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Abstract – When presented with an unknown binary,
which may or may not be complete, having the ability to 
determine information about it is critical to future reverse 
engineering, particularly in discovering the binary’s
intended use and potential malicious nature. This paper 
details techniques to both identify the machine 
architecture of the binary, as well as to locate the
important code segments within the file. This 
identification of unknown binaries makes use of a
technique called byte histogram in addition to various 
machine learning (ML) techniques, which we call “What 
is it Binary” or WiiBin.  Benefits of byte histograms
reflect the simplicity of calculation and do not rely on file 
headers or metadata, allowing for acceptable results when 
only a small portion of the original file is available; e.g.,
when encrypted and/or compressed sections are present in
a binary. Utilizing WiiBin, we were able to accurately
(>80%) determine the architecture of test binaries with as 
little as a 20% contagious portion of the file present. We
were also able to determine the location of code sections 
within a binary by utilizing the WiiBin framework.
Ultimately, the more information that can be gleaned
from a binary file, the easier it is to successfully reverse 
engineer.
Index Terms — Byte Histogram; Architecture
Identification; Binary; Endianness; Machine Learning; 
Algorithms; Entropy

I. INTRODUCTION & BACKGROUND
Various techniques and tools currently exist which 

allow for the determination of a binary file’s architecture. 
These include programs such as IDA Pro, Binwalk, and 
Ghidra. The basic byte histogram concept that will be 
presented here was previously described in an article titled 
Automatic classification of object code using machine 
learning [1].  In this paper, the previously described technique 
will be reiterated and expanded upon to further increase the 
overall accuracy of architecture detection.  In addition to

architecture prediction, the same histogram technique can be 
used for the first time to determine where, within a binary
file, the code/instruction sections exist. This detection and 
location ability makes the reverse engineering of a binary 
significantly easier once this information is obtained.

A byte histogram is generated by iterating through 
each byte within a binary and recording the number of 
occurrences of each possible byte into a 256-value long
vector – where each element in the vector represents hex byte 
values from 0x00 to 0xFF. Each vector value is then 
normalized to a value between zero and one based on the total
number of bytes processed. When plotted, the resulting vector 
creates a graph that is similar to the output of a mass 
spectrometer.  An example of such a plot can be found in 
Figure 1. This byte histogram vector can be treated as a
pseudo-fingerprint for the file from which it was generated.  
This histogram structure is able to encode a significant 
amount of data about each file into a format that can be 
utilized by structured machine learning algorithms. The result 
would be to classify other unknown binaries based on
similarity of features.

Figure 1 – Sample byte histogram vector plot
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The speed at which a byte histogram can be 
generated is determined solely by the size of the binary 
(number of bytes to be counted). Since a large binary could
be arbitrarily split into any number of smaller binaries, the 
histogram generation process could be accelerated by 
utilizing multiple threads/processors.  Combining the 
subtotals from each thread or processor, once finished, would
produce a final histogram.

In prior research also completed at University of
Maryland, Baltimore College (UMBC) and Johns Hopkins 
University Applied Physics Laboratory (JHU/APL) [1], the 
concept of endianness proved to be a very effective 
component in accurately identifying the difference between 
mips and mipsel.  To identify endianness, pairs of adjacent
bytes within a binary are counted.  An abundance of pairs 
representing 0x0001 and 0xFFFE were found to indicate a 
big-endian architecture, and those with an abundance of 
0x0100 and 0xFEFF were found to indicate a little-endian 
binary.  In our testing, we found that counting instances of 
0x0001 and 0x0100 was sufficient to determine the
endianness of our binaries. This endianness feature was 
appended to our previously generated byte histogram vector 
as elements 257 and 258.

In order to increase the accuracy of our architecture 
detection, we also utilized entropy analysis techniques using 
Binwalk [2].  The Binwalk tool contains a feature which can 
generate a plot of Entropy vs File Length, as seen in Figure 2.

Figure 2. Example Firmware processed through Binwalk

Using this tool allowed us to locate and filter out
portions of the binary that contain either high entropy and/or 
low entropy.  High entropy sections are typically those that 
are either compressed or encrypted.  Those with low entropy 
usually correspond to padding of a constant value between 
binary code sections.  All three of these effects seen at 
entropy extremes are not useful when calculating a byte 
histogram and can instead corrupt or pollute the byte 
histogram.

Additionally, we looked at determining how much
of a file was required to still get a reliable architecture 
prediction, as one cannot assume that every binary that is 
received for analysis will be complete.  A file might be a 
partial file that was collected as it was transmitted over a 
network, or there may be a file that was corrupted or partially 
overwritten prior to being undeleted. These incomplete or 
corrupted files may be missing critical sections which are 
normally used to determine binary architecture such as ELF
headers, PE headers or other metadata.

Being able to determine where in a binary file the 
code section resides is also a valuable technique that we 
explored utilizing supervised machine learning techniques.
II. PROPOSED METHOD

The proposed method of architecture detection and 
code section location was to use full and complete binaries 
for all training as well as all testing, including any headers, 
strings, etc.  This was contrary to the practice of utilizing
only the code section of the binary which would contain the 
instructions and opcodes that are needed to accurately 
identify an architecture through a byte histogram. As long 
as the binary, or portion of a binary, contains the code 
section or subset of the code, we should be able to identify 
the file’s architecture with a high degree of accuracy.

Researchers also proposed using a simplified 
technique to that of the technique used previously [1] for 
determining the endianness of a binary file.  Instead of 
counting byte pairs which correspond to code sections –
which increment by one (0x0001 vs 0x0100) – as well as
those sections that correspond to a decrement by one 
(0xFFFE vs 0xFEFF), it was decided that making an 
endianness decision based on only positive one increments 
provides an acceptable accuracy.

While calculating the byte histogram, all individual 
bytes are counted, as well as the 0x0001 and 0x0100 byte 
pairs, if it is determined that there are more 0x0001’s vs 
0x0100’s than the entry in the Big Endian (BE) column for 
that histogram’s vector is assigned a value of 1 and the 
corresponding entry in the Little Endian (LE) column for the 
histogram is assigned a respective 0.  If it is found that the 
abundance is of the form 0x0100, then the reverse 
assignments are made. Pseudo code for this logic is shown in 
Figure 3.

                   
Figure 3. Pseudo Code for Endianness Calculation

 
As was mentioned earlier, the use of Binwalk to 

generate entropy graphs allows the ability to ignore both 
sections with either high entropy or low entropy.  Based on 
entropy, this filtering should allow for a more accurate byte 
histogram with which to feed into WiiBin. During
development, WiiBin’s machine learning implementation was 
provided by Orange from BioLab.io and included eight ML 
algorithms, including Neural Network, AdaBoost, Random 
Forest, kNN, Tree, SVM, Naïve Bayes and Logistic 
Regression; however, any number of other machine learning 
algorithm sets could have been used for our purposes. The 
relatively simple workflow can be seen in Figure 4.
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Figure 4. WiiBin Workflow

Subsequently, researchers will utilize a script to 
select 10%, 20% …80%, and 90% contiguous sub portions of 
each test data file.  This will result in new sub test sets 
containing only a random contiguous portion of each file
from the full test dataset.  After processing the byte 
histograms generated by these sub test sets, we will be able to 
determine how much of a file one needs to predict its 
architecture with greater than 80% accuracy.

An adjacently related technique intended to identify 
where within a binary the code/instruction sections occur will 
also be tested.  This technique will utilize a script which 
implements a rolling window to split the input binary into a 
custom test set of 10KB binaries, each with 50% overlap with 
the adjacent 10KB binary.  These overlapping binaries will be
processed (sequentially; i.e., in byte order) into byte 
histogram vectors and will ultimately be run through WiiBin.
Aligning the output data to that of the Binwalk entropy plot 
will show where the eight ML algorithms (Neural Network, 
AdaBoost, Random Forest, kNN, Tree, SVM, Naïve Bayes,
and Logistic Regression) best agree on each section’s 
architecture.
III. EXPERIMENTAL RESULTS – ENDIANNESS

A reduced set of hardware architectures were chosen 
for this research.  The architectures chosen are common to
Operational Technology (OT) components and environments 
and include amd64, i386, armhf, armel, mips, mipsel, and
powerpc instruction sets.  A dataset consisting of Debian 7.0
binaries was collected.  This collection was gathered by 
downloading pre-compiled Debian images for each 
architecture of interest.  These images were then 
decompressed, and raw binaries were extracted from the 
resulting .deb files.  Only files with version numbers in the
filenames were chosen to be included in the master dataset.  
From the master dataset, three test sets and three training sets 
were selected.  The breakdown of these test and training sets 
are found in Table 1 below. Note that TestSet1’s files are 
also included in TrainSet1 where as TestSet2 and TestSet3’s
files were removed from the respective TrainSets.

Table 1 - Test and training set breakdown across considered 
architectures.

When TestSet1 (28 test files) was initially processed 
without regard for endianness, the results were not 
acceptable (see Table 2).  This was due to the 
misclassification of the mips and mipsel files by nearly all
eight ML algorithms.  When reprocessed with our reduced 
endianness flags in place, the results were greatly improved
(see Table 3). Note, the green highlighted sections in Tables 
2 through 4 indicate those times that the ML algorithm
resulted in greater than 80% accuracy.

Table 2. TestSet1 processed without endianness check

TestSet1 is shown to provide an accurate 
architecture prediction (>80%) with as little as 20% of the 
original file.

Table 3. TestSet1 processed with endianness check

IV. EXPERIMENTAL RESULTS – ENTROPY
In order to improve upon endianness results, we

utilized Binwalk’s entropy feature to ignore all high entropy
data (>0.9) and all low entropy data (<0.1).  When removed
from the test and training data from TestSet2, there are seen 
mixed results across the eight ML algorithms, yet there is
clearly a net improvement in the detection accuracy (see 
Tables 3 and 4). Similar results are seen for TestSet1 as well 
as TestSet3 but are not shown here in the interest of brevity.  
Note, in Table 5 the green highlighted values indicate 
positive accuracy changes when entropy trimming was 
applied. Likewise, red indicates a reduction in accuracy and 
yellow signifies no change in accuracy.
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Table 3. TestSet2 processed with endianness check only

Table 4. TestSet2 processed with entropy trimming

Table 5. TestSet2 delta between endianness check and 
entropy trimming

V. EXPERIMENTAL RESULTS – OPCODE
LOCATION

The ability of WiiBin to identify sections within a 
binary containing code/instructions/opcodes had significant
results.  This detection process utilized the rolling window 
technique previously described to generate a new test set 
from a single binary.  This single binary was 
programmatically split in multiple 10KB overlapping sub-
binaries.  The WiiBin setup that was used previously was 
run on this newly split test set (training data which was 
trained on full binaries was not changed from that used 
during the architecture detection). The successful results of 
this technique can also be seen in Figures 5 and 6.  The 
portions with the highest degree of architecture agreement 
are circled in red on both the entropy plot as well as on the 
agreement plot. These sections indicate areas where
code/instruction data exists as the majority of the eight ML 
algorithms were able to agree on a detected architecture.
The points where agreement is greatest can be considered 
the areas where code/instructions exist.  Areas of 
disagreement are also seen since each of the ML algorithms 
have their own interpretation of what the architecture is 
when no opcodes are found.

Figure 5. Firmware Example highlighting area of architecture
agreement

Figure 6. Debian GDB Example highlighting area of 
architecture agreement

We also had initial success with our model when we 
tested it against architectures that it was never trained to 
detect.  Table 6 shows the results of testing our model (which 
is capable of identifying our seven selected architectures)
against BusyBox [4] builds compiled for additional
architectures (armv4l, armv4tl, armv5l, armv6l, i486, i586, 
i686, m68k, mips, mipsel, powerpc, sh4, sparc, x86_64).

Table 6. Untrained Architecture Test Results

In the test, all the unknown arm variants were 
detected as arm. All the unknown iX86 variants were 
identified as i386, and all the known architectures were 
properly identified. Even the m68k architecture was 
identified as its close relative, PowerPC, showing that even 
unknown architectures can be associated with similar or 
derived architectures.
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VI. CONCLUSIONS & FUTURE WORK

In conclusion, we were able to use the WiiBin 
framework to show improvement in our prediction accuracy 
by utilizing a simplified endianness check as part of our byte 
histograms.  WiiBin also allowed for notable accuracy 
improvements when we utilized entropy filtering of <0.9 and 
>0.1. In addition to entropy filtering, future improvements 
can potentially be made by retraining the original model only 
on sections that have been identified by our technique as 
containing code/instruction data.  This will further reduce the
‘noise’ in the byte histograms by getting rid of sections such 
as headers, strings, etc. This may also reduce the secondary 
training time by having a smaller set of training data to train
upon, as well as reduce the time that testing a single file 
requires to form a prediction. Additional follow on work is 
currently underway through the Firmware Indicator 
Translator (FIT) project.  The FIT project has one more year 
of funding and is focusing on reverse engineering static 
binaries using both supervised and unsupervised techniques
and inputting the results into graph databases for further 
analysis.  Additional, beyond the horizon research should
include how to properly manipulate dynamic binaries and the 
ability to resolve all paths that are present/possible within 
dynamic binaries.
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