

Optimization of Integrated Energy Systems

10 November 2022

Daniel Garrett, PhD
Integrated Energy Systems
Nuclear Science & Technology Directorate
daniel.garrett@inl.gov

New operational paradigms—nuclear energy flexibility

- Operational flexibility
 - Product flexibility
 - Deployment flexibility

Nuclear flexibility can be key to enabling deployment of other clean energy generators.

Cross-sectoral energy solutions for a resilient net-zero future

Future Energy System: Transforming the Paradigm

Integrated systems leverage contributions from <u>all</u> low emission energy generation options to support decarbonization of electricity, industry, and transportation

processes

Goals

- Maximize energy utilization and generator profitability
- Minimize environmental impacts
- Maintain
 affordability, grid
 reliability and
 resilience

DETAIL – Dynamic Energy Transport and Integration Laboratory

IES Optimization at INL

- HERON
 - https://github.com/idaholab/HERON
 - RAVEN plugin
 - https://github.com/idaholab/RAVEN
 - Optimize capacity/component sizing
 - Dispatch optimization
- ORCA
 - Optimization of Real-time Capacity Allocation
 - Under development
 - Real-time economic optimization

HERON

Bringing FORCE together for Technoeconomic Analyses

RAVEN

- Stochastic Analysis
- Synthetic Histories

TEAL

- Economic Metrics
- Cash Flows

FARM

- Process Analysis
- Al Training, Control

HYBRID

- Process Models
- API Framework

HERON

- Stochastic Technoeconomic Analysis
- Component Sizing Optimization
- Dispatch Optimization

Macro Technoeconomic Analysis

- Holistic Energy Resource Optimization Network
- Solve:
 - Optimal size for IES systems (generators, storage, industrial processes)
- Such that:
 - Respect technical limitations
 - Evaluate continuous-time responses
 - Optimize component dispatch
 - Maximize expected profitability
 - Requires uncertainty quantification
 - Weight expected profit by risk
 - Value at Risk, risk assessment

Risk-Informed Optimization

- Stochasticity
 - Consider more than one projected future
 - Statistically consider hundreds or thousands
- Optimize system size for expected benefit
 - Expected NPV
 - Value at Risk

Many Potential 30-year Outlooks

Synthetic Histories

THE GEORGE
WASHINGTON
UNIVERSITY
WASHINGTON, DC

- Synthetic Histories allow exploring many possible futures
- Train on historical or projected data
 - Capture short, long-term deterministic effects
 - Characterize residual uncertainty
- Sample new histories
 - Each independent, identically-distributed
 - Same characteristics as training, new behavior
 - Clustering, correlation, multiyear evolution

HERON Two-Loop Optimization

Repeat for Many Histories

Statistical Economic Metrics

New System

Component Sizing

"Outer" Optimization Components and Markets

- Nuclear Power Plant
 - Core (Steam Generator)
 - Turbine (Steam to Electricity)
- Hydrogen Generator
- Hydrogen Storage
- Battery Storage
- Thermal Energy Storage
- Electricity Market
 - Real Time, Day Ahead
- Hydrogen Market
- See https://github.com/idaholab/FORCE for examples

Optimize

- Size
- Dispatch

"Inner" Optimization – Dispatch

Optimize Dispatch, Commitment 30-year projection

Continuous Time

Flexible Economic Drivers

Multiple Commodities

Arbitrary Policies

Signal Response

Storage Flex

ORCA – IES Real-Time Economic Optimization

- IES optimization occurs at multiple time scales
 - "Real-Time" = days, hours, minutes, etc.
- Operation optimization of IES
 - Integration of IES with digital twin
 - RTO sits between M&S and operations
 - How do we operate optimally?
 - Maximize profits
 - Production scheduling
 - Arbitrage
- Why RTO?
 - \$\$\$

Fig. 1. Typical control hierarchy in process control. Krishnamoorthy et al. 2018

Deregulated Electricity Market RTO

ORCA – Dispatch Optimization

- Economic Model Predictive Control/Receding Horizon Optimization
 - Forecast LMP forward in time (i.e., 12 hours)
 - Use model to predict IES performance
 - Optimize dispatch for maximum revenue
 - Use dispatch for next time step only
 - Implement as setpoints/control actions
 - -, repeat

IES Mathematical Model Example

NPP + Electrical Storage

- NPP supplies constant capacity
- Electrical storage for arbitrage
- : state of charge at time (MWh)
- : round trip efficiency (0,1)
- : charging at time (MW)
- : discharging at time (MW)
- : time step (minutes)
- : LMP at time (\$/MW)
- : NPP capacity (MW)

Objective function: maximize revenue

ORCA Example

- 05-31-2022 to 06-07-2022
- PJM Pricing Node 1 (5-minute real time market)
- Perfect knowledge LMP forecast

Parameter	Value
	5 minutes
	0.8
	50 MW
	20 MWh
	0 MWh
	20 MW
	20 MW

	1 Week Revenue
IES	\$8,511,996.26
NPP only	\$8,265,764.33
Revenue Increase	\$246,231.93

ORCA – Digital Twin Physical System Control

System State Update

- Black box no information: only inputs □ outputs
- Grey box some information: inputs □ outputs, derivatives (Jacobians, Hessians, etc.)

ORCA – Current Work

- Build Python package to perform dispatch optimization
 - Provide tools for use in building workflows, not THE workflow
 - Given a model, perform optimization
- EMPC-based dispatch optimization
 - Current mathematical model:

- Automatically generate Pyomo expressions for model, constraints, objective function
- Prepare for virtual demonstration of real-time economic optimization
 - Virtual model in Modelica/Dymola to emulate physical IES
 - Deep Lynx data warehouse to communicate between virtual model and optimization
 - Digital twin development for ORCA to use in economic dispatch

ORCA – Future Work

- Demonstrate real-time economic optimization on physical IES
 - DETAIL IES at INL
 - Deep Lynx data warehouse to communicate between IES and optimization
 - Digital twin development for ORCA to use in economic dispatch
- Open source ORCA
- Expand ORCA package
 - Additional optimization methods beyond EMPC
 - Integrate with other tools at INL or open-source community

Summary

- IES can make nuclear more flexible, economical
- Optimization of IES at INL
 - HERON
 - Optimal sizing for IES components
 - ORCA
 - Real-time economic dispatch optimization

- ies.inl.gov
 - daniel.garrett@inl.gov

