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ABSTRACT 

Advanced nuclear reactors offer a new set of features to energy generation, 

due to their ability to adapt to variable energy demand, operate autonomously, be 

deployed in rural locations and monitored remotely, afford compact size and 

lower power ratings, and rely on novel technologies to achieve safer operations. 

Thus, a requirement for the success of these reactors is the use of intelligent 

forms of control to track changing power demands, make autonomous decisions, 

and reduce the need for human involvement.  

Regulatory requirements pertaining to control of nuclear reactors could be 

met via historical means of control; however, these are not expected to enable the 

level of highly autonomous operations desired in advanced nuclear reactors. 

Historical control methods rely on both logical and high-performance (HP) 

control. These two types of control are usually used separately, with a human 

element being introduced whenever decisions are cascaded from one science to 

another. AI/ML control, on the other hand, can replace the human element in the 

current U.S. fleet of nuclear power plants (NPPs) by acting as a supervisory 

optimizer that understands the plant internal/external variables in order to make 

control decisions, and can easily handle non-linear and multi-input/multi-out 

(MIMO) decisions—another requirement for advanced nuclear reactors that 

could be difficult to handle via logical and HP control. Because of the harsh 

operating environments produced in advanced reactors, resulting in the frequent 

failure of sensors and other types of equipment, and considering the lack of 

operating history for advanced nuclear reactors, control of advanced nuclear 

reactors would necessitate relying on a model that can track and adapt to the 

actual process (i.e., a digital twin). This digital twin can make approximations 

when knowledge and data are unavailable and would evolve as more knowledge 

is gained. The reactor control must also be risk-informed to account for the 

high-consequence nature of advanced reactors.  

This report introduces a high-level (i.e., not method- or process-specific) 

integration of the three different control and digital twinning methods able to 

meet the requirements for advanced nuclear reactors. These methods could be 

applied during both the operational and design stages of these reactors. The aim 

is to demonstrate how each method interfaces with and highlights enabling 

solutions necessitated by the unique features of advanced nuclear reactors.  
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Integration of Control Methods and Digital Twins for 
Advanced Nuclear Reactors 

1. INTRODUCTION 

The evolution of U.S. and global energy needs has led to demand for a new type of nuclear reactor. 

Many classical characteristics of nuclear power plants (NPPs) must now be evolved, including their large 

power capacities (typically ≥1 GWe), large sizes, strong reliance on manpower, onsite construction, 

immobility, challenges to deployment in rural locations, and primary function as baseload sources of 

electricity. Also desired are further improvements to nuclear reactor safety, reduced operational costs and 

nuclear waste, and enabled usage of energy to support processes other than electricity generation. This 

has motivated the development of novel new reactor types referred to collectively as advanced nuclear 

reactors. Advanced nuclear reactors possess one or more of the following key features:  

• Can operate at lower and/or variable power ratings. In some cases, the power rating may be on the 

order of a few megawatts, enough to meet the demand entailed by a specific application.  

• Can operate in rural areas that are not grid connected, or can primarily be used to support processes 

other than electricity generation (e.g., a chemical plant).  

• Are made highly autonomous due to increased application of automation technologies to such 

activities as monitoring and control. This is because advanced reactors can be deployed in remote 

locations, and each central control room takes charge of monitoring and operating several reactors 

simultaneously. Autonomous operations are also needed to reduce the cost per MWh generated, as 

manpower is a primary cost driver for the current U.S. nuclear reactor fleet. 

• Are small or compact in size. This is often achieved via forms of cooling and neutron moderation (for 

thermal reactors) that differ from those used in typical light-water reactors.  

• Are built in a manufacturing facility or are modularly assembled onsite, thanks to their small size, 

thus enabling them to be built faster and with mobility in mind.  

• Are safer to operate, thanks to several key technological advances such as increased reliance on 

passive forms of cooling, a lower power, a strong negative feedback coefficient, and a lower 

radioactive inventory.  

Due to these features, advanced nuclear reactor research, design, and development have seen rapidly 

growing interest in recent decades, with different advanced reactor technologies currently under 

development having reached various levels of maturity. However, while those features increase the 

deployment potential for advanced nuclear reactors, they also introduce several unique requirements that 

must be met before these reactors can be used in the manner envisioned.  

The highly autonomous and dynamic nature of advanced nuclear reactors, as well as their potential 

abilities to operate remotely, necessitates smarter and more powerful forms of reactor control. Control 

theory can be divided into two different subcategories: passive and active control. Passive control refers 

to a system’s ability to track a desired state without the use of actuation. This feature is often designed 

into the system by using the laws of physics (e.g., gravity and natural convection). An example of this in 

the nuclear power industry is seen when making a reactor “walk-away safe,” meaning that under loss of 

power, it will employ natural convection or other physics-based means to passively cool itself until fully 

shut down. By contrast, active control (the focus of this report) uses actuation to achieve the desired 

outcome. Active control loops are abundant in light-water reactors and include control of pressurizer 

pressure and level, primary-side water temperatures, and reactor power output.  
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Active control is the science and engineering of methods and tools for initiating actions (through the 

use of actuators) based on measurements captured either by sensors or by humans. The controller design 

translates the reactor requirements, which are fed into a control loop along with the plant conditions, to 

determine the necessary process changes needed to achieve the desired outcomes. For advanced reactors, 

control must enable autonomous decision making, be robust enough to accommodate every fault (both 

intentional and non-intentional [i.e., adverse]), be adaptive in properly tracking and adjusting to plant and 

environmental conditions, and be optimized to accommodate conflicting constraints and requirements. 

Both control methods (i.e., passive and active) often simultaneously co-exist within a given system. For 

example, researchers are working to develop and couple a model predictive control algorithm to those 

components that support the passive control of high-temperature gas-cooled reactors—comparing the 

results against the outcomes of advanced model-based controllers and then assessing the level of accuracy 

required by the state-space model in order to successfully achieve an efficient model-based controller [1]. 

 Historically, active control methods have leveraged both logical control and high-performance (HP) 

control, each of which offers its own advantages and limitations. In other words, each corresponds to a 

certain type of ideal application (discussed in Sections 2.2 and 2.3). Recently, artificial-intelligence (AI) 

and machine-learning (ML)-based types of control have received increased interest (discussed in Section 

2.4). While logical control is based on a human-defined set of rules, both HP and AI/ML-based control 

were developed and optimized against a model of the system being controlled. Fidelity of the model is 

critical for achieving optimal control performance, and during the control method development, the model 

is usually designed to reflect the ideal plant conditions at the reactor design stage (i.e., it does not mirror 

the plant in an operational environment). HP control includes methods of accounting for model 

uncertainties by reducing their impact on the control or tracking of the plant states (see Section 2.3). 

AI/ML-based control makes it possible to retrain the models so as to track the plant conditions. While this 

approach could potentially serve to meet the need for design basis operations, it would falter whenever 

the plant begins to operate in new and unknown/unexpected domains, since these control methods were 

not designed to operate under such regimes. A better understating of the plant processes during reactor 

operations is thus required, as is achievable by creating—in a digital simulated environment—a dynamic 

“twin” of the plant (i.e., a digital twin) to either partially or completely emulate the plant’s behavior (see 

Section 3). This digital twin could serve several other functions besides replicating the behavior of a plant 

or process. For example, it could also be used to simulate failure scenarios or virtualize sensor data (i.e., 

generate sensor measurements for uninstrumented process locations) so as to ensure that proper control 

actions are taken.  

In the present work, the use of control methods and digital twins are reviewed, summarizing the 

current status of both in relation to various industrial applications such as NPPs (Sections 2 and 3). This 

information is then utilized in Section 4, which covers converting the features of advanced reactors into a 

set of unique aspects. Some of the aspects can be addressed via existing solutions. Others result in 

technology gaps that must be closed by meeting a set of control requirements, some of which can be met 

using digital twins. In Section 5, an approach is introduced to demonstrate how the requirements can be 

met so as to achieve fully autonomous advanced reactor control. Also demonstrated within this 

overarching approach to control is the role of certain key enabling technologies that are critical to 

advanced nuclear reactors. 
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2. STATE OF CONTROL  

A controller or control law is an algorithm that determines how actuators should be applied within a 

dynamical system in order to drive that system toward a desired state. This is in contrast to monitoring 

algorithms (e.g., anomaly detection), which may influence the control law but do not directly control the 

system. This section provides background information on control theory and the various controller 

concepts, with a particular focus on those that can be implemented for the control of advanced nuclear 

reactors.  

2.1 Background  

By answering some key questions, this section describes basic control theory concepts that are then 

built upon throughout the remainder of this report: 

• What are the parts of a control system? 

• What are the different control objectives? 

• What makes a controller design good? 

• What are some complications that make controller design more difficult? 

Discussing complications that make controller design more difficult is useful for exploring the 

advantages and disadvantages of various control strategies. While control theory is a mathematically 

rigorous field, the intent here is to be as conceptual as possible. The aim of this section is not to provide a 

comprehensive review of control, as such can already be found in the literature and in textbooks [2][3][4]. 

2.1.1 Anatomy of a Control System 

Control systems are comprised of systems, inputs, and outputs. The relationships between these are 

often shown graphically using block diagrams. In simplified terms, the primary systems are the dynamical 

system of interest (i.e., the plant, which here includes the actuators and sensors) and the controller. The 

plant has several inputs (i.e., variables that influence plant behavior) and outputs (i.e., variables that 

describe the state of the system). The inputs include known control inputs (e.g., actuator signals) and 

unknown disturbance inputs (e.g., unmodeled dynamics), and the outputs can include measured sensor 

values and inferred performance metrics. Starting with basic open-loop control (meaning the controller 

has no knowledge of the measured signals), the controlled input is defined as the reference input (i.e., 

desired state), and the controller output is defined as the control signal. A block diagram of these 

connections is shown in Figure 1. This open-loop control is extended to closed-loop control (i.e., 

incorporating knowledge of the measured signal) in Section 2.1.2 below. 

 

Figure 1. Block diagram of the open-loop control system.  

From a controls perspective, the two systems (i.e., controller and plant) can be thought of as functions 

that map inputs to outputs. The controller is a known function that maps the reference input (and 

measured signals for closed-loop control) to the control input, and the plant is an unknown function (often 

approximated using a model) that maps the control and disturbance inputs to the plant outputs. The goal 

of the controls engineer is to design the control function (i.e., control law) in a manner that meets the 

design requirements and performance objectives. 
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2.1.2 Feedback and Feedforward Control 

In the area of controller design, the two control objectives most often discussed are the regulator and 

tracking problems. The regulator problem assumes the controller is trying to regulate around a fixed 

reference input; the tracking problem assumes the controller is trying to track a time-varying reference 

input. In the context of advanced or autonomous NPPs, the regulator problem corresponds to baseload or 

fixed-power scenarios, whereas the tracking problem corresponds to load following or automated 

startup/shutdown scenarios. In other words, for fully autonomous operation, both problems must be 

considered. The regulator and tracking problems are often addressed using feedback and feedforward 

control, respectively.  

Given zero disturbances and perfect knowledge of the system being controlled, open-loop control 

would demonstrate good performance. In practice, this is unrealistic, so feedback control uses the error 

(defined as the difference between the reference input and the sensor output) to drive the system toward 

the reference value in the presence of disturbances and despite imperfect knowledge of the system. This is 

a purely reactive mechanism: it reacts to present and past errors but does not consider future reference 

inputs. This makes it well suited to the regulator problem but not to the tracking problem.  

To properly handle the time-varying tracking problem, feedforward control utilizes knowledge of the 

current and future values of the reference input to design a control input. This assumes some knowledge 

of system dynamics in order to calculate the feedforward control input. This description of feedforward 

control is identical to that of the open-loop control mentioned above. Control systems can combine 

feedback and feedforward control to properly account for both time-varying reference inputs and 

disturbances (Figure 2). 

 

Figure 2. Block diagram of the closed-loop control system, including both feedback and feedforward 

control. 

2.1.3 Performance Metrics 

When designing a control system, many different metrics (e.g., stability, transient response, 

steady-state accuracy, and robustness) can be used to assess candidate controllers and compare various 

designs. In the context of advanced reactors, these metrics all play an important role in controller design. 

Stability is a basic but essential characteristic of closed-loop systems. Stability takes many forms, but 

for the sake of simplicity, a system is considered stable if bounded inputs and bounded initial states either 

excite a bounded response (or error) or excite a bounded response that approaches zero error over time. If 

this condition is not met (i.e., the system is unstable), the response could grow unbounded and result in 

damage, dangerous conditions, etc. 
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For a stable closed-loop system, transient response and steady-state accuracy are the next two metrics 

assessed. The term “transient” can have many meanings but generally refers to abrupt changes in inputs, 

disturbances, and anything that causes significant deviation from steady-state conditions. In this light, 

transient response refers to any metrics that measure the system response to transient conditions. This 

includes measuring the overshoot or speed of response regarding reference signal changes, or measuring 

the oscillations and settling time as the system recovers from the transient. After this recovery, 

steady-state accuracy becomes a measure of how closely the system response aligns with the reference 

signal.  

Finally, assuming the use of a system model to design a control law that enables a stable closed-loop 

system with good transient response and steady-state accuracy, robustness then refers to how sensitive the 

system performance is to variations in the model parameters (i.e., uncertainty in the system model). This 

is a key consideration because uncertainty will always exist in the system model, whether because the 

system is difficult to model or because its parameters can change over time. 

2.1.4 Constraints 

One complication of great relevance to NPPs is the fact that systems can have constraints. These may 

come in the form of limits to inputs (e.g., maximum wattage and flow rate) or operating limits to outputs 

(e.g., the plant shuts down if the reactor pressure falls outside certain upper and lower bounds). Many of 

the traditional control strategies are poorly equipped to handle constraints defined as hard thresholds, as 

these are considered a form of non-linearity that complicates the control process.  

2.1.5 System Models 

Earlier in this report, the plant was introduced as an unknown function, often approximated with 

models. This can be done using either a purely physics-based or data-driven approach, or a hybrid of the 

two. These models are then incorporated into the various controller design strategies to help achieve 

strong performance.  

Regardless of the modeling approach, a degree of error will always exist in the model—a 

complication that several of the control strategies aim to overcome. 

2.1.6 Single-input Single-output and Multi-input Multi-output Control 

Another complication that must be considered is whether the control system is attempting to control a 

single variable using a single actuator (single-input single-output [SISO]) or multiple variables using 

multiple actuators (multi-input multi-output [MIMO]). SISO systems feature a single input-output 

pairing, and other variables generally need not be considered. By contrast, MIMO systems feature 

multiple correlated inputs/outputs that should generally be considered together to maximize performance. 

For MIMO systems featuring distinct input-output pairings, one strategy often used at NPPs is to treat 

each input-output pairing as a SISO system, and ignore the interactions from the other variables. 

However, this generally leads to decreased performance. This idea of treating a MIMO system as multiple 

SISO systems is exemplified by the pressurizer system of a pressurized-water reactor. The pressurizer is a 

saturated system that controls the pressure and coolant inventory by using pressure and level feedback 

controllers. In greatly simplified terms, the system pressure is controlled by adding or removing energy, 

while the level is controlled by adding or removing mass. These two control loops can be treated as two 

distinct input-output pairings. However, adding or removing mass changes the energy as well, meaning 

that changes to the level also alter the pressure. If these systems were controlled as two distinct SISO 

systems, any actuation to change the level would create pressure transients that would need to be handled 

by the pressure controller. By contrast, if they were treated as a MIMO system, the single controller 

should know that changes in level would change the pressure, and could compensate for that by adding or 

removing energy while changing mass, thus producing the desired pressure behavior. The two different 

configurations are shown in Figure 3. 
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Figure 3. Block diagrams of treating the pressurizer as two distinct SISO control loops (left) or one 

MIMO control loop (right). 

2.1.7 Linear and Nonlinear Control 

Functions can be broadly classified as either linear or nonlinear, with linear functions taking the form 

𝑦 = 𝑎𝑥, where a is a parameter, x is the function independent variable, and y is the function dependent 

variable. Nonlinear functions deviate from that linear form. Control system design and theory vary 

significantly from each other, depending on whether the system model equations and controller equations 

are linear (or approximately linear) or nonlinear, with the nonlinear equations potentially requiring much 

more involved calculations to demonstrate performance metrics. 

2.1.8 Output and State Feedback Control 

To discuss output and state feedback control, the notion of the state of the system must be introduced. 

Consider a robotic arm consisting of motors to rotate each link and sensors to measure the positions of the 

links. The question then becomes: is the sensor information at a given time (i.e., the positions of all the 

links) sufficient to summarize the dynamic information about the robot? The answer is no, because the 

robot arm possesses inertia. A robot arm that is motionless will progress differently from one that is 

moving. Thus, the state encompasses information on both the position and velocity of each link, meaning 

that the sensor set does not measure the full state of the system. 

In this example, the controller using this sensor set would be considered an output controller because 

it uses the plant output but cannot access the state. To access the state, two options are available: add 

velocity sensors or use state estimation techniques to estimate the system state. Examples of state 

estimation techniques include Luenberger observers, Kalman filters, and particle filters [3][5]—all of 

which estimate the state via a model of the system combined with the available measurement data 

collected over time. These techniques would be necessary in any controller design requiring state 

feedback (also referred to as full state feedback). 

2.2 Logical Control  

Historically, logical control has been the most common form of control in power plants (both fossil 

and nuclear alike). It is usually achieved via simple logic decisions (i.e., combinations of AND and/or OR 

gates and variations thereof [e.g., XOR, flip flops, and threshold functions]). These are often based on 

piping and instrumentation diagrams that describe process decision making and are developed by process 

or nuclear engineers when designing the plants. In old installations, analog forms of control—the 

predecessor to logical control—followed an approach similar to that of current forms of logical control, 

but relied on operators to perform the control logic in accordance with pre-specified procedures or 

operator knowledge of the process.  
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A specific example of a logical controller is a bang-bang controller (also called an on-off controller), 

which monitors the parameter of interest and turns the actuator either on or off to match the desired 

setpoint. The simplest example of this is a household heating (or cooling) thermostat. When the 

temperature drops a certain amount below the setpoint, the heat turns on until the temperature then 

exceeds that setpoint by a certain amount, at which point it turns back off. This process is repeated in 

oscillatory fashion to maintain the temperature within the specified operating range. The primary 

advantage to bang-bang control is that it is simple to understand and implement, and can work well for 

systems that do not require strict operating margins. The disadvantages are that the oscillating signals 

and/or frequent switching could be undesirable or create additional wear. 

More sophisticated means of logical controls (e.g., sequence development) are seldom used.  

Sequential control often reflects a series of process changes or plant configuration steps implemented into 

logic so as to ensure that the process follows those steps—as opposed to an operator using a procedure to 

implement this process. Due to its simplicity, explainability, and ease of design/deployment, logical 

control is often resorted to as the plant operation method by industries in need of automated control. 

Often, a single or redundant controller is assigned a certain part of the plant process, and multiple 

controllers are linked together through signals or measurements that must be transferred from one process 

to another. Breaking down the control of a plant into several controllers is often required due to the 

computational limitations of each controller, as well as to improve overall reliability (i.e., failure of one or 

a pair of controllers would have a limited impact on the plant processes). Thus, in the logical control 

world, the control system is referred to as a distributed control system (DCS). Furthermore, it must often 

adhere to certain performance standards (e.g., an International Electrotechnical Commission safety 

integrity level of three) defining the “minimum failure rates on demand” requirement (i.e., how high a 

failure rate can be tolerated given the overall and specific process risks). U.S. NPPs often rely on 

operators to perform control functions, but have recently been upgrading to digital logical control and 

using a DCS to achieve this objective, thereby following in the footsteps of the fossil fuel power industry, 

which in the 1990s and 2000s converted to the use of DCSs. 

In parallel to DCS, other systems usually held to higher failure requirements are relied on to operate 

safety-critical areas of the plant. For example, because fire protection systems, reactor core control, and 

emergency shutdown systems follow a more rigorous approach to hardware and software design, they 

thus require lower failure rates (e.g., an International Electrotechnical Commission safety integrity level 

of four). Such systems have already been adopted for the most critical areas of NPPs. However, many 

decisions that could potentially impact safe operation of the plant remain the responsibility of operators.  

2.3 High-performance Control  

HP control was developed to overcome the limitations of purely logical control, and is the most 

powerful tool used in control theory. It differs from logical control in that it functions based on 

continuous tracking and modification of the process (i.e., it is not discretized into logical decisions). This 

field of control is needed for HP applications. For example, to protect against increased pressure in a 

certain section of a process, the pressure measurement could be fed to a relief valve that then gradually 

opens to ensure that the process pressure is sustained. This can be contrasted to a logical control process, 

in which the valve would be opened once the pressure reached a certain threshold. The simplest form of 

HP controller will track the measured value and use the difference between it and the desired value as the 

error to be relied upon in determining how quickly and extensively an actuator must be adjusted to reduce 

this difference.  

This section provides a high-level overview of the proportional integral derivative (PID) controller 

and robust, adaptive, and optimal control frameworks, along with a control strategy example within each 

of the frameworks. While this report distinguishes among robust, adaptive, and optimal control, these 

have also been combined to form, among other things, robust optimal controllers. The ability to handle 

constraints (as defined in Section 2.1.4) is important for NPPs, as they may undergo shutdown when 
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process parameters exceed certain predefined limits. Of the methods presented in this section, only 

optimal control is capable of directly handling these constraints, though the others may be able to account 

for them indirectly. 

2.3.1 Proportional Integral Derivative Control 

In nuclear (and fossil fuel) plants, PID controllers are the most common controller design. Though the 

most primitive of the HP control methods, they are often selected for their simplicity. 

A PID controller calculates the actuation level via a three-part function: a term that is proportional to 

the error (P), and is used to account for the current value of the error; a term that is proportional to the 

integral of the error (I), and is used to account for what the long-term behavior of the error has been; and a 

term that is proportional to the derivative of the error (D), and is used to account for what the short-term 

behavior of the error currently is [6]. Each of these terms is associated with a parameter that is tuned to 

make the closed-loop system behave as desired. For example, increasing the gain (or P) parameter of the 

controller could speed up the controller response but can also cause undesired issues such as overshoot, 

which is usually dampened by altering the other two parameters (I and D). Operators usually observe how 

the process is responding and then alter those parameters to achieve the desired performance. As the plant 

ages, or changes are made to the process equipment, those controllers get re-tuned by the operators. While 

models can be used to design PID controllers, these controllers are often tuned online, guided by the 

process, often as trial and error. The primary advantages of PID controllers are that they are easy to 

implement and understand, and can perform well when applied to SISO linear systems. 

Unlike the current nuclear reactor fleet, which has dedicated operators for each unit in a plant, 

advanced reactors cannot afford having an operator continuously re-tune the PID controllers. 

Furthermore, the performance of those controllers is insufficient to support very dynamic processes. For 

example, supercritical CO2 reactors operate under conditions in which a slight change in fluid dynamics 

significantly alters the CO2 properties and requires rapid tracking of the process and adjustment of the 

actuators [7]—something perhaps unachievable via PID. Additionally, the three degrees of freedom 

introduced by the PID controller (due to the three tunable parameters) are insufficient for 

high-dimensional processes that require a higher order control function. Because they are still relatively 

simple, there is little theory around the implementation of PID controllers for MIMO systems, and they 

do not address the robustness metric mentioned earlier. 

2.3.2 Robust Control 

To make control systems more robust, methods of robust control are used. Whereas the use of system 

models is optional for PID control, robust approaches rely on them. A primary aspect of robust control 

theory is to quantify the plant uncertainty and then design a controller that can handle any plant dynamics 

that fall within that uncertainty range. One common approach to robust control is 𝐻∞ (𝐻-infinity) control 

[8], which aims to minimize the infinity norm of the system model (which includes model uncertainty), 

with this norm quantifying the extent of plant disruptions due to disturbance inputs. 

Robust control techniques are advantageous because they are readily applicable to MIMO systems 

and can directly include uncertainty and other performance metrics into the optimization. However, their 

primary disadvantage is that, because they try to account for a set of models (i.e., any model that falls 

within the uncertainty range), they can be overly conservative, resulting in worse performance than that of 

a controller designed to more precisely align with the true system. As a result of this disadvantage, robust 

control techniques are often most useful when the model contains large unmodeled dynamics, large 

amounts of noise, or rapid and unpredictable changes in model parameters, thus necessitating methods for 

ensuring adequate performance under such conditions.  
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2.3.3 Adaptive Control 

Another approach to enhancing the robustness of control systems is adaptive control, which also 

relies on the use of system models. Rather than designing a single controller to handle the uncertainty—as 

was the case with robust control—adaptive control uses a parametric controller to adapt the control law to 

the current state of the system. One common adaptive control approach is model reference adaptive 

control [9]. This control strategy starts with a user-selected reference model featuring the desired ideal 

performance characteristics, then tunes the controller online using measurement data, such that the 

closed-loop performance approximates that of the reference model. 

Adaptive control overcomes some of robust control’s disadvantages—namely, it can provide superior 

performance in the presence of certain types of uncertainty, since it tunes the controller to the state of the 

system rather than accounting for multiple states. However, to remain stable, this tuning process tends to 

occur slowly, meaning that adaptive control is poorly suited to large or rapidly changing types of 

uncertainty. As such, adaptive control techniques are often most useful when the model contains slowly 

changing or predictable variations. Another disadvantage of adaptive control is that the theory behind 

implementing it in MIMO systems is less developed than for robust control techniques. 

2.3.4 Optimal Control 

Whereas the robust and adaptive control techniques focus on making control systems more robust to 

uncertainties, optimal control techniques focus on transforming the control problem into an optimization 

problem by defining control laws as minimizing a cost function. One powerful optimal control approach 

is model predictive control (MPC) [10], which operates on some fixed horizon, meaning it considers 

some fixed duration in the future. An actuator sequence is then designed to minimize the cost function 

over that horizon. This optimization is rerun at every sampling period (or as often as possible in light of 

the computational constraints), and the actuator sequence is updated as the controller receives feedback 

from measured signals.  

A primary advantage of MPC is that, because it transforms the controls problem at each sampling 

period into an optimization problem, it gains the flexibility of generic optimization problems. For 

example, it can handle constraints, disturbances, MIMO systems, delays, etc.—all while maintaining 

approximate optimality properties. However, because of this added flexibility, its primary disadvantages 

are its heavy model reliance and the increased design, analysis, and computational effort involved. 

2.4 AI/ML Control  

AI/ML control can be used to directly control the process. For example, AI/ML control can use data 

to generate a ML model compatible with more standard control techniques (i.e., some of those listed 

above), or can utilize reinforcement learning to directly learn a control law that maps sensor information 

to control signals [11][12][13]. In reinforcement learning, the model (called an intelligent agent—here, 

the controller) learns the proper actions to take in a given environment (the system), reducing the effort 

needed to design a control. AI/ML control can also be defined as informing the control function by either 

modifying the model, adjusting the control loop parameters, influencing feedback or feedforward control 

mechanisms, or utilizing a combination of all three. When this second definition is used, AI/ML control 

adopts a supervisory role and is thus referred to as a supervisory controller. Supervisory controllers can 

correspond to any of the three control types discussed earlier; however, recent advances in AI/ML make it 

a strong candidate for the supervisory controller. Recently, novel AI/ML-based control has gained 

momentum, thanks to its ability to address certain gaps associated with common control methods.  
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A key advantage of AI/ML control is the ability of AI/ML to create—either autonomously or with 

minimal human effort—data-driven models of non-linear systems. This implies the possibility of 

controlling poorly understood/modeled systems. However, this would require significant computational 

power, and would increase the processing time for control actions. This could prove a critical 

disadvantage when used as direct plant controllers—a key requirement in HP applications. Other 

limitations on using AI/ML for direct control are that stability and other types of performance metrics are 

never guaranteed, and that AI/ML operation uncertainty (i.e., ambiguity regarding the control output) 

exists due to the stochastic nature of AI/ML and the black box nature of the controllers (i.e., their lack of 

transparency and explainability).  

As a result of these limitations, several industries have not yet accepted AI/ML control for use in the 

direct control of plants. And when used, AI/ML control is often integrated with a more deterministic 

approach that operates the process and ultimately serves as the main interface to the process. In the 

nuclear power industry, usage of AI/ML for direct control remains largely theoretical, and is expected to 

be realized in the form of an indirect or supervisory application for advanced reactors, since the level of 

autonomy needed for these reactors is higher, and what is desired is a solution capable of understanding 

the process condition in a supervisory fashion (similar to a human operator) and then adjusting the 

process control accordingly. 
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3. STATE OF DIGITAL TWINS  

A unified definition of a digital twin does not yet exist in the literature, because various 

interpretations of digital twins may exist based on different technologies, applications, etc. However, it is 

possible to define certain primary characteristics of digital twins. A recent report published by the U.S. 

Nuclear Regulatory Commission (NRC) [14] identifies the following four characteristics of a nuclear 

digital twin system (see Figure 4):  

1. Exists in Digital Form: The technologies and information that form part of the digital twin must exist 

in a digital format that can be managed, processed, communicated, and executed using digital 

technology. It is important that this characteristic be explicitly defined for applications in the nuclear 

industry, which has a legacy of information-sharing via non-digital formats (e.g., paper).  

2. Maintains State Concurrence: The digital twin must be able to update dynamically to represent the 

current state of a physical entity or phenomenon, and it must be able to maintain that state. This vital 

condition differentiates a digital twin from existing modeling or simulation capabilities that can run in 

digital form but do not maintain concurrence with the actual system in real-time.  

3. Ensures State Cognizance: The digital twin must be able to provide new and integrated sets of 

insights, information, relationships, and outcomes—all pertaining to the physical entity being 

twinned, and all made possible, feasible, or efficient thanks to implementing the digital twin. This is 

another vital condition ensuring that digital twins do not simply re-create preexisting capabilities, but 

add unique and novel value to the selected application.  

4. Serves an Underlying Purpose: The technology must have an underlying purpose that relates to an 

NPP lifecycle activity, and that purpose should inform decisions about the system or component 

being represented. 

 

Figure 4. The four characteristics of a nuclear digital twin system [14]. 

More recently, the concept of a digital twin maturity spectrum has emerged [15]. It is hard to 

determine when exactly a digital model can be called a digital twin, partly because the capabilities of a 

digital twin are developed through an evolutionary process. However, digital twins offer value even in 

their early evolutionary stages. For example, consider a Level 1 digital twin created during the concept 

and preliminary design phases. Its primary purpose is to mitigate technical risks and uncover issues prior 

to the construction of a physical asset [16]. Such digital twins can be used for iterative design 

optimization, maintaining data integrity among different stakeholders, virtual prototyping and testing, etc. 

[17]. The twin will then mature through the various levels, until reaching full connectivity with the 
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physical asset. At the highest level of the maturity spectrum, the digital twin will afford some degree of 

autonomous operation and maintenance (O&M) of the physical asset [16]. 

Digital twins can also feature various fidelities and be based on either physics or empirical data. For 

example, the development of hybrid digital twins that leverage both model-based and data-driven 

techniques has been discussed [18]. The effort focuses on how to best construct the reduced-order models 

(ROMs) from known physics, determine which ML and data-driven methods best represent certain 

physics that are necessarily neglected in a ROM, and integrate uncertainty quantification into the hybrid 

models. 

3.1 Digital Twin Interface with a Nuclear Power Plant 

Considering their characteristics and applications for the nuclear power industry, this section gives a 

detailed description of a NPP digital twin system (or simply a nuclear digital twin system). A digital twin 

system for NPPs can consist of four parts, as shown in Figure 5 and discussed below [14]. 

3.1.1 The Nuclear Power Plant 

NPPs contain complex parts that can be categorized in numerous ways, depending on their objective 

and purpose. From a digital twin system perspective, these parts can be categorized into the following five 

broad technical areas.  

1. Physical Assets. These are commonly referred to as systems, structures, and components (SSCs). As 

examples, they include the reactor and plant buildings (structures); the cooling, feedwater, power 

generation, and electrical systems (systems); and pumps, motors, valves, chillers, circuit breakers, 

compressors, fans, and batteries (components). 

2.  Physical Phenomena. These are forms of reactor thermal hydraulics, corrosion, concrete degradation, 

etc., that influence both the plant performance and changes to plant states.  

3. Advanced Sensors and Instrumentation. This category includes powering requirements and 

communication or data transfer infrastructure (e.g., cable or wireless technologies). Connection to the 

control systems within the NPP may provide a means for digital twins to autonomously influence 

NPP operational states.  

4. Computing and Networking Systems. This category includes both hardware and software for enabling 

regular plant O&M, and ranges from complex computing clusters to simple handheld devices.  

5. Procedures and Human Actions. This category includes normal reactor operations, refueling, 

engineering, maintenance, safe shutdown, chemical control, etc., as well as control actions. These 

actions can be continuous (e.g., procedural operator actions to control power) or periodic (e.g., 

scheduled testing, maintenance, and upgrades).  

Of these technical areas, Physical Assets, Physical Phenomena, and Procedures and Human Actions 

can be considered the physical twin, meaning they encompass those entities that can be potentially 

modeled in digital form, resulting in their respective digital twin. The other two—Advanced Sensors and 

Instrumentation and Computing and Networking Systems—would be required not only for plant 

operations, but also to enable and support the digital twins of the NPP physical assets, physical 

phenomena, and procedures and human actions. 
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Figure 5. Description of a digital twin for NPP applications [14]. 

3.1.2 Digital Twin 

Digital twins are a representation of one or more NPP entities that fall into the relevant areas 

identified in the previous section. For producing a digital twin, especially one for an NPP, two broad 

technological needs that must be met have been identified: modeling and simulation (M&S) and data and 

information management [14]. 

M&S is described as consisting of one or more of the following: data analytics, AI/ML, physics-based 

models, data-informed models, and other model types. Data and Information Management encompasses 

infrastructure for gathering, processing, and disseminating information in a logical, organized manner that 

complies with all applicable requirements and presents information to users and computer interfaces in a 

manner that can be clearly visualized, absorbed, and verified for integrity and correctness [14]. Included 

within this umbrella are data storage systems such as local plant servers, fleet-wide data infrastructure, 

and cloud-based storage systems; software solutions to ensure seamless integration of the heterogenous 

plant data, uninterrupted data availability, and real-time interaction across digital twin models and data 

storage; and user interfaces outside the main control room, such as a plant monitoring and diagnostic 

center, a M&S interface, and even handheld digital devices. 



 

 14 

3.1.3 Data and Performance  

Information on the plant and its SSCs, physical phenomena, procedures and actions, and 

sensor/instrumentation data is vital for enabling sustained, accurate, reliable, and efficient digital twin 

operation. Asset information includes dimensions, geometries, topologies, materials, chemical makeups, 

etc., all of which depend on factors such as SSC type/function and the requirements of the digital 

representation. Real-time data acquisition in NPPs is primarily intended to support NPP control room 

information (e.g., reactor power level and pressurizer level/pressure). In the rest of the plant, it is aimed at 

ensuring safe, reliable operation of SSCs and is generally performed both manually and periodically. 

Advanced digital sensors that foster wireless capabilities, high bandwidths, and quick installation enable 

real-time data acquisition and a large number of sensor modalities (e.g., vibration, temperature, pressure, 

flow rate, voltage, and current) on a much larger and more diverse subset of plant SSCs. Data on plant 

O&M activities include corrective and preventive work-order logs, outage logs, and licensee event 

reports, all of which provide comprehensive details on O&M activities—details that can be valuable to 

digital twin applications. 

3.1.4 Actions and Recommendations 

The objective of implementing a digital twin system is to provide actions and recommendations in 

support of safe, reliable, and efficient system operation. To this end, digital twin actions and 

recommendations have been classified into the following categories: Diagnostics and Prognostics, O&M 

Recommendations, and Autonomous Operations and Controls [14]. Diagnostics and Prognostics (e.g., 

anomaly detection, sensor malfunction identification, differentiation between true anomalies and sensor 

malfunctions, failure predictions, and critical event predictions) can be enabled in real-time by digital 

twins, thus providing plant staff with real-time notification and recommendations on emergent or future 

conditions. Predictive algorithms in digital twins can even go beyond diagnostics and prognostics to 

generate recommendations for efficient O&M practices. 

Most operations and controls in existing NPPs are manual in nature; however, digital twin 

technologies offer the potential to not only recommend but also enable autonomous performance of 

certain operations and control actions in NPPs. 

3.2 Digital Twins in Nuclear and Other Industries 

The digital twin concept was initially proposed in the late 90s by the National Aeronautics and Space 

Administration (NASA) to support the design and operation of air vehicles [19]. Since that time, the range 

of applications has expanded to include many other industries. Digital twins are of particular interest to 

the energy industry, due to recent trends in integrated energy systems (IES) and flexible operations having 

made electricity production processes more complex [20]. However, successful implementations of 

digital twins in the energy industry remain limited [21]. A 2022 survey found few research publications 

on digital twins applied to fossil fuel power plants, NPPs, renewable energy systems, and the powering of 

plant components [21]. However, research on the future adoption of digital twins in the energy industry is 

being carried out across U.S. national laboratories [22][23][24]. Researchers at Idaho National Laboratory 

recently performed their first digital twin test of a simulated microreactor. A virtual model of the 

Microreactor Agile Non-Nuclear Experimental Testbed (MAGNET) used sensor data and open-source 

technologies to create a consistent flow of information and real-time data sharing, allowing researchers to 

test, evaluate, and predict microreactor behaviors under different operating conditions [22].  
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Most digital twin applications in the field of nuclear power have pertained to condition monitoring of 

equipment or processes. For example, physics-based digital twins are being developed to study the 

stability of boiling-water reactor feedwater systems in order to address the oscillatory behavior of 

feedwater heater levels [25]. The digital twin provides a better understanding of this oscillation 

phenomena, and is useful for investigating different hypotheses about the cycling behavior regarding its 

origin. Furthermore, a means is being developed of conducting real-time operating performance 

optimization via a data-driven digital twin focused on predicting moisture carryover in a boiling-water 

reactor and providing input to a plant’s operational plan during a power cycle in order to mitigate high 

moisture carry-over [26][27]. 

Both physics-based and data-driven digital twin modeling are being used to assess target systems’ 

current and future states [28]. This includes developing diverse health assessment algorithms and 

statistics-based approaches that are fused with uncertainty-aware ML algorithms to quantifiably detect 

statistically significant changes in system health. 

Digital twins can also be used to inform maintenance decisions. For example, maintenance advisories 

are being developed that yield optimal system behavior in accordance with operator-defined objectives 

and constraints [29]. This approach utilizes digital twins and algorithmic interventions in reinforcement 

learning algorithms to enable reasoning in the selection of maintenance options. 

Outside energy generation, digital twins are also being implemented in industries such as the 

healthcare, smart cities, manufacturing, automotive, retail, mining, maritime and shipping, agricultural, 

education, construction, and retail industries [30][31][32]. 

The manufacturing industry is leading the digital twin implementation efforts by producing the 

greatest number of publications on the topic [32][33]. This stems from the industry’s rapid developments 

in connectivity due to Industry 4.0 [34][35][36][37][38][39]. Industry 4.0, the latest phase of the 

Industrial Revolution, focuses heavily on interconnectivity, real-time data usage, and automation. Due to 

Industry 4.0, digital twins can collect real-time data on machine status, allowing manufacturers to more 

quickly identify issues and perform process control actions [40]. Digital twins also allow manufacturers to 

integrate all the phases of the manufacturing lifecycle (i.e., design, manufacture, operation, and disposal) 

[41][32]. In fact, digital twins have already been implemented in manufacturing processes that support the 

energy industry [42][43], transportation industry [44][45], and many others. 

Another interesting use case of digital twins as applied to a process-oriented industry is found in 

construction. Just as with manufacturing, digital twins can be used in different lifecycle phases of 

construction projects (i.e., the designing and engineering, construction, O&M, and demolition and 

recovery phases) [46]. Construction projects are traditionally challenged by fragmented processes and 

stakeholders. By integrating information across teams and project phases, implementations of digital 

twins are able to overcome these challenges [46]. Building information modeling, a technology for 

creating and managing a digital model containing information on project assets, has aided in the adoption 

of digital twins by this industry [47][48].  

As with manufacturing, smart cities are another area in which the application of digital twins is 

rapidly evolving due to developments in connectivity [31][32] [33]. By embedding the Internet of 

Things—a network of interconnected sensing devices—into the core services offered within a city, data 

can be gathered, analyzed, and monitored to aid in city planning and development [49][50], resource 

optimization [51][52][53][54][55][56], mobility optimization [57][58][59][60], monitoring of the built 

environment [61], and identification and management of system interdependencies [62].  
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In the healthcare industry, digital twins have been used to simulate the effects of certain drugs 

[63][64]; plan and perform surgical procedures [65][66][67]; monitor, diagnose, and predict various 

aspects of individuals’ health [68][69][70][71]; manage hospitals [72][73], etc.  

Though the spread of digital twins from the aerospace industry outward is a fairly recent occurrence, 

the number of digital-twin-related publications across these varied sectors is growing exponentially, and 

is expected to continue doing so as more industries undergo a digital transformation [74].  

3.3 Digital Twin in Control 

In regard to controlling NPPs, digital twins can serve various functions throughout the phases of the 

control system lifecycle: 

During control system design: In the design stage, digital twins can be used as representations of the 

plant to optimize the controller model. They can also be used to optimize virtual and control-driven 

sensors, as well as the control response (within the design bases).  

During plant testing: During testing, digital twins can be used to evaluate, qualify, and validate the 

control response (within the design bases—and for some selected use cases, beyond design bases). They 

can be interfaced with hardware when partial plant hardware is available (i.e., hardware-in-the-loop 

[HIL]), and coupled to other models such as of external process variables. For example, a digital twin 

model and a HIL simulation were combined to design a lifting control system for a jackup rig prototype 

[75]. The digital twin model was used to optimize the control system design, and the HIL simulation was 

used to test the prototype control system, based on the digital twin model.  

During plant operations. Digital twins can be used to determine the plant’s external operational state 

and inform the controllers in real-time. This can be achieved by creating training data otherwise 

unavailable, then benchmarking the plant performance to the model. Digital twins can also be used to 

estimate the internal system state and attempt to understand and react to beyond design control scenarios. 

Digital twins can simulate system operation, and ML can utilize the simulation to optimize or reconfigure 

a control system, as required, or even to recover from faults when they occur [76]. Digital framework and 

workflow models can be developed for optimally controlling IES in real-time, based on the system state 

and desired outcomes [77]. This is demonstrated by full digital-twin coupling, with real-time 

communication between the physical components, virtual system state, and optimized controls. Digital 

twins can also be used to model the broader interactions between plants. For example, a control 

architecture comprised of an automated reasoning system is being developed that closely interacts with a 

multi-layer advanced control system and is supported by a digital twin [78]. In another case involving 

multi-generation units, an economically optimal method is being developed of electricity dispatch for IES 

[79]. This dispatch method uses a high-fidelity digital twin to capture the system dynamic response and 

inform a MIMO supervisory control system. In addition, digital-twin-based reinforcement learning 

methods are being developed in order to maintain and/or restore power in communities via a novel 

coupling of power engineering aspects to sociotechnical aspects and objectives [29]. This research 

unlocks methods of coupling power-engineering/sociotechnical problems, reinforcement-learning-driven 

adaptation, and a network synthesis module to augment existing grids in order to optimize the ensuing 

AI-driven power restoration response.  
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For maintenance: Digital twins can be used to evaluate the impact of changing/dropping control 

functions in the event of failures. The digital twin concept was applied to reoptimize a controller [80]. 

The control system was expected to maintain continuous operation in the event of an anomaly. By 

applying a digital twin, different failures could be detected and the controller reoptimized to permit 

continued production. The digital twin can also reoptimize control response (to compensate for aging or 

maintenance). For example, in the energy industry, a near-autonomous management and control system 

was developed and assessed for advanced reactors [81]. A set of digital twins was implemented, each 

serving as a knowledge acquisition system to support different near-autonomous management and control 

functions (e.g., diagnosis, strategy planning, prognosis, and strategy assessment). The assembly of digital 

twins supported operator decision making and/or directly suggested operational recommendations based 

on knowledge of the current plant state, predictions of future state transients, and knowledge of 

uncertainties—all extracted via ML algorithms and stored in digital twins serving various functions.  

As with digital twins, modern control systems are found across many different industries, including 

transportation, energy, water, healthcare, communications, and manufacturing [82]. Hence, this effort 

explored the implementation of digital twins across different applications. Control systems that stand to 

benefit from interactions with digital twins have also been encountered. Although these works have begun 

to pave the way for the use of digital twins in control systems, the literature still reflects a great need for 

contributions toward interfacing them [76]. 
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4. CONTROL METHODS FOR ADVANCED REACTORS 

Because of their unique aspects (see Section 1), advanced reactors have a unique set of requirements 

that directly impacts control system design and deployment. This section discusses the unique aspects of 

advanced reactors and how those aspects leverage existing solutions and result in control gaps that, in 

turn, introduce a set of requirements for the control of advanced reactors.  

4.1 Regulatory Requirements 

4.1.1 Unique Aspect 

As with any nuclear reactor, advanced reactors are regulated by NRC, making them subject to NRC 

Regulations Title 10, Code of Federal Regulations (CFR) 50. Specifically, control regulatory 

requirements, including the need for redundancy, diversity, and defense in depth, are based on ensuring 

reliable system functionality in the face of a wide range of failure modes. The regulatory requirements 

also include considerations of design control, verification (for design and configuration), redundancy, 

diversity, independence, deterministic behavior, simplicity, explainability, clear functional allocation, 

maintainability, and configuration and obsolescence management. This applies to both control system 

software and hardware. Other aspects such as cybersecurity, radiofrequency interference (for hardware), 

and robustness must also be considered. Details on each of those requirements are discussed in the 

regulatory framework, often citing several standards (e.g., IEEE) for control purposes.  

4.1.2 Control Gap 

Despite the extensive set of requirements established to ensure that the regulations are met, logical 

and HP control methods are expected to conform with most—if not all—of them, if designed and 

developed in compliance with the regulatory framework. However, use of AI/ML control requires the 

development of special forms of models capable of meeting the requirements. For example, the black box 

nature of AI/ML models can present an explainability and simplicity challenge that may require increased 

dependence on validation via tools that could be enabled by systems (e.g., digital twins) that represent the 

plant process. Concepts such as continuous training and learning during beyond design basis scenarios 

could be challenged by the configuration control requirements, since methods that adapt to new operation 

requirements would, in essence, result in new and unvalidated performance behaviors. Those are just 

some examples of the challenges associated with AI/ML control.  

4.1.3 Potential Control Solution 

An approach utilizing supervisory AI/ML control could be applied. In this case, the AI/ML would act 

as an optimizer by informing the logical and HP control (connected to the plant), but for the controllers to 

meet the regulatory requirements regardless of AI/ML input, they would be configured in a manner that 

limits their adaptability to plant processes. For example, methods for autonomous decision making are 

being developed for intelligent supervision of energy systems with secure embedded intelligence in 

mission- and safety-critical systems, utilizing deep reinforcement learning and digital twins [83].  

4.1.4 Control Requirement 

Requirement 1: Include an interface control layer between the plant and any AI/ML decision-making 

processes in order to ensure an approach that meets regulatory requirements. 

4.2 Operating Environment 

4.2.1 Unique Aspect 

Due to the small or compact size of advanced reactors, instrumentation and control equipment (e.g., 

sensors, means of communication, and edge-computing devices) are expected to endure environments 

made extreme primarily due to high radiation exposure, but also potentially as a result of high 
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temperatures. Exacerbating this challenge is the fact that the equipment is also expected to run for longer 

durations, and with minimum maintenance.  

4.2.2 Control Gap 

Control systems are by their very nature highly reliant on sensors and sensor availability (i.e., 

communication). If designed improperly, the controllers could create unexpected operating conditions in 

the event of failures. 

4.2.3 Potential Control Solution 

Given the high autonomy requirement, advanced nuclear reactors must self-identify and compensate 

for sensor, communication, and electronics failures, and ensure that the control function remains 

uncompromised by any such failures. Approaches such as observers/state-estimators (see Section 2.1.8) 

could estimate the state of the equipment by considering the holistic state of the control system sensors 

and how they should behave (using a pre-set model). These could also include general sensor redundancy 

(physical and/or analytical) and inferenced (i.e., virtual) sensors. However, the models degrade when the 

system significantly changes due to reactor aging or the experiencing of internal/external conditions 

unaccounted for in the model. Comprehensive and novel monitoring methods would thus be needed.  

This is one application in which a digital twin capable of tracking the actual system condition and 

making ideal judgements as to the plant state would benefit control by means of creating virtual sensors to 

augment the real ones (or replace them when they fail). However, to achieve optimal use of digital twins, 

the models must have sufficient fidelity to represent the actual system, and these often cannot be run on 

the fly while the reactor is operating and the conditions changing. Thus, digital twins must be developed 

to feature a range of fidelity levels. A means of coupling such models during the design and operation of 

control systems is currently an area of active research.  

Additionally, since likely potential sensor failures necessitate a reliance on virtual sensors, the digital 

twin must be used to determine the optimal placement of sensors in order to ensure that virtual sensors 

can be used as a redundant means of measurement, when needed. This is an active area of research. For 

example, data analytic methods are being developed to address the problem of assigning an optimized set 

of sensors in a nuclear facility, such that a requisite level of process monitoring capability is realized and, 

in turn, the sensor set is rich enough to enable data analytics for determining the status of the individual 

sensors with respect to their need for calibration. A research effort targeting sensor placement is detailed 

in [84]. Researchers are developing methods for efficient sparse data reconstruction by using digital twin 

models to define sensor requirements. This research supports the development of a virtual sensing 

framework by determining the minimum number of required sensors, along with where they should be 

located. 

4.2.4 Control Requirement 

Requirement 2: Identify and compensate for sensor, communication, and electronics failures by using 

advanced control methods and digital twins to prevent the control function from being compromised due 

to such failures, and optimize the placement of sensors to reduce the impact of sensor-related failures.  

4.3 High Safety Consequence 

4.3.1 Unique Aspect 

While the high safety consequences of failure or malfunction are addressed within the regulatory 

framework, the operational consequences of such failures are also of critical importance to the 

deployment of advanced reactors, due to power outages, accessibility, and maintenance feasibility (due to 

the compact assembly, high radiation and contamination, and remote operations). Additionally, some 

consequences remain unknown (due to lack of experience [see Section 4.6]). 
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4.3.2 Control Gap  

Current NNPs’ control decisions typically adopt a conservative approach in which the uncertainty of 

the plant state is mitigated by decisions to shut down the process and, in some cases, the reactor itself. 

Human investigation, risk assessment, and intervention are usually possible for current reactors, and 

failures of the function (due to sensor, communication, or equipment loss) are often mitigated by 

switching to manual control. Advanced reactors render such responses infeasible, since the goal is to 

reduce human involvement as much as possible. 

4.3.3 Potential Control Solution 

The complexity of advanced reactor control systems presents a much greater challenge, given the 

level of complexity and risk often entailed by reactor control operations. Control systems for advanced 

reactors must incorporate an element of risk as part of their operation, since a human operator is 

unavailable to make risk-related decisions. The control system must understand the plant conditions and 

the challenges that exist in the plant, then incorporate alternative operation methods—possibly using 

passive control methods, when needed—and make risk-informed decisions as to the best course of action. 

In addition to the plant’s internal conditions, a risk-informed control approach should also consider 

external factors (e.g., environmental conditions or cyber/physical disturbances or attacks).  

Previous efforts in this area have included work on both fault-tolerant and risk-informed control. The 

field of fault-tolerant control focuses on detecting and identifying faults, then performing a type of 

controller reconfiguration to ensure that the new closed-loop system (including the fault) can still operate 

within the strict operating requirements [85]. Methods to enhance control resilience are also being 

developed by enabling moving target defense and adaptive maneuvering over the space of command, 

communication, and control modules in dynamically adjusted clusters of energy resources [86]. The 

research explores capabilities fusing health, risk, and topology information and digital-twin-based 

technologies, enabling dynamic relocation of command, communication, and control. In another effort, 

semi-autonomous control systems are being developed that adapt to the presence of plant degradation 

[87][88][89]. These systems leverage digital twin models to determine safety and power-generation risks 

in order to evaluate continued plant operation, then they provide an optimized maintenance approach 

based on these models. The research successfully demonstrates an adaptive control system based on 

digital twin risk models. Additional research is needed on how to use risk information to influence the 

control system [90][91]. 

4.3.4 Control Requirement 

Requirement 3: Incorporate risk elements to prevent unnecessary loss of power generation in the 

presence of known variables and unknown disturbances. 

4.4 Highly Coupled 

4.4.1 Unique Aspect 

Due to the compact nature of their design and the desire for autonomous operations, advanced 

reactors often contain strongly coupled systems. This is even more challenging, considering that these 

reactors have smaller thermal inertia and a faster core response and are expected to rapidly respond to 

condition and demand requirements as part of their mission to achieve flexible operations as well as load 

following, which entail dynamics that could prove more challenging than what is seen in the typical 

electricity production process. Furthermore, those reactors are coupled on the grid with other energy 

sources. 

4.4.2 Control Gap  

In the current U.S. fleet of NPPs, control functions are often separated into isolated control loops 

featuring limited interfacing to the rest of the plant. When coupling is needed, the human operator is 
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tasked with coupling the control loops. This is infeasible for advanced reactors, due to the limited 

supervisory role of the operator, thus introducing the need for highly coupled MIMO control (see Section 

2.1.6). This is often made challenging if the system incorporates a high level of non-linearity (see Section 

2.1.7).  

4.4.3 Potential Control Solutions 

As discussed in Section 2, several types of control methods are capable of handling highly coupled 

systems. These include but are not limited to robust control (Section 2.3.2), optimal control (Section 

2.3.4), and AI/ML control (Section 2.4).  

If supervisory AI/ML control is used, a means of coupling those methods with either HP or logical 

control must be developed, as discussed in Section 4.1.3. For example, methods are being developed for 

integrating low-level controllers (e.g., PIDs) designed for system stability with a reference governor 

control algorithm to enable the desired dispatch of electricity control [92][93].  

4.4.4 Control Requirement 

Requirement 4: Integrate highly coupled control loops and state awareness methods to ensure safe 

and optimal performance of the process variables. 

4.5 Evolving Knowledge  

4.5.1 Unique Aspect 

Unlike the current U.S. reactor fleet, which has been in operation for decades and is well understood, 

advanced reactors rely on novel physics and operational concepts not yet fully understood or validated. 

Given the current state of advanced reactors, their design and envisioned operations rely on models based 

on experts’ understanding of the underlying physics and needs. This results in increased uncertainty, 

presenting an even greater challenge given that these reactors are envisioned to operate with a high degree 

of autonomy once deployed. Such autonomy depends on those models and the underlying physics 

assumptions. 

4.5.2 Control Gap  

While control functions are usually less dependent on models than on sensors and communication, the 

models must nevertheless be sufficient to develop the core function of the reactor.  

4.5.3 Potential Control Solutions 

Enhancing model fidelity via digital twins as knowledge is gained could be a way to successfully 

reflect the evolution of that knowledge. However, controls testing and validation, when based purely on 

simulations conducted using digital twin lifecycles (e.g., digital twin certification), introduces a degree of 

uncertainty. A means of generating adaptable digital twins that can operate outside the original 

knowledge design domain is needed. For example, new extrapolation and validation methodologies are 

being developed by combining physical models via the representativity and physical coverage mapping 

scaling methodologies [94]. The research aims to advance these extrapolation and validation 

methodologies, thus reducing the reliance on expert judgement. 

Alternative methods exist for enabling controllers to track the required setpoints, regardless of the 

model. Section 2 discusses several ways to handle uncertainty, and these include robust control (Section 

2.3.2), adaptive control (Section 2.3.3), and AI/ML control (Section 2.4). An example is found in [95]. 

Researchers are developing a self-learning control system by using control algorithms obtained through 

reinforcement learning. The aim is to employ this system to design physics-constrained multi-objective 

agents that enable autonomous supervisory control during power transients. Similar to the above (Section 

4.1.3), if supervisory AI/ML control is used, a means of coupling those methods with HP or logical 

control must be developed. 
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4.5.4 Control Requirement 

Requirement 5: Incorporate robustness into the control loop design to empirically and gradually 

model the process and adjust the control method as knowledge is gained, thereby ensuring safe and 

optimal performance amidst uncertainty and changing plant conditions. 

4.6 Lack of Operating History 

4.6.1 Unique Aspect 

In the current U.S. fleet of nuclear reactors, and due to the expected differences between process/plant 

models and the actual system, current operational methods often rely on historical behavior in order to 

modify or tune the plant configuration process to achieve optimal performance. This is usually performed 

by the human operator (e.g., an operator tuning a PID controller), and is also enabled by the simpler and 

independent process control loop design. This is unlikely in advanced reactors, as they are relatively new, 

carry a high level of complexity, lack the human element, and feature no operating history. Furthermore, 

robust prognostics models and failure data do not exist for these reactors, requiring another source of 

historical behavior data.  

4.6.2 Control Gap  

Adaptive and auto-tunable control methods are needed, implying the use of more intelligent forms of 

control that can benefit from limited operational history.  

4.6.3 Potential Control Solution 

The operational history can be generated by digital twins able to better represent the process or plant 

and the coupling to other software or HIL during the design stages, thereby moving from a pure 

model-based approach to a semi-realistic scenario. Those hybrid systems (comprised of software and HIL 

with digital twins) can then be used to generate a limited but useful operational history to feed into the 

optimization of the control method design and development. The coupling should account for the unusual 

constraints introduced by those technologies (e.g., delay of digital twin simulations or transferable 

properties of hardware to scale up to deployment in the HIL testing).  

For state predictions, faster-than-real-time control technology development for advanced reactors is 

needed. For example, anticipatory control techniques are being developed to achieve faster-than-real-time 

prediction and decision-making capabilities for microreactors [96].  

Procedures are also needed for when human intervention is needed. Such intervention is to be 

expected from time to time (at least initially), so the control methods should allow for controlled human 

intervention activities that compromise neither the operation nor the safety of the reactors, especially 

during their initial operation. 

4.6.4 Control Requirements 

Requirement 6: Use software models to identify and react to or track physical phenomena 

unanticipated due to the lack of operating history. 

Requirement 7: Define the human role and what kind of human interventions are allowable, thereby 

ensuring that humans can monitor the reactor and take appropriate actions as necessary. 

4.7 Summary 

A summary of the unique aspects, gaps, and control requirements identified in this research is given 

in Table 1.
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Table 1. Summary of identified unique aspects, gaps, and requirements for controlling advanced reactors. 

Title Unique Aspect Control Gap Control Requirement 

Regulatory 

Requirements 

AI/ML control may not be able 

to meet some regulatory 

requirements. 

AI/ML control requires the 

development of a special form of 

model that meet regulatory 

requirements. 

Include an interface control layer between the plant and any AI/ML 

decision-making processes in order to ensure an approach that meets 

regulatory requirements. 

Operating 

Environment 

Instrumentation will endure 

harsh environments for extended 

periods, increasing probabilities 

of failures. 

The high autonomy requirement 

makes it necessary to deploy 

methods that introduce better 

awareness of the plant and 

compensate for sensor failure.  

Identify and compensate for sensor, communication, and electronics 

failures by using advanced control methods and digital twins to 

prevent the control function from being compromised due to such 

failures, and optimize the placement of sensors to reduce the impact 

of sensor-related failures. 

High 

Consequence 

Operational consequences of 

failures are of critical 

importance to the deployment of 

advanced reactors. 

The broader plant conditions and 

challenges must be understood to 

make a risk-informed decision as to 

the best course of action. 

Incorporate risk elements to prevent unnecessary loss of power 

generation in the presence of known variables and unknown 

disturbances. 

Highly Coupled 

Compact and autonomous 

reactors will produce strongly 

coupled systems, making 

isolated control less useful. 

MIMO control must be able to 

handle a high level of non-linearity 

and interface with continuous and 

discrete states. 

Integrate highly coupled control loops and state awareness methods 

to ensure safe and optimal performance of the process variables. 

Evolving 

Knowledge 

Novel concepts of physics and 

operation will be used that may 

not be fully understood or 

validated. 

Control method performance 

depends on the accuracy associated 

with the system model. 

Incorporate robustness into the control loop design to empirically 

and gradually model the process and adjust the control method as 

knowledge is gained, thereby ensuring safe and optimal performance 

amidst uncertainty and changing plant conditions. 

Lack of 

Operating 

History 

A useful operating history to 

feed into the optimization of the 

control method design and 

development does not exist.  

Adaptive and auto-tunable control 

methods are needed 

Use software models to identify and react to or track physical 

phenomena unanticipated due to the lack of operating history. 

Define the human role and what kind of human interventions are 

allowable, thereby ensuring that humans can monitor the reactor and 

take appropriate actions as necessary. 
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5. THE INTEGRATED ADVANCED CONTROL AND DIGITAL TWIN 
APPROACH  

Building on the requirements developed in the previous section, this section aims to develop a generic 

approach or framework that enables all the desired control functions for advanced reactors, with all the 

technological gaps highlighted. This approach will combine digital twins with the three already-discussed 

forms of control.  

Given the inherent differences of control and digital twin methods in terms of operations vs. design, 

this section introduces a separate approach applicable to each. The main difference between these 

approaches is that, instead of a physical system, a model is used in the design stage in order to incorporate 

all or part of the physical process that does not yet exist at the design stage. The following sections 

discuss each approach—highlighting the role of the requirements discussed in Table 1—to close the 

overall control loop and meet the unique combinations of requirements associated with advanced nuclear 

reactors.  

5.1 The Operational Approach  

Based on Requirement 1, discussed in the previous section, a layered approach to control is proposed, 

with the direct interface to the plant being achieved through either the logical or HP control (Figure 6). 

Thus, the AI/ML control layer does not directly control the plant (i.e., takes a supervisory role), but 

instead influences the other two layers of control. The supervisory AI/ML control makes decisions based 

on information about the plant or process being controlled (from sensors), the external requirements, and 

the risk (Requirement 3), and feeds into the input or reference for the controlled process. Therefore, the 

supervisory AI/ML control layer incorporates broader intelligence to understand linear and nonlinear 

plant conditions, as fed into the control through multi-input and coupled inputs, and generate 

multi-outputs that could influence several control loops such as the one in Figure 6 (Requirement 4). In its 

decision-making capacity, the supervisory layer also uses plant and sensors state information provided by 

a digital twin (Requirement 2). The supervisory AI/ML control uses models to explain unanticipated 

conditions due to the lack of operating history (Requirement 6), and adjusts the controllers to adapt to 

those conditions (Requirement 5). Instead of the supervisory AI/ML control driving the control loop, a 

human reference can instead be used for control (Requirement 6). The digital twin also controls what 

sensor values (i.e., physical or virtual) are used in the control process (shown in Figure 6 as a round 

switch). 

Plant 
(Controlled 

Process)

Human Reference Sensor Measurements

Digital Twin

AI/ML Control

HP Control

Logical Control

External Requirements

Risk

 

Figure 6. Abstract representation of the operational approach to integrate advanced control methods and 

digital twins for advanced nuclear reactors. 
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Figure 7 shows a detailed view of each of the elements in Figure 6. In this figure, the gaps are 

bordered in red. The plant is represented by physical equipment and certain passive means of control 

incorporated into the plant and thus not part of the active control introduced by the three layers of control. 

As discussed earlier, the plant sensor data are fed into a digital twin for deciding which sensors to use. 

The digital twin is based on two models: high and low fidelity. The high-fidelity model (labeled HF 

model in the figure) is used for condition monitoring, which is usually not time-critical and thus can 

afford the longer processing time. The low-fidelity model (labeled LF model in the figure) is an 

abstraction of the high-fidelity model, and was developed using various reduced-order modeling 

approaches. Its main characteristic is that it has enough fidelity to develop sufficient state awareness of 

the controlled process and is informed by the condition monitoring. The low-fidelity model is used for 

rapid, time-critical decisions, often associated with operational actions. This is the core role of control. 

Therefore, it is used in determining the operational state of the controlled process or plant.  

In addition to its equipment condition monitoring role, the digital twin can also determine the 

condition of the sensors and, when needed, can isolate or adjust the inaccurate measurements—an 

important feature of the digital twin, since the harsh environments and long operational lifetimes of 

advanced reactors increase the probability of sensor failure (see Section 4.2). This ensures that the control 

loop uses more representative measurements of the plant, regardless of whether the sensor measurement 

is physical or virtual.  

The operational state of the process or plant, as determined by the digital twin, is fed into the 

supervisory AI/ML control layer, which functions as an optimizer. One common approach to supervisory 

AI/ML control is the use of reinforced learning, which usually optimizes the decisions made, based on a 

reward function. While this is an online trial-and-error approach to learning what actions lead to ideal 

outcomes, a digital twin can be used to train such an optimizer, as is discussed in the design approach 

covered in the next section. The AI/ML supervisory control receives the external requirements (on the 

process or plant scale) as well as the plant state from the digital twin. Next, that information is converted 

into a form usable by the optimizer. The AI/ML supervisory control must also be informed about the risk 

associated with taken actions. Therefore, a risk model must be developed for the various operational 

decisions of the plant, and those decisions must be fed into the supervisory AI/ML control optimizer. This 

is another area critical to advanced reactors, given their nature and the desired level of autonomy (see 

Section 4.3).  

The decisions made by the supervisory AI/ML control layer are passed to one or both of the other two 

control layers. Logical control methods are mature enough for use in various industries, including the 

nuclear industry. However, a gap has been identified in the form of a means by which supervisory AI/ML 

control can interface to this type of control. The same gap also exists for HP control; however, this type of 

control can take multiple forms, and the interface must be able to couple to each. The three forms of HP 

control presented herein are: 

• Control multiplexing: This is needed when a set of different controllers are required and it is desired 

to switch from one to another, based on the process or plant state, as a single controller may not be 

adapted to all states. For a possible example of this, consider that, when the process is operating at 

normal conditions, actions are taken more rapidly than when the process is degraded. Rapid actions 

can introduce a form of risk. In control theory, non-linear dynamic compensators are one way of 

ensuring that transitioning from one controller to another does not introduce instabilities into the 

controlled process. Instead of conducting multiplexing on standalone controllers, robust controllers 

(Section 2.3.2) can be developed to address multiple states. These controllers can also be coupled 

with standalone controllers through control multiplexers.  

• Control optimization: Unlike the overall process optimizer in supervisory AI/ML control, this control 

optimizer focuses on the control metrics discussed in Section 2.1.3. It is therefore more 
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control-focused, and several methods exist to frame this controller as an optimization problem (e.g., 

model predictive control [Section 2.3.4]).  

• Change control compensators: While digital twins are able to predict sensor issues and compensate 

for them, change control compensators provide an extra layer of defense, enabling the controller to 

track the plant state, and adjust the controller to compensate for sensor issues and changing plant 

conditions (i.e., they adjust the controller instead of the sensors to adapt to changing plant conditions 

that impact the control model used in designing the controllers). Adaptive controllers discussed in 

Section 2.3.3 are one type of those change compensators.   

Because both the logical and HP controllers can be used in a control loop, an interface is also needed 

to couple the two approaches. As was already discussed, current reactors rely on a human to achieve this, 

but such an approach is infeasible for advanced reactors, given the reduced human role.  

Finally, because advanced reactors have no operating history (Section 4.6), the human role must be 

defined, as it is expected to be of significance during the initial operational phase of the advanced nuclear 

reactor. This role will phase out as the operational history is developed. However, a margin for human 

intervention must be designed, and a mechanism for ensuring that this intervention does not impact the 

condition, risk, or state of the reactor must be incorporated.  

5.2 The Design Approach  

The design approach shown in Figure 8 mostly resembles the operation approach discussed in the 

previous section, apart from the aspects relating to the digital twin and the definition of the plant. In this 

case, the plant is actually part of the physical process being controlled, or is in some cases nonexistent. In 

cases where the physical system partially exists (e.g., simulating a reactor when the actual core is 

unavailable but the rest of the plant is), a HIL approach becomes necessary to couple the physical system 

with the digital twin. Therefore, a suite of interface technologies must be developed to incorporate the 

different hardware and software tools needed to achieve real-time coupling, which is especially critical to 

HP control because of its sensitivity to time delays.  

Another key difference in the design approach is the need to use the sensor virtualization (already 

discussed) to feed into the placement of sensors. This is one of the digital twin roles, with the primary 

consideration being that the sensor placement must account for the redundancy requirement for virtual 

and physical sensors, as well as the digital twin’s ability to diagnose the conditions of the plant and 

understand its state in order to feed that information to the supervisory control.  

Due to lacking part of the real system, and because actual failures take some time to occur, the design 

approach will use simulated failures to evaluate the digital twin’s ability to diagnose and prognose plant 

conditions. In similar fashion, sensor measurements of the external conditions of the overall reactor or 

other coupled processes are simulated during the design phase.  

Except for the key differences discussed herein, the remaining design approach elements for 

integrating advanced control methods and digital twins are the same as those seen in the operational 

approach.  
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Figure 7. Operational approach to integrate advanced control methods and digital twins for advanced nuclear reactors. 
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Figure 8. Design approach to integrate advanced control methods and digital twins for advanced nuclear reactors. 
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6. CONCLUSIONS 

Given advanced reactors’ unique aspects, several gaps must be addressed to enable their highly 

autonomous operation. Closing those gaps will result in a set of requirements that can be met using a 

layered approach to control—one that interfaces with a digital twin. Digital twins are a key enabler for 

deploying control of advance nuclear reactors. They provide otherwise unavailable information for the 

design and operation of controllers, and can be used to compensate for the lack of operating history. They 

can also be used to foster ideal placement of sensors in the design stage of the reactor, and to virtualize 

sensors during operations. Combining HIL with a digital twin of the other parts of a process would enable 

partial testing of various control functions.  

Another key enabler for autonomous reactor operation related to the use of AI/ML for broader and 

supervisory intelligence, MIMO optimization, modeling of non-linearity, and integration of risk into the 

decision-making processes. Because this type of control is not used in the current U.S. reactor fleet, it was 

necessary to isolate it from the actual control and limit its ability to configure the plant to what the other 

control methods allow. This is a key research topic identified in this effort, along with determining a 

means of coupling the two other forms of control. This approach ensures that the control system, 

including the supervisory AI/ML control, is more likely to successfully meet regulatory requirements.  

Though the human role is envisioned to be limited to supervisory decision making, it is expected to 

be present—even significant—during the initial stages of operation, and to diminish as the operating 

history is developed and the autonomy is evolved to a level that enables this human role to be reduced. 

This initial human involvement is due to the nature of supervisory AI/ML control. While it will leverage 

the digital twin initially, differences between the digital twin and the actual reactor conditions, along with 

experienced operations that fall outside the digital twin design-basis scenarios, are expected to be 

observed during operations, and one of the functions of supervisory AI/ML control is to learn from such 

variation and adjust the process accordingly. 

While several research efforts are underway to close the gaps and consequently close the control loop 

presented in the operation and design approaches, those remain the most critical aspect of deploying 

advanced control methods for advanced nuclear reactors. Other elements of the control loop are simply 

common control methods needed in other industries, and are thus sufficiently mature for use in advanced 

nuclear reactors.  
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