
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/CON-21-64457-Revision-0

Binary Analysis with
Architecture and Code
Section Detection using
Supervised Machine
Learning

May 2020

Bryan R Beckman, Jed Haile

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/CON-21-64457-Revision-0

Binary Analysis with Architecture and Code Section
Detection using Supervised Machine Learning

Bryan R Beckman, Jed Haile

May 2020

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Binary Analysis with Architecture and Code Section
Detection Using Supervised Machine Learning

Bryan Beckman and Jed Haile, Idaho National Laboratory
National and Homeland Security, Critical Infrastructure

Protection/CyberCore - Idaho Falls, ID USA
Bryan.Beckman@inl.gov; Jed.Haile@inl.gov

Abstract – When presented with an unknown binary,
which may or may not be complete, having the ability to
determine information about it is critical to future reverse
engineering, particularly in discovering the binary’s
intended use and potential malicious nature. This paper
details techniques to both identify the machine
architecture of the binary, as well as to locate the
important code segments within the file. This
identification of unknown binaries makes use of a
technique called byte histogram in addition to various
machine learning (ML) techniques, which we call “What
is it Binary” or WiiBin. Benefits of byte histograms
reflect the simplicity of calculation and do not rely on file
headers or metadata, allowing for acceptable results when
only a small portion of the original file is available; e.g.,
when encrypted and/or compressed sections are present in
a binary. Utilizing WiiBin, we were able to accurately
(>80%) determine the architecture of test binaries with as
little as a 20% contagious portion of the file present. We
were also able to determine the location of code sections
within a binary by utilizing the WiiBin framework.
Ultimately, the more information that can be gleaned
from a binary file, the easier it is to successfully reverse
engineer.
Index Terms — Byte Histogram; Architecture
Identification; Binary; Endianness; Machine Learning;
Algorithms; Entropy

I. INTRODUCTION & BACKGROUND
Various techniques and tools currently exist which

allow for the determination of a binary file’s architecture.
These include programs such as IDA Pro, Binwalk, and
Ghidra. The basic byte histogram concept that will be
presented here was previously described in an article titled
Automatic classification of object code using machine
learning [1]. In this paper, the previously described technique
will be reiterated and expanded upon to further increase the
overall accuracy of architecture detection. In addition to

architecture prediction, the same histogram technique can be
used for the first time to determine where, within a binary
file, the code/instruction sections exist. This detection and
location ability makes the reverse engineering of a binary
significantly easier once this information is obtained.

A byte histogram is generated by iterating through
each byte within a binary and recording the number of
occurrences of each possible byte into a 256-value long
vector – where each element in the vector represents hex byte
values from 0x00 to 0xFF. Each vector value is then
normalized to a value between zero and one based on the total
number of bytes processed. When plotted, the resulting vector
creates a graph that is similar to the output of a mass
spectrometer. An example of such a plot can be found in
Figure 1. This byte histogram vector can be treated as a
pseudo-fingerprint for the file from which it was generated.
This histogram structure is able to encode a significant
amount of data about each file into a format that can be
utilized by structured machine learning algorithms. The result
would be to classify other unknown binaries based on
similarity of features.

Figure 1 – Sample byte histogram vector plot

152

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Bryan Ralph Beckman. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00041

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 18,2022 at 00:35:02 UTC from IEEE Xplore. Restrictions apply.

The speed at which a byte histogram can be
generated is determined solely by the size of the binary
(number of bytes to be counted). Since a large binary could
be arbitrarily split into any number of smaller binaries, the
histogram generation process could be accelerated by
utilizing multiple threads/processors. Combining the
subtotals from each thread or processor, once finished, would
produce a final histogram.

In prior research also completed at University of
Maryland, Baltimore College (UMBC) and Johns Hopkins
University Applied Physics Laboratory (JHU/APL) [1], the
concept of endianness proved to be a very effective
component in accurately identifying the difference between
mips and mipsel. To identify endianness, pairs of adjacent
bytes within a binary are counted. An abundance of pairs
representing 0x0001 and 0xFFFE were found to indicate a
big-endian architecture, and those with an abundance of
0x0100 and 0xFEFF were found to indicate a little-endian
binary. In our testing, we found that counting instances of
0x0001 and 0x0100 was sufficient to determine the
endianness of our binaries. This endianness feature was
appended to our previously generated byte histogram vector
as elements 257 and 258.

In order to increase the accuracy of our architecture
detection, we also utilized entropy analysis techniques using
Binwalk [2]. The Binwalk tool contains a feature which can
generate a plot of Entropy vs File Length, as seen in Figure 2.

Figure 2. Example Firmware processed through Binwalk

Using this tool allowed us to locate and filter out
portions of the binary that contain either high entropy and/or
low entropy. High entropy sections are typically those that
are either compressed or encrypted. Those with low entropy
usually correspond to padding of a constant value between
binary code sections. All three of these effects seen at
entropy extremes are not useful when calculating a byte
histogram and can instead corrupt or pollute the byte
histogram.

Additionally, we looked at determining how much
of a file was required to still get a reliable architecture
prediction, as one cannot assume that every binary that is
received for analysis will be complete. A file might be a
partial file that was collected as it was transmitted over a
network, or there may be a file that was corrupted or partially
overwritten prior to being undeleted. These incomplete or
corrupted files may be missing critical sections which are
normally used to determine binary architecture such as ELF
headers, PE headers or other metadata.

Being able to determine where in a binary file the
code section resides is also a valuable technique that we
explored utilizing supervised machine learning techniques.
II. PROPOSED METHOD

The proposed method of architecture detection and
code section location was to use full and complete binaries
for all training as well as all testing, including any headers,
strings, etc. This was contrary to the practice of utilizing
only the code section of the binary which would contain the
instructions and opcodes that are needed to accurately
identify an architecture through a byte histogram. As long
as the binary, or portion of a binary, contains the code
section or subset of the code, we should be able to identify
the file’s architecture with a high degree of accuracy.

Researchers also proposed using a simplified
technique to that of the technique used previously [1] for
determining the endianness of a binary file. Instead of
counting byte pairs which correspond to code sections –
which increment by one (0x0001 vs 0x0100) – as well as
those sections that correspond to a decrement by one
(0xFFFE vs 0xFEFF), it was decided that making an
endianness decision based on only positive one increments
provides an acceptable accuracy.

While calculating the byte histogram, all individual
bytes are counted, as well as the 0x0001 and 0x0100 byte
pairs, if it is determined that there are more 0x0001’s vs
0x0100’s than the entry in the Big Endian (BE) column for
that histogram’s vector is assigned a value of 1 and the
corresponding entry in the Little Endian (LE) column for the
histogram is assigned a respective 0. If it is found that the
abundance is of the form 0x0100, then the reverse
assignments are made. Pseudo code for this logic is shown in
Figure 3.

Figure 3. Pseudo Code for Endianness Calculation

As was mentioned earlier, the use of Binwalk to

generate entropy graphs allows the ability to ignore both
sections with either high entropy or low entropy. Based on
entropy, this filtering should allow for a more accurate byte
histogram with which to feed into WiiBin. During
development, WiiBin’s machine learning implementation was
provided by Orange from BioLab.io and included eight ML
algorithms, including Neural Network, AdaBoost, Random
Forest, kNN, Tree, SVM, Naïve Bayes and Logistic
Regression; however, any number of other machine learning
algorithm sets could have been used for our purposes. The
relatively simple workflow can be seen in Figure 4.

153

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 18,2022 at 00:35:02 UTC from IEEE Xplore. Restrictions apply.

Figure 4. WiiBin Workflow

Subsequently, researchers will utilize a script to
select 10%, 20% …80%, and 90% contiguous sub portions of
each test data file. This will result in new sub test sets
containing only a random contiguous portion of each file
from the full test dataset. After processing the byte
histograms generated by these sub test sets, we will be able to
determine how much of a file one needs to predict its
architecture with greater than 80% accuracy.

An adjacently related technique intended to identify
where within a binary the code/instruction sections occur will
also be tested. This technique will utilize a script which
implements a rolling window to split the input binary into a
custom test set of 10KB binaries, each with 50% overlap with
the adjacent 10KB binary. These overlapping binaries will be
processed (sequentially; i.e., in byte order) into byte
histogram vectors and will ultimately be run through WiiBin.
Aligning the output data to that of the Binwalk entropy plot
will show where the eight ML algorithms (Neural Network,
AdaBoost, Random Forest, kNN, Tree, SVM, Naïve Bayes,
and Logistic Regression) best agree on each section’s
architecture.
III. EXPERIMENTAL RESULTS – ENDIANNESS

A reduced set of hardware architectures were chosen
for this research. The architectures chosen are common to
Operational Technology (OT) components and environments
and include amd64, i386, armhf, armel, mips, mipsel, and
powerpc instruction sets. A dataset consisting of Debian 7.0
binaries was collected. This collection was gathered by
downloading pre-compiled Debian images for each
architecture of interest. These images were then
decompressed, and raw binaries were extracted from the
resulting .deb files. Only files with version numbers in the
filenames were chosen to be included in the master dataset.
From the master dataset, three test sets and three training sets
were selected. The breakdown of these test and training sets
are found in Table 1 below. Note that TestSet1’s files are
also included in TrainSet1 where as TestSet2 and TestSet3’s
files were removed from the respective TrainSets.

Table 1 - Test and training set breakdown across considered
architectures.

When TestSet1 (28 test files) was initially processed
without regard for endianness, the results were not
acceptable (see Table 2). This was due to the
misclassification of the mips and mipsel files by nearly all
eight ML algorithms. When reprocessed with our reduced
endianness flags in place, the results were greatly improved
(see Table 3). Note, the green highlighted sections in Tables
2 through 4 indicate those times that the ML algorithm
resulted in greater than 80% accuracy.

Table 2. TestSet1 processed without endianness check

TestSet1 is shown to provide an accurate
architecture prediction (>80%) with as little as 20% of the
original file.

Table 3. TestSet1 processed with endianness check

IV. EXPERIMENTAL RESULTS – ENTROPY
In order to improve upon endianness results, we

utilized Binwalk’s entropy feature to ignore all high entropy
data (>0.9) and all low entropy data (<0.1). When removed
from the test and training data from TestSet2, there are seen
mixed results across the eight ML algorithms, yet there is
clearly a net improvement in the detection accuracy (see
Tables 3 and 4). Similar results are seen for TestSet1 as well
as TestSet3 but are not shown here in the interest of brevity.
Note, in Table 5 the green highlighted values indicate
positive accuracy changes when entropy trimming was
applied. Likewise, red indicates a reduction in accuracy and
yellow signifies no change in accuracy.

154

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 18,2022 at 00:35:02 UTC from IEEE Xplore. Restrictions apply.

Table 3. TestSet2 processed with endianness check only

Table 4. TestSet2 processed with entropy trimming

Table 5. TestSet2 delta between endianness check and
entropy trimming

V. EXPERIMENTAL RESULTS – OPCODE
LOCATION

The ability of WiiBin to identify sections within a
binary containing code/instructions/opcodes had significant
results. This detection process utilized the rolling window
technique previously described to generate a new test set
from a single binary. This single binary was
programmatically split in multiple 10KB overlapping sub-
binaries. The WiiBin setup that was used previously was
run on this newly split test set (training data which was
trained on full binaries was not changed from that used
during the architecture detection). The successful results of
this technique can also be seen in Figures 5 and 6. The
portions with the highest degree of architecture agreement
are circled in red on both the entropy plot as well as on the
agreement plot. These sections indicate areas where
code/instruction data exists as the majority of the eight ML
algorithms were able to agree on a detected architecture.
The points where agreement is greatest can be considered
the areas where code/instructions exist. Areas of
disagreement are also seen since each of the ML algorithms
have their own interpretation of what the architecture is
when no opcodes are found.

Figure 5. Firmware Example highlighting area of architecture
agreement

Figure 6. Debian GDB Example highlighting area of
architecture agreement

We also had initial success with our model when we
tested it against architectures that it was never trained to
detect. Table 6 shows the results of testing our model (which
is capable of identifying our seven selected architectures)
against BusyBox [4] builds compiled for additional
architectures (armv4l, armv4tl, armv5l, armv6l, i486, i586,
i686, m68k, mips, mipsel, powerpc, sh4, sparc, x86_64).

Table 6. Untrained Architecture Test Results

In the test, all the unknown arm variants were
detected as arm. All the unknown iX86 variants were
identified as i386, and all the known architectures were
properly identified. Even the m68k architecture was
identified as its close relative, PowerPC, showing that even
unknown architectures can be associated with similar or
derived architectures.

155

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 18,2022 at 00:35:02 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS & FUTURE WORK

In conclusion, we were able to use the WiiBin
framework to show improvement in our prediction accuracy
by utilizing a simplified endianness check as part of our byte
histograms. WiiBin also allowed for notable accuracy
improvements when we utilized entropy filtering of <0.9 and
>0.1. In addition to entropy filtering, future improvements
can potentially be made by retraining the original model only
on sections that have been identified by our technique as
containing code/instruction data. This will further reduce the
‘noise’ in the byte histograms by getting rid of sections such
as headers, strings, etc. This may also reduce the secondary
training time by having a smaller set of training data to train
upon, as well as reduce the time that testing a single file
requires to form a prediction. Additional follow on work is
currently underway through the Firmware Indicator
Translator (FIT) project. The FIT project has one more year
of funding and is focusing on reverse engineering static
binaries using both supervised and unsupervised techniques
and inputting the results into graph databases for further
analysis. Additional, beyond the horizon research should
include how to properly manipulate dynamic binaries and the
ability to resolve all paths that are present/possible within
dynamic binaries.

VII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Department
of Energy (DOE) and their Cybersecurity, Energy Security,
and Emergency Response - Cybersecurity for Energy Delivery
Systems CESER-CEDS mission for funding this research
intended to help to protect our nation’s electric grid from
cyber-attack.

Acknowledgement goes to our utility partners in this
research: Southern California Edison (SCE) and DTE Energy.
Additional acknowledgement goes to our vendor partners as
well: Siemens, Eaton, and Hitachi.

A special thanks to Rita Foster for encouraging this
research and for keeping all involved on track.

VIII. REFERENCES

[1] J. Clemens, “Automatic classification of object code
using machine learning,” DFRWS 2015 USA. [Online].
Available:
https://www.sciencedirect.com/science/article/pii/S1742
287615000523. [Accessed Aug 10, 2019]

[2] Binwalk, https://www.refirmlabs com/binwalk/
[3] Orange, https://orange.biolab.si/
[4] BusyBox, https://busybox.net/

156

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 18,2022 at 00:35:02 UTC from IEEE Xplore. Restrictions apply.

