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ABSTRACT

Software containers are a key channel for delivering portable and
reproducible scientific software in high performance computing
(HPC) environments. HPC environments are different from other
types of computing environments primarily due to usage of the mes-
sage passing interface (MPI) and drivers for specialized hardware to
enable distributed computing capabilities. This distinction directly
impacts how software containers are built for HPC applications
and can complicate software quality assurance efforts including
portability and performance. This work introduces a strategy for
building containers for HPC applications that adopts layering as a
mechanism for software quality assurance. The strategy is demon-
strated across three different HPC systems, two of them petaflops
scale with entirely different interconnect technologies and/or pro-
cessor chipsets but running the same container. Performance con-
sequences of the containerization strategy are found to be less than
5-14% while still achieving portable and reproducible containers
for HPC systems.
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1 INTRODUCTION

Quality assurance in scientific computing software is fundamen-
tal to research computing and consists of multiple components
including verification and validation, reproducibility, and porta-
bility. Additional components generally considered tangential to
computing software quality assurance but critical to the long-term
usability of an application workload are security and insulation
against dependency updates occasioned by regular system security
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patching. The capability for software containers to package nec-
essary dependencies and components so that scientific computing
results are both reproducible and portable has driven the creation of
containers for a wide range of scientific computing codes including
GROMACS [4], NAMD [10], and the MOOSE framework [8]. There
are multiple container registries providing containerized software
including Docker Hub [2], NVIDIA [11], and Sylabs [13] that pro-
vide a container as a single file that a user can download and then
run the software without needing to request a system administra-
tor to install the software or any dependencies for them. There
are also many other Open Container Initiative registries, such as
Harbor [6], that provide a channel for distributing containerized
software outside of the large container registries. Because of docker
breakout risk [9], privilege escalation, requiring a daemon, etc.,
many scientific computing software containers use the Singular-
ity and/or Apptainer platform to satisfy security requirements on
shared computing resources.

Scientific computing software built for high performance com-
puting (HPC) systems presents an additional complication for con-
tainer builders due to the need to integrate drivers and software
stacks for specialized hardware specific to HPC systems as well
as the frequent integration of the message passing interface (MPI)
libraries [5] used for leveraging distributed computing. There are
three modalities by which MPI can be incorporated into a software
container that are distinguished by where the MPI libraries are
installed. In the container-only modality, the MPI libraries are only
installed in the container. While this is the simplest approach, the
container will not be able to run across multiple nodes of the host
system. In the bind modality, the MPI libraries are only installed on
the host system but not in the container. The MPI libraries from the
host are bound into the container at run time, which allows it to
run across distributed systems. However, in order for this modality
to work, the host operating system and the container operating
system must be compatible. In the hybrid modality [12], both the
container and the host have MPI installed. For this to work on
distributed systems, the host MPI and the container MPI need only
be application binary interface (ABI) compatible. The bind and hy-
brid approaches are the most compelling for containers on HPC
systems, but both present not only portability challenges but also
software quality assurance issues because of the reliance on the
host MPI installation and drivers for specialized hardware specific
to the host. To address this concern, this work presents a hybrid
container strategy that leverages layering where components of the
software stack are placed in separate containers that progressively
build off of each other until reaching the application layer. Changes
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in host system interconnect drivers or MPI installations require
updating an isolated layer and then rebuilding dependent layers to
continue to ensure software quality assurance. The strategy relies
on the following assumptions to help minimize the amount of layer
rebuilds to improve longevity:

(1) Host systems will use a long term support (LTS) version of
drivers and/or software stacks when possible;

(2) Host system administrators will install an ABI-compatible
version of MPI if one does not exist on the target system.

To demonstrate and explore the performance consequences of
this strategy, this work examines containers for three classes of
applications: microbenchmarks, mini applications, and full HPC ap-
plications. The Ohio State University benchmarks [15] serve as the
demonstration for microbenchmarks while the LULESH miniapp [7]
serves the mini application space. The full HPC application explored
with this strategy is MCNP 6.2.0 [17]. These application containers
are tested on three different systems, two of them petaflops scale,
with different operating systems, chipsets, and network technolo-
gies. The performance of each container is compared against the
natively compiled and optimized version of the application on each
supercomputing system.

The structure of this work is as follows. In Section 2, a review of
alternative container build strategies for HPC systems is examined
and related work is discussed. In Section 3, the container strat-
egy for HPC proposed in this work is detailed and discussed. In
Section 4, the performance results for the three classes of HPC
applications that are containerized as part of this work are given
and the performance consequences of the containerization strat-
egy are quantified. In Section 5, conclusions on the empirical tests
of this containerization strategy are presented and future work is
discussed.

2 RELATED WORK

Multiple performance studies with a discussion on portability have
been done for HPC container strategies. Torrez et al. [14] reported
minimal or no performance impact due to using an HPC container
but tested portability using two different supercomputers with
the exact same OmniPath interconnect, motherboard, and chipset.
That study used SysBench, STREAM, and HPCG as applications for
memory and performance analysis and built the containers using
Charliecloud, Shifter, and Singularity as the container platforms
within a hybrid modality. No full applications were included in
the Torrez et al. study but they concluded that the performance
question is close to a solved problem. Wang et al. [16] followed a
non-portable bind-modality strategy in their container performance
study and used four full applications as part of their investigation:
Weather Research Forecasting (WRF), the lattice gauge theory MILC
code, NAMD, and GROMACS and only tested on one supercom-
puter thereby avoiding the question of portability across different
supercomputing systems. Like Torrez et al., they also conclude that
containerized versions of HPC software did not sacrifice perfor-
mance compared with the native non-container installations. Canon
et al. [1] point out that the mechanisms needed to achieve porta-
bility and reproducibility in containers can inadvertently cause
performance degradation. They point out that methods to leverage
specialized HPC hardware in the container can have the unintended
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consequence of breaking long-term reproducibility. Canon et al.
observe that, at present, the techniques for using containers on
HPC systems are still ad hoc.

This work complements those studies by detailing an HPC con-
tainer strategy that is portable across supercomputers even if they
are hosting completely different interconnect technologies and min-
imizes the risk of breaking long-term reproducibility. This strategy
does have a performance consequence, and this study empirically
explores that performance impact.

3 CONTAINER STRATEGY

This section presents a hybrid container strategy to provide trace-
ability and portability across different supercomputers while also
minimizing the risk of breaking long-term reproducibility. Example
recipe files for the strategy are provided to explicitly illustrate the
different layers and the traceability elements added to the each
layer.

There are three key components to the strategy:

e HPC application containers are built from stacks of individ-
ual containers called layers. These layers compartmentalize
different software and driver components.

o Specialized hardware drivers and software stacks for inter-
connects are grouped into a single layer; MPI libraries are
likewise grouped into their own layer. Portability among
HPC systems is achieved via ABI compatibility of the MPI
libraries between host and container along with series com-
patibility for interconnect drivers and software stacks. The
UCX framework is also leveraged in the container to assist
with portability.

o Each layer of the container stack can be individually updated
and is always reproducible by storing local mirrors of all
layer components rather than relying on the internet for
rebuilding the layer.

This strategy is designed to provide maximum traceability due to
the local static mirrors and separating components into different
layers in addition to improving the portability and reproducibility
needed for software quality assurance.

In a hybrid modality such as detailed in this strategy, the con-
tainer has both an MPI installation as well as the necessary inter-
connect drivers and software stacks that can be independent of
the system MPI installation and system interconnect drivers and
software stacks. Unlike the bind modality, this hybrid approach
does not require compatibility between the host operating system
and the container operating system which substantially improves
portability. There are, however, two limitations to portability. This
first is that the MPI installed in the container must be ABI com-
patible with the host MPL This is a limitation typical of all hybrid
container approaches. For example, if MVAPICH2 is installed on
the host, some ABI compatible MPI versions that could be used in
the container would include Intel MPI, MPICH, and MVAPICH2.
The second limitation is that the interconnect drivers and software
stacks in the container must be series compatible with the host
drivers and software stacks. For example, if the InfiniBand driver
and software stack on the host is version 5.1, the container would
need to have InfiniBand driver and software stack versions also
that are series compatible, e.g. 5.x. For portability across different
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HPC systems with different network technologies, the drivers and
software stacks for each would need to be included in the container.
For example, if the container will be used on a host system with
InfiniBand interconnect as well as on another host system with
OmniPath interconnect, series compatible drivers and software
stacks for each network technology would need to be included in
the container.

A consequence of these portability conditions is that there will
be times it will be necessary to update the container’s version of
MPI or interconnect drivers and software stacks in order to ensure
continued portability. Rebuilding a monolithic container would
normally be required, but that also requires rebuilding multiple
components that are unaffected by the updates needed for porta-
bility. To avoid this a layering approach is used where operating
system, compilers, interconnect drivers and software stack, MPI
libraries, and applications are all placed in separate containers. Com-
partmentalizing components into individual layers of the container
enables the container builder to update only those pieces needed
to continue to ensure portability and long-term reproducibility.
These different layers are stacked with the layers least likely to
change near the bottom and the layers most likely to change near
the top as illustrated in Figure 1. Rather than build a monolithic
container by pulling everything from the internet all at once, using
a layering approach it is possible to pull and modify only the pieces
necessary for that layer, which not only reduces build time, but
minimizes the number of configuration items for an audit or during
verification and validation. When a layer needs to be updated and
rebuilt, only that layer and the layers above it have to be rebuilt
while layers below can be reused in the final stack. For example,
because the interconnect driver series does not change frequently
on HPC systems and sometimes lasts as long as 5-7 years, the inter-
connect driver layer is lower in the pyramid in Figure 1 than the
MPI libraries which change more rapidly.

Figure 1: Hybrid container layering strategy where the oper-
ating system, compilers, interconnect drivers and software
stack, MPI, and application are added in different container
layers. When a layer needs to be modified, only that layer
and layers stacked on it need to be rebuilt; lower layers can
be reused.
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Pulling components for a layer from the internet can present a
problem with regards to reproducibility and auditing. When con-
tainer components are pulled from the internet, what happens in
that space may not be reproducible. For example,

$ apt install python

in a container recipe file won’t always give the same version. In
contrast, pulling from static locally stored mirrors helps ensure that
each layer of the container stack can be fully rebuilt at any time
without reproducibility concerns. This is the option employed in
this strategy to reduce and/or eliminate reproducibility concerns.
Additionally, each container layer is signed and then verified in the
next layer’s build step via the Fingerprint header in the definition
files ensuring that layers are built with the expected sub-layers. Also,
the following host system attributes are added to each layer during
the build process for audit purposes to assist with reproducibility if
building the layer on the same hardware is desired:
e CPU information
— Architecture
- Model Name
e uname information
- Kernel name
— Kernel release
— Kernel version
— Processor type
— Hardware platform
— Operating system
To illustrate this strategy, an application executing “hello world"
using MPI is detailed in the following section with the Singularity
recipe files for each layer described. The Fingerprint headers as
described above have been removed in the following example for
clarity.

3.1 "Hello World" Example

The base container contains the operating system for which the
entire stack will be based on. This layer is the only layer that
reaches out to the internet and would have a recipe file similar
to that illustrated in Figure 2. If tighter control of the base container
operating system is required then a different bootstrap agent, such
as yum, can used, which can be pointed to the static local mirrors
if desired.

The base+ container stacks on the base container. It modifies
all of the base OS repositories to point to the static local mirrors
instead of the internet based ones. Then it adds dependencies for
building code, pulling down source code via git, handling tar and
compressed files, as well as an editor for viewing and modifying
files. Finally, it captures some of the build host systems attributes
and stores them in the metadata of the container as illustrated in the
recipe file in Figure 3 and stacks on the base container in Figure 2.

The base++ container adds the HPC system interconnect dri-
vers and software stacks. Drivers and software stacks for multiple
interconnect technologies can be added to this layer to provide
portability. For instance, both OmniPath and InfiniBand drivers can
be added to this layer. An example recipe file adding both InfiniBand
and OmniPath in a layer is shown in Figure 4.
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1 Bootstrap: docker

2 From: rockylinux:8.6

3

4 %post

5 # Capture useful system information

6 echo "Architecture" $(lscpu | grep "*Architecture" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"
7 echo "CPU" $(lscpu | grep "*Model name" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"
8 echo "uname" $(uname -srvpio) >> "${SINGULARITY_LABELS}"

9

10 %test

11 if grep -q 'NAME="Rocky Linux"' /etc/os-release; then

12 echo "SUCCESS: Container base is Rocky Linux as expected."
13 else

14 echo "ERROR: Container base is not Rocky Linux."

15 exit 1

16 fi

17

18 %labels

19 Authors Matthew.Sgambati@inl.gov Matthew.Anderson2@inl.gov

20 Version 1.0.0

21

22 %help

23 Rocky Linux 8.6 Base Container

Figure 2: Singularity recipe file for the base layer container. This base container only has the operating system.

1 Bootstrap: oras

2 From: <container_registry>/hpchase/base_00:1.0.0

3

4 %post

5 # Change repos to point to local static mirror

6 sed -i 's/*mirrorlist/#mirrorlist/' /etc/yum.repos.d/Rocky-*.repo

7 sed -i 's#.xbaseurl=http://dl.rockylinux.org/\$contentdir#baseurl=http://<local_static_mirror>/repos/rocky-linux/20221208#"
— /etc/yum.repos.d/Rocky-*.repo

8

9 dnf clean all

10 dnf makecache

11

12 # Install commonly used packages for building code and modifiying files

13 dnf install -y bzip2 gcc gcc-gfortran gec-c++ gdb git make python39 python39-pip python39-setuptools tar vim

14 dnf clean all

15

16 # Capture useful system information

17 echo "Architecture" $(lscpu | grep "*Architecture" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"

18 echo "CPU" $(lscpu | grep "“Model name" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"

19 echo "uname" $(uname -srvpio) >> "${SINGULARITY_LABELS}"

20

21 %test

22 GCC=$(which gcc)

2 if [ $? -eq @ 1; then

24 echo "SUCCESS: gcc is available at ${GCC}"

25 else

26 echo "ERROR: gcc is not installed"

27 exit 1

28 fi

29

30 %labels

31 Authors Matthew.Sgambati@inl.gov Matthew.Anderson2@inl.gov

32 Version 1.0.0

33

34 %help

35 Rocky Linux 8.6 Base Container

36 Extra dependencies for building code and modifiying files are installed in this layer.

Figure 3: Singularity recipe file for the base+ layer container. This base container adds dependencies for building code like
compilers, modifying files, etc.

Finally, the MPI+base++ layer adds MPI to the container and en- To enhance portability of this layer, the UCX framework and two
ables building the application layers, which require MPI. Additional “base" MPIs were added to support a wider range of host system
frameworks or software can be added to this layer that enhance the MPI libraries, MPICH and OpenMPIL. MPICH is ABI compatible
capabilities or functionality of MPI to support greater portability. with multiple MPI libraries, such as Intel MPI, MVAPICH2, and
An example recipe file for this layer is shown in Figures 5-7. MPICH, and OpenMPI is ABI compatible with itself. This makes

it so that when the application layers are built, they can build two
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1 Bootstrap: oras

2 From: <container_registry>/hpchase/extra_01:1.0.0

3

4 %post

5 # Create environment variables of software versions

6 MLNX_OFED=MLNX_OFED_LINUX-5.4-3.6.8.1-rhel8.6-x86_64

7 OPX=CornelisOPX-Basic.RHEL86-x86_64.10.12.1.0.7

8

9 # Make src in /opt to hold source code

10 mkdir -p /opt/src

11

12 # Download the MLNX_OFED and OPX files to /opt

13 cd /opt

14 curl -0 http://<local_static_mirror>/interconnects/MLNX/20221208/${MLNX_OFED}.tgz

15 curl -0 http://<local_static_mirror>/interconnects/OPX/20230212/${0PX}.tgz

16

17 # Install required packages for InfiniBand

18 dnf install -y python39 pciutils lsof ethtool tcsh 1libnl3 tk numactl-libs tcl

19

20 # Extract MLNX_OFED and install it

21 tar xf ${MLNX_OFED}.tgz -C /opt/src

22 /opt/src/${MLNX_OFED}/mlnxofedinstall --without-fw-update --skip-unsupported-devices-check --basic --user-space-only --distro RHEL8.6
< --without-depcheck -q

23

24 # Install required packages for OmniPath

25 dnf install -y irgbalance kernel-modules-extra kmod libgcc perl perl-Getopt-Long perl-Socket opensm-libs python2 libatomic

26 dnf download ibacm*x86_64

27 rpm -ivh --nodeps ibacmx.rpm

28

29 # Extract OPX and install it

30 tar xf ${OPX}.tgz -C /opt/src

31 cd /opt/src/${OPX}

32 ./INSTALL -i intel_hfi -i opa_stack --user-space

33

34 # Clean up tarballs/downloads and source directories

35 cd /opt

36 rm -rf /opt/src

37 rm -f /opt/*.tgz

38 rm -f /opt/*.rpm

39

40 # Capture useful system information

41 echo "Architecture" $(lscpu | grep "“Architecture"” | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"

42 echo "CPU" $(1scpu | grep "“Model name" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"

43 echo "uname" $(uname -srvpio) >> "${SINGULARITY_LABELS}"

44

45 %test

16 OFED=$(which ofed_info)

47 if [ $? -eq @ 1; then

48 echo "SUCCESS: ofed_info is available at ${OFED}"

49 else

50 echo "ERROR: ofed_info is not installed"

51 exit 1

52 fi

53

54 O0PX=$(which opainfo)

55 if [ $? -eq @ 1; then

56 echo "SUCCESS: opainfo is available at ${OPX}"

57 else

58 echo "ERROR: opainfo is not installed"

59 exit 1

60 fi

61

62 %labels

63 Authors: Matthew.Sgambati@inl.gov Matthew.Anderson2@inl.gov

64 Version: 1.0.0

65

66 %help

67 Rocky Linux 8.6 Base Container

68 Extra dependencies for building code and modifiying files are installed in this layer

69 InfiniBand driver and OFED stack is installed in this layer

70 OmniPath driver and OPA stack is installed in this layer

Figure 4: Singularity recipe file for the base++ layer container. This container adds the drivers and software stacks for two HPC

interconnect technologies, InfiniBand and OmniPath.

versions of the application, one against MPICH and one against
OpenMPI, allowing for much greater portability with host systems
and decreasing the likelihood of needing to make changes to host
systems.

Another feature of this strategy is that application layers can
choose which layer to build against. For example, if an application
does not need MPJ, it can be built against the base++ layer or if it
does not need MPI or the interconnect, then it can build against
the base+ layer. This helps keep the size of the containers down,
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1 Bootstrap: oras

2 From: <container_registry>/hpcbase/interconnect_02:1.0.0
3

4 %post

5 # Install required packages

6 dnf install -y hwloc findutils

7

8 # Create directories to store files and source code
9 mkdir -p /opt/mpi/examples

10 mkdir -p /opt/src

1 mkdir -p /opt/tars

12

13 # Create mpitest.c program from here doc

14 cat <<- EOF > /opt/mpi/examples/mpitest.c

15 #include <mpi.h>

16 #include <stdio.h>

17 #include <stdlib.h>

18

19 int main (int argc, char xxargv) {

20 int rc;

21 int size;

22 int myrank;

23

24 rc = MPI_Init (&argc, &argv);

25 if (rc !'= MPI_SUCCESS) {

26 fprintf (stderr, "MPI_Init() failed");
27 return EXIT_FAILURE;

28 }

29

30 rc¢ = MPI_Comm_size (MPI_COMM_WORLD, &size);
31 if (rc != MPI_SUCCESS) {

32 fprintf (stderr, "MPI_Comm_size() failed");
33 goto exit_with_error

34 }

35

36 r¢ = MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
37 if (rc != MPI_SUCCESS) {

38 fprintf (stderr, "MPI_Comm_rank() failed");
39 goto exit_with_error

40 }

41

42 fprintf (stdout, "Hello, I am rank %d/%d\n", myrank, size);
43

44 MPI_Finalize();

45

46 return EXIT_SUCCESS;

47

48 exit_with_error:

49 MPI_Finalize();

50 return EXIT_FAILURE;

51 3}

52

53 EOF

54

55 # Install UCX

56 UCX_VERSION=1.13.1

57 UCX_NAME="ucx-${UCX_VERSION}"

58 UCX_URL="http://<local_static_mirror>/mpi/ucx/20230105/${UCX_NAME}.tar.gz"
50 UCX_DIR="/opt/mpi/${UCX_NAME}"

60

61 echo "Installing UCX-${UCX_VERSION}..."

62 ## Download

63 cd /opt/tars

64 curl -0 ${UCX_URL}

65 tar xf ${UCX_NAME}.tar.gz -C /opt/src

66

67 ## Compile and install

68 cd /opt/src/${UCX_NAME}

69 mkdir build

70 cd build

71 ../configure --prefix=${UCX_DIR}

72 make -j 16 |& tee log.make

73 make check |& tee log.make_check

74 make install |& tee log.make_install

Figure 5: Singularity recipe file for the MPI+base++ layer container showing the MPI “hello world" test code and UCX installation
steps.
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7 # Install MPICH

77 MPICH_VERSION=3.4.3

78 MPICH_NAME="mpich-${MPICH_VERSION}"

79 MPICH_URL="http://<local_static_mirror>/mpi/mpich/20221208/${MPICH_NAME}. tar.gz"
80 MPICH_DIR="/opt/mpi/${MPICH_NAME}"

81

82 echo "Installing MPICH-${MPICH_VERSION}..."

83 ## Download

84 cd /opt/tars

85 curl -0 ${MPICH_URL}

86 tar xf ${MPICH_NAME}.tar.gz -C /opt/src

87

88 ## Compile and install

89 cd /opt/src/${MPICH_NAME}

90 mkdir build

91 cd build

92 ../configure --prefix=${MPICH_DIR} --with-ucx=${UCX_DIR}

93 make -j 16 |& tee log.make

94 make check |& tee log.make_check

95 make install |& tee log.make_install

9

o7 # Install OpenMPI

9% OPENMPI_VERSION=4.1.4

99 OPENMPI_NAME="openmpi-${OPENMPI_VERSION}"

100 OPENMPI_DIR="/opt/mpi/${OPENMPI_NAME}"

101 OPENMPI_URL="http://<local_static_mirror>/mpi/openmpi/20221208/${0PENMPI_NAME}.tar.gz"
102

103 echo "Installing OPENMPI-${OPENMPI_VERSION}..."

104 ## Download

105 cd /opt/tars

106 curl -0 ${OPENMPI_URL}

107 tar xf ${OPENMPI_NAME}.tar.gz -C /opt/src

108

109 ## Compile and install

110 cd /opt/src/${OPENMPT_NAME }

111 mkdir build

112 cd build

113 ../configure --prefix=${OPENMPI_DIR} --with-ucx=${UCX_DIR}

114 make -j 16 |& tee log.make

115 make check |& tee log.make_check

116 make install |& tee log.make_install

117

118 echo "Compiling the MPI application..."

119 cd /opt/mpi/examples

120 echo "MPICH-${MPICH_VERSION}..."

121 PATH=${MPICH_DIR}/bin:${PATH} LD_LIBRARY_PATH=${MPICH_DIR}/1ib:${LD_LIBRARY_PATH} mpicc -o mpitest_${MPICH_NAME} mpitest.c
122

123 echo "OPENMPI-${OPENMPI_VERSION}..."

124 PATH=${OPENMPI_DIR}/bin: ${PATH} LD_LIBRARY_PATH=${OPENMPI_DIR}/1ib:${LD_LIBRARY_PATH} mpicc -o mpitest_${OPENMPI_NAME} mpitest.c
125

126 # Clean up downloads and source

127 rm -rf /opt/tars

128 rm -rf /opt/src

129

130 # Capture useful system information

131 echo "Architecture" $(lscpu | grep "“Architecture" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"
132 echo "CPU" $(lscpu | grep "“Model name" | cut -d ':' -f 2) >> "${SINGULARITY_LABELS}"
133 echo "uname" $(uname -srvpio) >> "${SINGULARITY_LABELS}"

Figure 6: Singularity recipe file for the MPI+base++ layer container showing the MPICH and OpenMPI installation steps as well

as compiling the “hello world" test code for each MPI.

simplifies the verification and validation steps, and stills maintains
the reproducibility and portability offered by this strategy.

4 PERFORMANCE MEASUREMENTS AND
RESULTS

The results in this section originate from runs executed on three
different types of HPC systems: an Intel Cascade Lake based sys-
tem with InfiniBand EDR interconnect (Sawtooth), an Intel Skylake
based system with OmniPath interconnect (Lemhi), and an AMD
EPYC based system with InfiniBand HDR interconnect (Hoodoo).
These systems are summarized in Table 1. One additional system

was used just for testing portability but not performance. One con-
tainer was built for each of the test applications (OSU microbench-
mark, LULESH, and MCNP). This one container was run on all
the HPC systems and performance was compared against the na-
tively compiled and optimized application version. As noted in the
Section 3, because MVAPICH2 and OpenMPI are not ABI compat-
ible, the container contained application builds of both MPICH
(ABI compatible with MVAPICH2) and OpenMPI for performance
comparison.

Performance comparisons for the container version of LULESH
are shown in Figure 8. In these performance measurements, LULESH
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%test
MPICH=mpich-3.4.3
OPENMPI=openmpi-4.1.4

if [ ! -f /opt/mpi/examples/mpitest_${MPICH} 1; then
echo "ERROR: MPICH mpitest application not found."
exit 1
else
echo "Running mpitest (mpi hello world) with np 2."
OUTPUT=$(/opt/mpi/${MPICH}/bin/mpirun -np 2 /opt/mpi/examples/mpitest_${MPICH})
echo -e "OUTPUT:\n${OUTPUT}"
if echo "${OUTPUT}" | grep -q "0/2" && echo "${OUTPUT}" | grep -q "1/2"; then
echo "SUCCESS: MPICH mpitest application compiled and ran correctly."
else
echo "ERROR: MPICH mpitest application did not run correctly."
exit 1
fi
fi

if [ ! -f /opt/mpi/examples/mpitest_${OPENMPI} 1; then
echo "ERROR: OpenMPI mpitest application not found."
exit 1
else
echo "Running mpitest (mpi hello world) with np 2."
OUTPUT=$(OMPI_ALLOW_RUN_AS_ROOT=1 OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1 /opt/mpi/${OPENMPI}/bin/mpirun -np 2
— /opt/mpi/examples/mpitest_${OPENMPI})
echo -e "OUTPUT:\n${OUTPUT}"
if echo "${OUTPUT}" | grep -q "0/2" && echo "${OUTPUT}" | grep -q "1/2"; then
echo "SUCCESS: OpenMPI mpitest application compiled and ran correctly."
else
echo "ERROR: OpenMPI mpitest application did not run correctly."
exit 1
fi
fi

%labels
Authors: Matthew.Sgambati@inl.gov Matthew.Anderson2@inl.gov
Version: 1.0.0

%help
Rocky Linux 8.6 Base Container
Extra dependencies for building code and modifiying files are installed in this layer.
InfiniBand driver and OFED stack is installed in this layer.
OmniPath driver and OPA stack is installed in this layer

Sgambati, et al.

178 MPICH is installed in this layer
179 OpenMPI is installed in this layer
180

Figure 7: Singularity recipe file for the MPI+base++ layer container showing the test, labels, and help sections.

System Name | Core Count Chipset Interconnect / Version (O
Sawtooth™-2 99,792 Intel Xeon 8268 InfiniBand EDR / 4.9-4.1.7 CentOS Linux release 7.9.2009 (Core)
Lemhi®2 20,160 Intel Xeon 6148 OmniPath / 10.11.0.2-1 Rocky Linux release 8.7 (Green Obsidian)
Hoodoo®? 352 AMD EPYC 7302 | InfiniBand HDR / 5.5-1.0.3 | Rocky Linux release 8.5 (Green Obsidian)
Galena! 40 Intel Xeon E5-2698 | InfiniBand EDR / 5.4-3.5.8 Ubuntu 20.04.5 LTS (Focal Fossa)

Table 1: Systems used for container portability! and performance testing?. The same container was used on all systems to
test portability. Performance of the container was compared against the natively compiled and optimized application on each

system.

was run for 1000 iterations with 30% points per domain. The same
container was used to run on each system. To facilitate performance
measurements between different MPI installations, the container
has two LULESH executables: one built against OpenMPI 4.1.4 and
one built against MPICH 3.4.3. This enables performance measure-
ment for the container with different host MPI installations. At
each core count, the simulation was run five times and the average
run time is reported.

At most core counts, the container version of LULESH ran slower
than the natively compiled and optimized version by an amount

varying between 3% to 14% at the largest core counts. At some
specific core counts, the container consistently outperformed the
natively compiled version. But in general, there was a relatively
small performance penalty as part of the container strategy to
ensure conditions for software quality assurance.

Performance comparisons between the container and native
compiled version of the OSU All-to-Allv microbenchmark across
the three supercomputer systems are shown in Figure 9. All tests
were run on 10 nodes of the system. Interesting, the container
average latency was occasionally a little lower for some message
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Figure 8: LULESH performance comparison between the container and natively compiled versions. In this plot, lower is better.
The same container was used in each of these comparisons on three different supercomputers featuring different interconnect
technologies, operating systems, and chipsets. The container has the LULESH executable compiled with OpenMPI 4.1.4 and
another compiled with MPICH 3.4.3; the LULESH executable run was the version that is ABI compatible with the host MPI.
The host MPI used to run the container was varied to observe any potential performance impact. The performance difference
between container and natively compiled version at the highest core count on each system varied from 3% to 14%.

sizes than the natively compiled version. This was especially true
in the case where the host was MVAPICH2 2.3.5 and the container
used MPICH 3.4.3. For this microbenchmark, there were essentially
no negative performance consequences to running the container
built using the described software quality assurance strategy.
Performance comparisons between container and native com-
piled version of an MCNP benchmark across the two supercomputer
systems are shown in Figure 10. In this full application, the percent-
age difference in container performance from the natively compiled
version of MCNP is shown: positive percentage differences indicate
the container ran slower than the native build while negative per-
centage differences indicate the container ran faster than the native
build. On Sawtooth, the container consistently outperformed the

native build by over 20% at larger core counts which suggests that
the production natively compiled MCNP application may need fur-
ther optimization. On Lemhi, the MCNP container is generally 5%
slower or less than the natively compiled application. In these per-
formance tests, the host was OpenMPI and the exact same MCNP
executable was used in the container for both systems.

5 CONCLUSIONS

This work presented an unique approach to handling traceability,
portability, and reproducibility as part of software quality assur-
ance for containers across different host systems with different
chipsets, interconnects, and OSes utilizing a layering approach.
An empirical measurement of the performance costs associated
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Figure 9: OSU All-to-Allv MPI microbenchmark performance comparison between the container and natively compiled versions.
In this plot, lower is better. The same container was used in each of these comparisons on three different supercomputers
featuring different interconnect technologies, operating systems, and chipsets and run on 10 nodes. The container has the
OSU MPI All-to-Allv benchmark compiled with OpenMPI 4.1.4 and also compiled with MPICH 3.4.3. There were no negative
performance consequences by using the container for this microbenchmark.

with this software quality assurance strategy has been presented
for three different applications across three different supercomput-
ers. The upper bound for the performance cost for this strategy
was 14% but this was not uniform across the applications and core
counts. In several instances, the software quality assurance con-
tainer consistently outperformed the natively compiled application.
The software quality assurance container was also tested for porta-
bility on one additional DGX-1 system with Ubuntu 20.04. While
the strategy was validated for Singularity and/or Apptainer in this
work, the strategy is not limited to just these container platforms.

Future work will explore the software quality assurance strategy
for additional widely used HPC applications including the Vienna
Ab Initio Simulation package and GROMACS+CP2K [3]. Because

the performance metrics collected in this work used largely un-
optimized versions of the software in the containers, future work
includes exploring how much optimization could be performed on
the containerized software without affecting portability. It might be
possible to reduce some of the performance gasps reported here via
specific optimizations. Even though there was generally a small per-
formance loss in order to achieve portability, this work has shown
that this strategy for containers can provide a reproducible, trace-
able, and portable container with minimal to no changes required
on host systems.
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