixes, this model is not well suited to understand the impact of
timing of targeted ransomware attacks on a fab.

Wafer Arrival Rates: The final factor within our experimental design is the wafer lot arrival rate. Higher
wafer lot arrival rates may result in greater productivity. On the other hand, with less slack in the system,
the impact of disruptions may be greater. Therefore, this experimental factor ranges between 70% and
95% maximum utilization across all machines in the facility. This maximum utilization is then translated
into a wafer lot arrival rate for each type in the model.

5.2 Manufacturing Site WIP Response Curves

Response curves and simulation WIP outputs for the manufacturing site as a whole were fitted and plotted
over 33 design points; see Figure 1. The x-axis is the maximum utilization (which is proportional to
the arrival rates). Note that recovery time (not shown) is a function of the overall security investment.
These results, based on 10 independent replications per design point, provide an initial sketch of the
relationship between the security investment and maximum utilization (therefore arrival rates). Overall,
the results demonstrate that longer recovery times associated with a lower security budget result in larger
mean WIP values (averaged again over 10 replications), namely low, medium and high investments have
average WIPs of 19.2, 12.4, and 11.7 respectively. To fit the WIP outputs, we assume the following

functional form: WIP(ρ) = c
(

ρ

1−ρ

)k
; ρ is the maximum utilization. This functional form is suggested

by the general theoretical relationship between traffic intensity and average queue size in single-station,
multiple-server models. Each security level’s data points were fit to parameters c and k which are displayed
in the legend of Figure 1. We fit our functional form to the data, using the scipy implementation of the
Levenberg-Marquardt algorithm (Moré 1978) that solves unconstrained non-linear least square problems.

Figure 1: Average WIP responses to arrival rates (max utilization) over the 10 replications for each level
of security investment. The legend states the fitted function to each security level’s set of data points.



Weaver, Shusko, Hasenbein, Kutanoglu, Martinez-Medina, Castillo-Villar, and Costa

5.3 Tool-Level Energy Baselining

In addition to response plots for the fab as a whole, we also consider energy consumption of individual
machines in the fab for which raw power consumption is available. Given a raw active power signal from
a physical testbed, we estimate an energy baseline for a machine over the simulation time. Figure 2 shows
data from the Integrated Nanotechnology Research Facility (INRF) at UCI: a raw power signal for the
PlasmaTherm machine, sampled for 3 hours at a frequency of 1 Hz. The PlasmaTherm is used in processes
immediately preceding and following lithography: Plasma Enhanced Chemical Vapor Deposition (PECVD)
and Reactive Ion Etching (RIE). Although a signal from a lithography machine is ideal, we consider these
two processes, provided by the PlasmaTherm, as part of the function of the Minifab’s lithography machine.
In order to estimate power consumption over the simulation, the machine utilization um is used to interpolate
between time spent in UP and IDLE states. Therefore, the raw power signal is partitioned into sets of time
intervals corresponding to these states and power consumption values within each partition are averaged
to estimate these values. Figure 3 shows that the energy used in the process increases as the maximum
utilization rate increases, as expected. On the other hand, Figure 4 illustrates that recovery time does not
show a clear relationship with energy usage or with the level of security investment. It may be possible
for a medium level investment sample to have a longer recovery time than a high or low level investment.

Figure 2: Processing the raw power signal of a PlasmaTherm sensor to estimate energy consumption.

Figure 3: Energy usage and max utilization. Figure 4: Energy usage and recovery time.

6 FUTURE WORK

Scalable approaches to support analysis of business impact and energy consumption relative to cybersecurity
is important to consider, especially with larger workflow models. For example, the MIMAC and SEMATECH
300 reference models have 260/275 machines at 85/103 work stations respectively (Cayetano et al. 2018).
Again, we note that modeling data-integrity attacks or confidentiality breaches are less clearly related to
traditional stochastic disruption models and are left for future research. Finally, other approaches to analyze
power consumption, such as performance measures employed by Hu (Hu and Chuah 2003), may provide
further insight into the tradeoffs between cybersecurity and energy consumption.
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7 CONCLUSION

Emerging technologies may help reduce the energy footprint of manufacturing systems such as wafer fabs
but can introduce cybersecurity risks. Therefore, this paper presents a modeling and simulation framework
to quantify tradeoffs between operational measures of performance, energy consumption, and cybersecurity
controls. By augmenting the Intel Minifab model with interdependencies in the Communications/IT and
Energy Sectors, we have demonstrated an approach, based on experimental design, to explore these
interacting factors. Such work sets the stage for optimization at the facility and tool-level relative to
cybersecurity and energy consumption.
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